Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA:...

65
Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu

Transcript of Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA:...

Page 1: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Workshop in Computational Structural Biology

201581855 & 81813, 4 points

Ora Schueler-FurmanTA: Orly Marcu

Page 2: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Introduction – When, Where, How?

• When & Where:– Thursdays, Givat Ram– Lecture: 14:00-15:45,

Sprinzak 25 – Exercise: 16:00-18:45,

Sprinzak computer class #2– Lectures & exercises available

in moodle

• How:– Make sure you have an

account in CS ✓

• Exercises- Submit 7/10 exercises- Due within 2 weeks- Submit by email to

[email protected] 1/3 of grade

• Contact: Ora 87094

[email protected], or Orly 87063

[email protected]

Acknowledgements: Sources of figures and slides include slides from Branden & Tooze; some slides have been adapted from members of the Rosetta Community, especially from Jens MeilerExercises in Pyrosetta have been adapted from teaching material by Jeff Gray

Page 3: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

What will we learn:Part I: Protein structure in the eye

of the computational biologist

1. Introduction to computational structural biology•The basics of protein structure•Challenges in computational biology and bioinformatics•Protein structure prediction and design

Page 4: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Part I: Protein structure in the eye of the computational biologist

2. Introduction to Rosetta and structural modeling•Approaches for structural modeling of proteins •The Rosetta framework and its prediction modes•Cartesian and polar coordinates•Sampling (find the structure) and •Scoring (select the structure)

3. Optimization techniques•Energy minimization•Monte Carlo (MC) Sampling•MC with minimization (MCM)

Page 5: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Part II: Protein modeling and design

4. Ab initio modeling: Principles and approaches

5. Full-atom refinement• Local optimization• Side chain modeling

– The representation of side chains as rotamers– Rotamer and off-rotamer sampling– Finding minimum energy rotamer combinations

Page 6: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Part II: Protein modeling and design

6. Homology modeling• Selection of template and alignment of query sequence to

template• Loop modeling approaches (modeling of unaligned regions)

7. Protein design • The theoretical basis of protein design; how different design

goals are achieved• Success and challenge in computational design

Page 7: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Part III: Protein interactions8. Protein-protein docking• Challenges and approaches in protein docking• The theoretical basis of low-resolution and high-resolution docking

9. Interface analysis and design• Determinants of binding affinity and specificity• Identification of interface residue hotspots: Computational alanine scanning• Success and challenge in interface design

10. Summary

Page 8: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

What will we learn: ExercisesExercises will span a variety of subjects and involve both Rosetta and other widely-used protocols

• Basic introduction: how to look at proteins• Protein structure evaluation and classification: What does my protein do, how good is its structure? • Structure comparison• Running Rosetta• Pyrosetta and Rosettascripts: running and programming

• ab initio modeling• Homology modeling• Structure refinement• Modeling side chains• Loop modeling• Protein docking• Interface analysis –

Computational alanine scanning

• Protein design and protein interface design

Page 9: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

1. Introduction to Computational Structural Biology

The Basics of Protein Structure

Page 10: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

The central dogma

Page 11: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

The code: 4 bases, 64 triplets, 20 amino acids

Page 12: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

4 Hierarchies of protein structure

• Anfinsen: sequence determines structure

Page 13: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

The building blocks: 20 amino acids

• Differ in size, polarity, charge, secondary structure propensity …

Page 14: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

• The simplest aa• No sc• Very flexible bb

Special amino acids

• Cyclic aa• sc Connects bb N• Very constrained bb

N

CO

C H

HH

N

CO

C H

CH2

CH2H2C

Page 15: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Aliphatic amino acids

• sc contains only carbon and hydrogen atoms• hydrophobic

Page 16: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Amino acids with hydroxyl group

Page 17: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Negatively charged amino acids

Different size → different tendency for 2. structure

Page 18: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Amide amino acids

Page 19: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Positively charged amino acids

• large sc

• pKa 11.1 • pKa 12

Page 20: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Aromatic amino acids

• sc contains aromatic ring

• pKa 7

• benzene ring

Page 21: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Amino acids with sulfur

Page 22: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Cystine

Oxidation of Sulfur atoms creates covalent disulfide bond (S-S bond)between two cysteines

Page 23: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

S-S bonds stabilize the protein

A chainG I V E Q C C A S V C S L Y Q L E N E N Y C N

s

s

s

s

B chainF V N Q H L C G S H L V E A L Y L V C G E R G F..

s

s

InsulinA chain

NN

CC

B chain

Page 24: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Post-translational modifications

• Processing (pro-insulin/insulin)– control of protein activity

• Glycosylation– protein trafficking

• Phosphorylation (Tyr, Ser, Thr) – regulation of signaling

• Methylation, Acetylation – histone tagging

• ….

24

Page 25: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Metal binding proteins

• aa: HCDE• Fe, Zn, Mg, Ca• Fe

– blood: red hemoglobin– electro-transfer: cytochrome c

• Zn – in DNA-binding “Zn-finger” proteins– Alcohol dehydrogenase: oxidation of alcohol

25

Page 26: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Important bonds for protein folding and stability

Dipole moments attract each other by van der Waals force (transient and very weak: 0.1-0.2 kcal.mol) Hydrophobic interaction –hydrophobic groups/ molecules tend to cluster together and shield themselves from the hydrophilic solvent

Dipole moments attract each other by van der Waals force (transient and very weak: 0.1-0.2 kcal.mol) Hydrophobic interaction –hydrophobic groups/ molecules tend to cluster together and shield themselves from the hydrophilic solvent

Page 27: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Hydrogen bonding potential of amino acids

Page 28: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Primary sequence: concatenated amino acids

Page 29: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Primary sequence: concatenated amino acids

Page 30: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Formation of a peptide bond

O - oxygen

N - nitrogen

O-+H3N

R

H

CO

C

||

H - hydrogen

C - carbon

cpk colors

Page 31: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

The geometry of the peptide backbone

• Peptide bond length and angles do not change• Peptide dihedral angles define structure

•The peptide bond is planar & polar :=180o (trans) or 0o (cis)

Page 32: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Dihedral angles

Dihedral angles 1-4 define side chain

From wikipedia

• Dihedral angle: defines geometry of 4 consecutive atoms (given bond lengths and angles)

Page 33: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Ramachandran plot

Glycine: flexible backboneAll except Glycine

33

Page 34: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Ramachandran plot

34

Page 35: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Secondary structure: local interactions

Page 36: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Secondary structure – built from backbone hydrogen bonds

Page 37: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

helix• discovered 1951 by Pauling• 5-40 aa long• average: 10aa• right handed • Oi-NHi+4 : bb atoms satisfied

• helix: i - i+5• 310 helix: i - i+3

1.5Å/res

Favored: Ala, Leu, Arg, Met, Lys Disfavored: Asn, Thr, Cys, Asp, Gly

Page 38: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

helix: dipole

• binds negative charges at N-terminus

Page 39: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

View down one helical turn39

helix: side chains point out

Page 40: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Frequent amino acids at the N-terminus of helices

Pro Blocks the continuation of the helix by its side

chain Asn, Ser

Block the continuation of the helix by hydrogen bonding with the donor (NH) of N3

Ncap, N1, N2, N3 …….Ccap

40

Page 41: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Helices of different character

1. buried 2. partially exposed3. exposed

41

Page 42: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Representation: helical wheel

42

1. buried 2. partially exposed: amphipathic

helix3. exposed

Page 43: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

-sheet• Involves several regions in sequence• Oi-NHj

•Parallel andanti-parallelsheets

43Favored: Tyr, Thr, Ile, Phe, Trp Disfavored: Glu, Ala, Asp, Gly, Pro

Page 44: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Antiparallel -sheet

• Parallel Hbonds• Residue side chains point up/down/up ..• Pleated

44

Page 45: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Parallel -sheet

• less stable than antiparallel sheet• angled hbonds

45

Page 46: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Connecting elements of secondary structure define tertiary structure

46

Page 47: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Loops

• connect helices and strands• at surface of molecule• more flexible• contain functional sites

47

Page 48: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Hairpin Loops ( turns)• Connect strands in antiparallel sheet

G,N,D G G S,T

48

Page 49: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Super secondary structures – Greek Key Motif

Most common topology for 2 hairpins

49

Page 50: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Super Secondary Structures- Motif

• connects strands in parallel sheet• always right-handed

50

Page 51: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Repeated motif creates -meander: TIM barrel

51

Page 52: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Tertiary structure defines protein function

Page 53: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

The quaternary structure of a protein defines its biological

functional unit

53

Page 54: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Quaternary structure: Hemoglobin consists of 4 distinct chains

Page 55: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Quaternary structure: assembly of protein domains

(from two distinct protein chains, or two domains in one protein sequence)

Glyceraldehyde phosphate dehydrogenase:• domain 1 binds the substance for being metabolized, • domain 2 binds a cofactor

Page 56: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

1. Introduction to Computational Structural Biology

Experimental determination of protein structure: X-ray diffraction

and NMR

Page 57: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Experimental determination of structure

X-ray crystallography• Determines electron

density – positions of atoms in structure

• Highly accurate• Static: depends on

crystal

NMR• Determines constraints

between labeled spins• Allows measure of

structure in solution• Resolution not defined:

more constraints – better defined structure

Page 58: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

X-ray diffraction

Page 59: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

X-ray diffraction

If direction is such that -> Constructive addition-> Reflection spot in the diffraction pattern

• Wavelength of x-ray ~ crystal plane separations

• Rotation of crystal relative to beam allows recording of different diffractions

• Diffraction maps are translated to electron density maps using Fourier Transform

Resolution measures diffraction angles (high angle peaks – high resolution data)

Page 60: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

X-ray diffraction

Iterative refinement allows improvement of structure

R-factor measures quality

Fo – observedFc - calculated

Page 61: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

X-ray diffraction

1950’s first protein structure solved by Kendrew & Perutz: sperm whale myoglobin

Today: ~107’000 structures solved, most by x-ray crystallography

Challenges• Grow crystal• Determine phase

Page 62: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

NMR (Nuclear Magnetic Resonance)

NMR-active nuclei (w spins)1H, 13C

Application of magnetic field reorients spins – measure resonance between close nuclei

Extract constraints & determine structure

Page 63: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

1. Introduction to Computational Structural Biology

Challenges in Computational Structural Biology

Page 64: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Protein structure prediction and design

Protein sequence

Protein sequence

Protein structureProtein

structure

Protein Structure prediction

Protein Structure prediction

Protein DesignProtein Design

FASTA>2180 hSERTMETTPLNSQKQ……

PDBATOM 490 N GLN A 31 52.013 -87.359 -8.797 1.00 7.06 NATOM 491 CA GLN A 31 52.134 -87.762 -10.201 1.00 8.67 CATOM 492 C GLN A 31 51.726 -89.222 -10.343 1.00 10.90 CATOM 493 O GLN A 31 51.015 -89.601 -11.275 1.00 9.63 O…..….

Page 65: Workshop in Computational Structural Biology 2015 81855 & 81813, 4 points Ora Schueler-Furman TA: Orly Marcu.

Additional topics in computational structural biology

• Nucleic acids - Prediction of binding and structure– RNA stem & loops, pseudoknots; protein-RNA binding– DNA curvature; protein-DNA binding

• Prediction of macromolecular structures– Reconstruction of protein assemblies from low-

resolution cryo-EM maps

• Protein-ligand interactions– Docking of small ligands– Design of inhibitors

… and many many more!… and many many more!