Woolworths Packaging Sustainability Guidelines VG · PDF fileKellogg’s, Pepsi, Gillette,...

40
Packaging Sustainability Guidelines Woolworths private label products 16 March 2011

Transcript of Woolworths Packaging Sustainability Guidelines VG · PDF fileKellogg’s, Pepsi, Gillette,...

 

 

 

 

 

 

 

 

 

 

 

 

 

Packaging Sustainability Guidelines 

Woolworths private label products 

 

 

 

 

 

 

 

16 March 2011  

Table of Contents 1.  Introduction ................................................................................................................................................ 4 

1.1.  Purpose .............................................................................................................................................. 4 

1.1.  Scope ................................................................................................................................................. 4 

1.1.1.  Divisions ..................................................................................................................................... 4 

1.1.2.  Brands ........................................................................................................................................ 4 

1.2.  Woolworths’ Sustainability Strategy ................................................................................................. 5 

1.3.  Regulatory requirements ................................................................................................................... 6 

2.  Design principles ......................................................................................................................................... 7 

2.1.  Life cycle thinking .............................................................................................................................. 7 

2.2.  Packaging as a system ....................................................................................................................... 7 

2.3.  The waste hierarchy .......................................................................................................................... 7 

3.  The design process ..................................................................................................................................... 9 

4.  Practical design strategies ........................................................................................................................ 10 

4.1.  Design for effectiveness (fit for purpose) ........................................................................................ 10 

4.2.  Design for efficiency ........................................................................................................................ 11 

4.2.1.  Design for materials efficiency ................................................................................................ 11 

4.2.2.  Design for transport efficiency ................................................................................................ 12 

4.3.  Design for accessibility .................................................................................................................... 12 

4.4.  Design for reuse, recovery and recycling ........................................................................................ 13 

4.4.1.  Design for reuse ....................................................................................................................... 13 

4.4.2.  Design for recycling ................................................................................................................. 13 

4.4.3.  Recycled content ..................................................................................................................... 18 

4.4.4.  Design for composting ............................................................................................................. 19 

4.4.5.  Design for litter reduction ....................................................................................................... 19 

4.5.  Design for safety .............................................................................................................................. 20 

4.6.  Design for effective communication ............................................................................................... 21 

4.6.1.  Woolworths’ policy .................................................................................................................. 21 

4.6.2.  Plastics Identification Code ..................................................................................................... 21 

4.6.3.  ‘Recyclable’ claims and symbols .............................................................................................. 22 

4.6.4.  ‘Recycled content’ claims and symbols ................................................................................... 23 

4.6.5.  Beverage container deposits ................................................................................................... 23 

4.6.6.  Anti‐litter claims and symbols ................................................................................................. 23 

Conclusion ........................................................................................................................................................ 24 

LIST OF ATTACHMENTS  

Attachment 1: Embodied carbon for packaging materials ............................................................................... 26 

Attachment 2: Recycling services for packaging .............................................................................................. 27 

Attachment 3: Use of the Plastics Identification Code (PIC) ............................................................................ 28 

Attachment 4: Woolworths’ preferred recycling and identification symbology ............................................. 30 

Attachment 5: Glossary of terms...................................................................................................................... 31 

Attachment 6: Acronyms .................................................................................................................................. 33 

Attachment 7:  Vendor Packaging Data Checklist ............................................................................................ 36 

Attachment 8:  Packaging Sustainability Design Checklist ............................................................................... 38 

LIST OF FIGURES Figure 1: The waste hierarchy ........................................................................................................................... 8 

Figure 2: Compatibility of polymers in mechanical recycling .......................................................................... 15 

LIST OF TABLES Table 1: Scope of PSGs ...................................................................................................................................... 4 

Table 2: Specific gravity of polymers ............................................................................................................... 16 

Table 3: Recommended sizes for the Plastics Identification Code .................................................................. 22 

1. Introduction

1.1. Purpose

These Guidelines have been prepared to assist Woolworths’ buying and packaging teams and our vendors to reduce the environmental impacts of packaging.  

The Guidelines are a key commitment in Woolworths’ Sustainability Strategy 2007. They will assist Woolworths and its vendors to comply with the Australian Packaging Covenant (APC) and the environmental labelling implications of the Competition and Consumer Act (2010). The Guidelines are Woolworths’ own version of the APC’s Sustainable Packaging Guidelines1 (SPGs). 

For all new or renovated packaging, the following must take place: 

An in‐house review of the packaging against these Guidelines must take place. 

Product vendors must complete the Vendor Packaging Data Checklist (Attachment 7) and the Packaging Sustainability Review Checklist (Attachment 8) then return the completed Checklist to Woolworths. 

In addition, the Packaging Sustainability Checklist must be completed for 50% of existing product packaging by 2015. A plan to achieve this is set out in the 2011 Woolworths APC Action Plan. 

1.1. Scope While this document can be applied to any product packaging, it has been specifically developed for the scope of products outlined below. 

1.1.1. Divisions This document applies to all Woolworths business divisions that develop branded products (ie. hold trademarks) for sale to consumers. At the time of writing, this includes Supermarkets, Liquor, Big W and Dick Smith. 

1.1.2. Brands

This document is designed to provide packaging sustainability guidance for products for which Woolworths is considered to be the ‘brand owner’. As a rule, these are products for which Woolworths holds the trademark. 

The table below outlines those product types that are considered to be ‘in‐scope’ for the purposes of this Action Plan. 

 

Table 1: Scope of PSGs 

Brand types  Definition  Examples  In‐scope? 

Private label  Brands where Woolworths has  Home Brand, Select, Macro,  YES 

                                                            1 The SPGs effectively supersede the Environmental Code of Practice for Packaging (ECoPP). 

Brand types  Definition  Examples  In‐scope? 

undertaken product development from the beginning and the brand is owned by the business. 

Dick Smith, Dry Dock, Baily & Baily 

Exclusive brand2  Brands stocked exclusively in Woolworths and possibly developed in conjunction with an external manufacturer or supplier. 

Abode, Dymples, AWA, Patio, Gadget Geek, Distinct 

YES 

Controlled brand  Brands where Woolworths has an exclusive license to distribute, and holds the trademark. 

Highland Legend  YES 

Controlled brand (trademark not held by Woolworths) 

Brands where Woolworths has an exclusive license to distribute, but the Trademark is not held by business. 

Sol, Chang, Arrogant Frog  NO 

Exclusive imports  Similar to controlled brands, where Woolworths has an exclusive license to distribute, but the Trademark is not held by the business. 

Moët & Chandon, selective Logitech products 

NO 

Parallel imports  Brands imported by other companies and Woolworths and not exclusive to the business. 

Chupa Chups  NO 

External brands  Brands owned by other companies and not exclusive Woolworths, including pack sizes that may be exclusive to the business. 

Kellogg’s, Pepsi, Gillette, Coca‐Cola 

NO 

1.2. Woolworths’ Sustainability Strategy

Woolworths states in its Sustainability Strategy 2007‐2015 that: 

‘Retailers have a key role in the packaging supply chain and have the ability to drive positive and measurable change in this area. At Woolworths, with our dual role as both a retailer and a brand owner, we are committed to improvement by finding cost‐

                                                            2 ‘Exclusive brands’ have previously been known as ‘fantasy brands’ in some parts of the business.  

effective ways to reduce packaging and minimise waste from private label products, while continuing to deliver quality products to customers at low prices.’ 

 

Packaging Specification Strategy  

Woolworths aims to reduce the environmental impact of private label packaging without compromising the safety, quality, or consumer acceptance of our products. We are committed to: 

complying with all relevant government regulations and policies; 

using the minimum amount of material for packaging that is consistent with product protection and safety; 

optimising the efficiency of packaging in transport and distribution; 

optimising the recoverability of packaging; 

increasing the amount of recycled material wherever feasible; 

avoiding the use of substances that can adversely impact human health or the environment during packaging production, use, recovery and disposal; 

labelling recyclable packaging; and 

educating consumers about the recyclability of packaging. 

1.3. Regulatory requirements

Woolworths is a signatory to the APC, which is a commitment by companies in the packaging supply chain to reduce the environmental impacts of packaging. Woolworths’ four‐year Action Plan will be prepared by 31 March 2011 and made available on the APC web site3.  

APC signatories are required to implement the SPGs. This document has been designed as Woolworths’ internal equivalent of the SPGs, and therefore must be applied to all new and refurbished private label packaging.  

Environmental labelling on packaging also needs to comply with Section 29 of the Australian Consumer Law 2010, which prohibits false or misleading conduct. The Australian Competition and Consumer Commission (ACCC) have published guidelines on environmental claims and the Competition and Consumer Act. These provide the basis for the environmental labelling guidelines in Section 4.6. 

                                                            3 www.packagingcovenant.org.au/documents/File/AP_Woolworths_07_10.pdf (viewed 17/12/08). 

 

2. Design principles Best practice environmental design of packaging is based on several important principles, and these need to be considered throughout the design process: 

life cycle thinking – minimising environmental impacts across the entire packaging life cycle; 

systems thinking – minimising environmental impacts of the product‐packaging system as a whole; and 

the waste hierarchy – reduce, reuse, recycle. 

Each of these principles is briefly discussed below.  

2.1. Life cycle thinking

Environmental impacts occur at every stage of the packaging life cycle, from raw material extraction through to post‐consumer waste management. Environmental impacts at each stage include resource depletion (e.g. water, coal, minerals, timber and oil) and emissions (e.g. greenhouse gases, water‐borne emissions and solid waste). It is important to ensure that environmental design doesn’t simply shift impacts from one part of the life cycle to another, without any net gain. 

A life cycle assessment (LCA)‐based tool such as PIQET can be used to establish the environmental impacts of a packaging system across a number of environmental indicators. PIQET enables designers to quickly understand and compare the complete environmental impacts of different packaging systems. 

For example, lightweighting product packaging from a glass bottle to a liquid paperboard carton might result in lower environmental impacts at the manufacturing and distribution phases, but as liquid paperboard is not currently recyclable in most parts of Australia, it will result in increased extraction of natural resources and waste to landfill. It may also have a negative effect on consumer perceptions when they find they are no longer able to recycle this type of waste. 

2.2. Packaging as a system

It is important to optimise the design of the entire packaging system, which includes: 

consumer or retail units (primary packaging such as bottles, cans, bags and cartons); 

trade units (secondary or distribution packaging, outers or shippers); and 

logistical units (tertiary packaging or unit loads such as pallets with stabilising material such as stretch wrap). 

A reduction in consumer packaging should not be considered in isolation of the packaging system as a whole and its impact on the product. The environmental impacts of the product life cycle tend to be much higher than the environmental impacts of the packaging. A reduction in consumer packaging may therefore not achieve an overall benefit if it reduces shelf life, increases spoilage or requires additional secondary packaging.  

2.3. The waste hierarchy

The waste hierarchy can assist in prioritising waste minimisation and recovery strategies (Figure 1). Avoidance and reduction of packaging achieve the greatest environmental benefit, followed by 

reuse, recycling and recovery (e.g. composting or energy recovery). The feasibility and environmental benefits of recycling or recovery will depend on the available infrastructure.  

 

Figure 1: The waste hierarchy4 

 

 

                                                            4 Wastenet, http://www.wastenet.net.au/System/images/waste_hierarchy/view?searchterm=waste%20hierarchy (viewed 17/12/08). 

3. The design process Environmental design should be integrated in the packaging design and development process. This will enable environmental considerations to be factored in cost‐effectively. 

Communication with suppliers, customers and recyclers will help you to design packaging that is acceptable in the supply chain and optimises environmental performance:  

Talk to packaging suppliers: Become familiar with the environmental characteristics of packaging materials and formats. 

Talk to Woolworths: Ensure that packaging meets the functional requirements of retail distribution, shelf life and display.  

Talk to recyclers: Confirm whether packaging is recyclable and discuss any opportunities to enhance recovery (e.g. by removing contaminants). 

Effectively designed packaging can also have financial benefits. Reducing packaging can result in cost savings for raw materials, as well as reducing transport, storage and shelving costs. Similarly, using packaging that is energy‐ and water‐efficient can reduce the supply chain costs associated with packaging. 

4. Practical design strategies This section outlines five practical environmental design strategies that can help you to optimise the environmental performance of packaging: 

Design for effectiveness – packaging must be fit‐for‐purpose. 

Design for efficiency – packaging should be as efficient as possible in its use of materials, energy and water. 

Design for accessibility – packaging should be easy and safe to open and close by its intended consumers. 

Design for recovery – where feasible, packaging should be designed for recovery at end‐of‐life through reuse or recycling. 

Design for safety – hazardous components such as toxic heavy metals should not be used. 

Design for effective communication – packaging should include appropriate environmental information for consumers. 

There may be trade‐offs between strategies. For example, changing from a plastic bottle to a plastic bag improves transport efficiency due to lighter weight but reduces recyclability as most kerbside collection systems do not take plastic bags or plastic film. The three design principles can be used to support the decision‐making process in cases such as this: 

Life cycle thinking encourages strategies that reduce environmental impacts throughout the life cycle. Lightweighting of packaging reduces material, energy and water consumption at every stage, whereas the efficiency benefits of recycling need to be evaluated against the additional environmental impacts of collection and reprocessing. 

A systems approach means that efficiency strategies such as lightweighting should not be pursued if product protection or safety is compromised. 

The waste hierarchy encourages avoidance, reduction and reuse before recycling.  

4.1. Design for effectiveness (fit for purpose)

Packaging should be designed to have the minimum net impact on the environment in term of waste, water, energy and emissions, while fully preserving the integrity of the product and ensuring that the contents are delivered to the consumer in good condition. Depending on the safety, health and economic requirements of the product, the packaging system may need to: 

protect its contents from climatic influences (e.g. light, shelf life, humidity and temperature), mechanical hazards (e.g. impacts, accelerations, abrasions and vibrations), gas and odour exchanges and contamination by micro‐organisms or pest‐infestation, and must not interact with the products in food contact situations; 

provide convenience by being easy to open (but difficult to open accidentally), re‐closable, tamper evident, and easy to handle and carry; 

retain its integrity to ensure acceptable product quality during distribution and consumer storage; and 

be able to communicate logistical, product and promotional information. 

Functionality requirements will depend on a range of factors. Beyond health and safety requirements, factors such as shelf life, distribution environment, demographics of the market, branding features and economic value determine which level of ‘fitness for purpose’ the packaging system is catering for. 

4.2. Design for efficiency

4.2.1. Design for materials efficiency

Packaging should be manufactured with the minimum amount of material required to achieve the anticipated functionality. Any unnecessary packaging components should be eliminated, i.e. any components that do not add value to the required functionality of the packaging system. These components are often referred to as ‘over packaging’. Over‐packaging represents an unnecessary cost and environmental impact.  

However, under‐packaging (i.e. a packaging system that does not adequately fulfil its anticipated functional value) is usually far worse for the environment than over‐packaging. Over‐packaging by 10% means that 10% of the resources needed to produce and transport the packaging are unnecessary and therefore wasted. Under‐packaging may result in packaging failure, leading to product being spoilt or damaged. Packaging failure usually leads to 100% waste of the resources used to produce and distribute both the contents and its packaging. This is particularly important given that the environmental impact of products, typically, is ten times that of their packaging5. For the same reason, product waste should be minimised by allowing complete dispensing of the product.  

The production of raw materials and their conversion into packaging materials and components requires the use of water and energy and also generates waste products such as greenhouse gases and solid waste. It is therefore important to consider how efficiently these resources are used in the manufacture and transportation of packaging materials. One indicator of efficiency is the ‘embodied’ carbon (measured in carbon dioxide equivalent, or CO2‐e) in a packaging material, i.e. the amount of CO2‐e generated during raw material extraction and production. A guide to the embodied carbon for different packaging materials is provided in Attachment 1 (‘Embodied carbon for packaging materials’).  

Resource efficiency can vary between suppliers as some may have more efficient manufacturing plants, use greener energy sources or obtain their raw materials from more sustainably managed sources than others. 

In addition, the use of recycled materials is encouraged wherever possible. Recycled materials reduce pressure on natural resources and reduce the amount of waste going to landfill. They are also generally more energy and water‐efficient than virgin materials. 

To optimise materials efficiency: 

                                                            5 Envirowise (2008, p. 11) 

 

down‐gauge (in thickness and weight) as much as possible; 

eliminate unnecessary void space, layers and components; 

use recycled materials for packaging wherever possible; 

use point‐of‐sale displays to convey messages and image rather than increasing the packaging on every item; 

optimise the quantity of product in the consumer package to meet consumer need (ie. increasing the product‐packaging ratio should be considered, however any increase in pack sizes should not result in increased waste);  

increase the volume density by concentrating products such as juice, cordials, soups and detergents;  

strengthen or weaken certain components to reduce overall material use;  

minimise use of inks where this will not compromise the consumer appeal of consumer units; 

use materials from responsible suppliers, such as those who have a documented Environmental Management System, those engaged in a sustainability program or those who use renewable energy in the manufacture of packaging materials; and 

review competitors’ products and international best practice to identify new design or light‐weighting options. 

4.2.2. Design for transport efficiency Packaging should also be designed so that the environmental impacts of its transport and distribution are minimized. Given that transport could account for a significant proportion of the life cycle impacts of common goods, design for transport efficiency has the potential to deliver enduring savings on costs, energy/fuel use, resources and greenhouse gas emissions. 

To optimize transport efficiency: 

‘lightweight’ packaging wherever possible; 

ensure consumer packs fit snugly into trade units; 

optimise trade unit dimensions to ensure good pallet optimization (‘cubing out’); and 

investigate the potential to replace trade units with a bulk reusable transit packaging system. 

4.3. Design for accessibility ‘Accessibility’ of packaging has emerged as a significant social issue. 

For packaging to be ‘accessible’ it must be safe and easy for the consumer to open, have legible labelling and not compromise safety or quality. Packaging cannot meet consumers’ needs and expectations if it is not accessible.6 

                                                            6 Australian Packaging Covenant (2010, s 3.11) 

A major consideration in determining whether a product is appropriately accessible is the demographic of the likely consumers of the product. Where the likelihood exists that consumers may have a physical or sensory issue that could impede or endanger their ability to open, use and close the packaging of a product, then this should be addressed at the packaging design stage. 

For example, people suffering from arthritis or other joint problems could find it difficult to open tightly secured jar lids. This could be addressed by adding grip to the jar lid, or by changing to an alternative packaging format such as a tube. Similarly, packaging that requires consumers to use objects like knives and scissors should be avoided where there is a viable alternative. 

4.4. Design for reuse, recovery and recycling

4.4.1. Design for reuse

Woolworths is widely using returnable plastic crates for fresh produce and bulk containers for product distribution. Returnable cardboard totes are also used between distribution centres and retail stores. 

Waxed cardboard and expanded polystyrene (EPS) boxes should be avoided where product quality will not be affected because they are difficult and costly to recycle.   

Reusable trade or logistical units should: 

be efficient with pallet space to optimise transport and storage space; 

be durable and designed for easy maintenance including cleaning; 

be collapsible and/or nestable to optimise return transport capabilities; 

be as lightweight as possible; 

incorporate recycled content where possible;  

have facilities available for cleaning, repair or reconditioning; and 

be recyclable at end‐of‐life. 

4.4.2. Design for recycling

The SPGs state that packaging should be designed to optimise its recovery and recycling at end‐of‐life and to minimise the environmental impacts of disposal. Consistent with the waste hierarchy, preference should be given to recycling for the same or similar application (‘closed loop’ recycling) followed by recycling for an alternative application (‘downcycling’ or composting). 

The first step in design for recycling is the selection of a recyclable material: 

Recyclable consumer packaging is packaging collected through kerbside systems by the majority of local Councils in Australia. This changes over time and needs to be monitored – the most recent data is provided in Attachment 2 (‘Recycling services for packaging’). 

Recyclable trade and distribution packaging is packaging collected for recycling by the majority of Woolworths’ distribution centres and retail stores. 

A material may be technically recyclable, but if local councils do not collect the material through their kerbside recycling and/or Material Recovery Facilities (MRFs) and recyclers do not have the technology to separate and reprocess it, of if there is no viable end‐market for the material, then it is effectively non‐recyclable.  

It is therefore important to consult with local Councils7 and/or materials recyclers on the recyclability of any new packaging, particularly if it uses a combination of materials. Laminated and multi‐layer containers are not recyclable. The use of different materials in other formats can also inhibit recycling or cause problems in the recycling process. For example, plastic ‘windows’ on pasta boxes, plastic film on tissue boxes and the moulded plastic on blister packs will be separated in the paper recycling process but will end up in landfill. Plastic or wax coatings on cardboard reduce the amount of fibre that can be reclaimed.  

Where the use of multiple materials is unavoidable, e.g. plastics and cardboard, separate recycling information should be provided for each material, and the product labelling should advise consumers to separate before recycling (see Section 4.5.3). 

Not all plastics are compatible in the recycling process (Figure 2). Polymer contamination from closures and labels can render the recyclate unusable, or downgrade its quality so that it cannot be re‐used for high value applications. Polyolefins (e.g. HDPE, LDPE and PP) are incompatible with polyesters (e.g. PET), PVC and PS. They can be separated during the washing process at recycling facilities, which utilise the different density of polymers (Table 1). However, the separation of polymers with a similar density, such as PET, PVC and PS, is more difficult. This can cause problems during reprocessing. For example, a PVC label on a PET container will contaminate the PET recycling stream because the two polymers are not compatible in the moulding process (they have different melting points).  

Need to add a comment here about recycling/recovery technology is continually improving and these constraints may well be resolved through technology advancements and new developments. 

Other contaminants such as food residues can cause problems during the recycling of both plastics and paper/cardboard.  

                                                            7 The website www.recyclingnearyou.com.au provides information about the types of materials collected for kerbside recycling in Australian Local Government Areas. 

 

Figure 2: Compatibility of polymers in mechanical recycling8  

LDPE

LLD

PE

ULD

PE/V

LDPE

ETH

YLEN

E C

OPO

LYM

ERS

HD

PE

PP

EPM

/EPD

M

PS (G

EN P

UR

POSE

)

SAN

AB

S

PVC

PA

PC

PMM

A

PBT

PET

SBS

LDPE

LLDPE 1

ULDPE/VLDPE 1 1

ETHYLENE COPOLYMERS 1 1 1

HDPE 1 1 1 1

PP 4 3 [1] 2 4

EPM/EPDM 4 4 3 3 4 1

PS (GEN PURPOSE, HIGH IMPACT) 4 4 4 4 4 4 4

SAN 4 4 4 4 4 4 4 4

ABS 4 4 4 4 4 4 4 4 1

PVC 4 4 4 [3] 4 4 4 4 [3] [3]

PA 4 4 4 [1] 4 4 [1] 4 4 4 4

PC 4 4 4 4 4 4 4 4 [3] 2 4 4

PMMA 4 4 4 [3] 4 4 4 4 [3] 2 2 4 [3]

PBT 4 4 4 [2] 4 4 4 4 4 4 4 4 [2] 4

PET 4 4 4 [3] 4 4 4 4 4 4 4 3 1 4 3

SBS 4 4 4 4 4 4 4 1 [3] 2 3 3 4 4 4 4

KEY: 1 EXCELLENT 3 FAIR 2 GOOD 4 INCOMPATIBLE [N] DEPENDENT UPON COMPOSITION

Note: This table should be used as a guide only. Consultation with recyclers is recommended. 

                                                            8 Based on Envirowise (2004, p. 24) with some modifications to meet local requirements. 

To improve the recyclability of plastic packaging: 

ensure that PET, HDPE and PVC packaging is compatible with ACOR’s Kerbside recycling specifications (details below); 

try to use only one material, or material combinations that are compatible in the recycling process (see Figure 1); 

avoid multi‐layer containers; 

try to ensure that polymers used for auxiliary components such as labels, closures, liners and cap seals match that of the container; 

if auxiliary components are manufactured from a different material to the container, ensure that the different materials can be easily separated during the washing process (for compatibility of caps and labels with PET recycling processes refer to the relevant ACOR guidelines);  

consult with recyclers to establish if any components will be problematic in the recovery process or end product; 

unpigmented polymers are more valuable as recyclate than pigmented – if colour is required try to limit it to labels; 

fillers that change the density of the plastic should be avoided or their use minimised as they lower the quality of the recycled material; 

PVC causes significant problems for the recycling of PET, so 

- do not use PVC labels, closures or tamper‐proof seals on consumer packs made from PET 

- do not manufacture the same packaging from both PET and PVC (e.g. clamshells for fresh produce) – manufacture it all from one polymer (preferably PET); 

avoid wet strength paper labels on plastic packaging as they do not disintegrate into pulp during the wash phase and will contaminate the polymer;  

avoid metallic labels and aluminium closures and seals as they can severely impact the viability of polymer recycling; 

avoid pressure‐sensitive adhesives that cover the entire back of the label as they are difficult to remove and contaminate the recycled polymer; 

incorporate recycled content where possible (subject to food contact requirements); 

emboss rigid plastics label with the relevant identification code; 

do not use PIC labels on plastic bags, films, pouches or other flexible plastics as these are not generally recycled by kerbside services in Australia; 

label with the relevant recycling/disposal symbol (see section 4.5). 

Table 2: Specific gravity of polymers 

Polymer  Specific gravity 

PP  Polypropylene  0.90  Floats 

EVA  Polyethylene co vinyl acetate  0.92  Floats 

LDPE  Low density polyethylene  0.92  Floats 

HDPE  High density polyethylene   0.96  Floats 

Water    1.00   

ABS  Acrylonitrile butadiene styrene  1.05  Sinks 

PS  Polystyrene  1.06  Sinks 

PVC  Polyvinyl chloride  1.35 – 1.40   Sinks 

PET  Polyethylene terephthalate  1.38 – 1.40   Sinks 

PLA  Polylactic acid   1.24 – 1.27  Sinks 

 

To improve the recyclability of paper or cardboard packaging: 

ensure that packaging is compatible with ACOR’s Kerbside recycling specifications (details below); 

avoid the use of wax or aluminium coatings, which reduce the yield of recycled fibre; 

avoid aluminium layers; 

check with recyclers to ensure that polymer coatings, if required, are compatible with the recycling process; 

minimise or avoid the use of non‐paper/cardboard components (e.g. plastic windows or film); 

minimise the use of inks; 

do not use inks, dyes and coatings that contain heavy metals; 

use water‐soluble adhesives;  

avoid high wet strength paper (e.g. labels) or cartonboard – these generally don’t break down, causing blockages in the pulping process; 

if a coating is required ensure that it is compatible with the recycling process; 

if extra labels are required they should be made of a paper‐based material; 

incorporate recycled content where possible (subject to food contact requirements); and 

label recyclable packaging with the relevant recycling symbol (see section 4.5.3). 

To improve the recyclability of glass packaging: 

ensure that packaging is compatible with ACOR’s Kerbside recycling specifications (details below); 

avoid dark green, dark blue or black glass – these may contaminate recyclable glass (which is sorted into clear, brown and green glass with strict specifications); and 

ensure that any metal components (e.g. closures) are easily separated from the container; 

label with the relevant recycling symbol (see section 4.5.3). 

  

Reference documents 

Australian Council of Recyclers (ACOR) documents (published 2006):  

Recycling guide for fillers marketing in PET containers 

Recycling guide for fillers marketing in HDPE 

Recycling guide for beverage and food manufacturers marketing in aluminium 

Recycling guide for fillers marketing in steel cans 

Kerbside recycling specifications (glass, PET, HDPE, LDPE, PVC, aluminium, paper, steel) 

ACOR guides can be downloaded from http://www.acor.org.au/materials.html (viewed 15/12/10). 

New Zealand Paperboard packaging Association 2005, Code of Practice for the New Zealand paperboard packaging industry, http://www.printnz.co.nz/assets/images/nzppa/NZPPA%20Code%20of%20Practice.pdf (viewed 15/12/10). 

4.4.3. Recycled content

The SPGs urge users to maximise the application of recycled content where use of such content is physically possible, not detrimental to the function of the packaging or packaged product, and would not violate applicable health and safety standards. When choosing between material supply options, priority should be given to incorporating Australian post‐consumer recycled material to support local markets for material collected from recovery systems. This is particularly the case for recycled paper, cardboard, PET, HDPE and PVC.  

Due to health regulations recycled polymers are usually not allowed to be used as packaging material in food contact applications (not including non‐processed fruit and vegetables). In food contact applications the recycled polymer needs to be certified by the appropriate authority (Food Safety Australia New Zealand) as meeting Australian Standard 2070 (Plastic materials for food contact use). The test Standard normally applied is the US Food and Drug Administration’s (FDA) standard for recyclates in direct food contact9. Visy Recycling’s recycled PET is the only recycled packaging polymer manufactured in Australia that currently meets this standard for particular applications. The exception for this is R‐PET and sandwich‐recycled PET, which is permissible for direct food contact. Certification for these plastics is done by documentation conforming with USFDA, EU directives or JIS standards as outlined in AS2070. 

                                                            

9 Food and Drug Administration (FDA, 2006)  

 

Recycled paper and cartonboard can be used for some food‐contact packaging as long as the sources of the fibre are known (some sources are not acceptable, such as paper from mixed waste) and the recycled material has been processed and cleaned to a level which meets all food safety requirements. 

Strategies to optimise recycled content in packaging: 

trade units (plastic and corrugated board) should include the maximum amount of recycled content that is consistent with product protection, package integrity and transport requirements; 

food‐contact PET containers should include a percentage of recycled content where permitted; and 

non‐food plastic consumer units (e.g. LDPE, HDPE and PP) should include a percentage of recycled content where feasible.  

4.4.4. Design for composting

A variety of biodegradable and/or compostable polymers have been introduced to the packaging market. These can be divided into two main groups (see Attachment 3 – Biodegradable polymers): 

biodegradable polymers made from renewable materials, such as corn and cellulose; 

biodegradable polymers that are combined with a conventional synthetic polymers; and 

oxo‐biodegradable additives that are combined with a conventional synthetic polymer. 

Many biopolymers are made from corn, which is a renewable resource. However, plants require resources such as land, water and energy (for agricultural machinery and fertiliser). The manufacture of biopolymers also competes with food crops for available agricultural land and may be contributing to global food shortages and higher prices in some markets. While most biopolymers are compostable, facilities for the recovery of compostable products (especially kerbside facilities) in Australia are limited at the present time. 

Biodegradable packaging materials derived from non‐renewable resources such as polyethylene are also available and are referred to as ‘oxo‐biodegradable’. These materials contain an additive to enhance degradation. They are not currently certified as meeting relevant composting standards and the value of these materials in landfill or in the litter stream is not clear. 

Biodegradable packaging materials, whether manufactured from renewable or non‐renewable resources, can also contaminate plastic recycling systems.  

For these reasons Woolworths is not pursuing the use of biodegradable or oxo‐degradable polymers for private label packaging at the present time. However, the potential benefits of biodegradable materials may be considered for particular products where packaging is likely to contribute to littering and we will keep abreast of further developments in both materials and kerbside collection systems  and review the guidelines  if required.  

4.4.5. Design for litter reduction

Design for litter reduction is important for products that are likely to be consumed away from home, such as single‐serve beverages, sweets, snacks and salads. 

To reduce litter: 

minimise the number of separable components that could be littered (e.g. straws, tamper evident seals, trays, spoons and forks); and 

provide information to the consumer to encourage responsible disposal (see Section 4.5.6). 

4.5. Design for safety

According to the SPGs, companies should apply conventional and conservative risk management principles in the selection of substances for packaging applications. This includes, where possible, eliminating toxic or hazardous substances or minimising such substances where their use is necessary. 

Information on the use of heavy metals and other substances classified as toxic or hazardous should be obtained from packaging suppliers. These substances are unlikely to be present in packaging manufactured in Australia, but particular attention should be applied to imported packaging.  

There are no Australian standards which specifically restrict or ban toxic or hazardous components in packaging; however, packaging suppliers should aim to meet relevant international standards. For example, the European Packaging and Packaging Waste Directive (94/62/EC) specifies that the combined weight of heavy metals (lead, cadmium, mercury and hexavalent chromium) in packaging or packaging components should not exceed a concentration of 100ppm.  

The European Printing Industry Association has developed an ‘exclusion list’ for printing inks and related substances which includes pigment colourants based on antimony, arsenic, cadmium, chromium (VI), lead, mercury and selenium (see details in the reference list below).  

Solvent‐based printing processes should be avoided because they generate emissions of Volatile Organic Compounds (VOCs). 

To reduce the impacts of hazardous or toxic substances: 

wherever possible use water‐based rather than solvent‐based printing processes; 

minimise use of inks and pigments; and 

do not use inks and pigments containing lead, cadmium, mercury and hexavalent chromium. 

 

Reference documents 

European Printing Industry Association 2007, Exclusion list for printing inks and related products, http://www.eupia.org/EPUB/easnet.dll/GetDoc?APPL=1&DAT_IM=020A3B&TYPE=PDF (viewed 15/12/10). 

Ciba Speciality Chemicals 2004, Colorants for use in food packaging, toys and consumer goods, http://afmpl.com.au/technical‐information‐.html?task=download&cid%5B0%5D=14  (viewed 15/12/10) – this document provides information on the compliance of specific pigments and dyes with the European Packaging Directive and other international regulations 

4.6. Design for effective communication

4.6.1. Woolworths’ Environmental Claims Policy Woolworths has an Environmental Claims Policy designed to ensure that all product claims are consistent with the Competition and Consumer Act.  

The principles for environmental claims that must be considered are: 

general, unqualified statements such as ‘environmentally friendly’, ‘eco‐friendly’ or ‘green’; and 

irrelevant claims, for example where the claimed benefit applies to all products in the same category (e.g. ‘CFC‐free’ on aerosol cans). 

A general claim, such as ‘environmentally friendly’, may be used but only if it is supported by specific and verifiable information about the environmental benefits of the product or packaging. 

All environment claims must be approved by corporate environment and by legal before they can be adopted. 

Reference documents 

Woolworths’ Environmental Claims Policy  

ACCC 2008, Green marketing and the Trade Practices Act, Australian Competition and Consumer Commission (ACCC), Canberra, http://www.accc.gov.au/content/index.phtml/itemId/815763  (viewed 15/12/10). 

Standards Australia 1999, AS/NZS ISO 14021: 1999, Environmental labels and declarations ‐ Self‐declared environmental claims (Type II environmental labelling), International Organisation for Standardisation, Geneva. 

4.6.2. Plastics Identification Code

The Plastics Identification Code (PIC) is a voluntary system for marking rigid plastic containers to identify the plastic resin from which they are made (Attachment 4). The system is managed by the Plastics and Chemicals Industries Association (PACIA). 

The PIC is very similar to the ‘mobius loop’ recycling symbol and therefore has potential to mislead consumers if it is clearly visible on a non‐recyclable container. For this reason it needs to be used carefully. 

The PIC should not be used on flexible consumer packaging such as plastic films, bags and pouches, with the exception of shopping bags. This type of packaging is currently not recyclable in Australia. 

The PIC should be moulded into or embossed on the bottom of each container or as near to it as technically possible. Recommended sizes are provided in Table 2. 

 

Table 3: Recommended sizes for the Plastics Identification Code 

Container height   Container size  Recommended size 

120mm & under  < 500 ml  Between 8 mm – 12.5 mm (as large as possible)  

120‐230mm  500 ml – 1 litre  12.5 mm 

230‐360mm  1 litre – 5 litre  19 mm 

360+mm  > 5 litre  25 mm 

 

PACIA advises that the PIC may not be suitable for packaging of dangerous goods. These include chemicals embossed with ‘POISON’ or labelled to meet the requirements of the Australian Dangerous Goods (ADG) Code. There may be some risks associated with the inclusion of these products in collection, sorting or reprocessing systems. Consult with recyclers to check whether or not they should be included. 

Further information on how the PIC should be used is provided in Attachment 4 (Use of the Plastics Identification Code). 

 

Reference documents 

PACIA 2003, Plastics identification code, Plastics and Chemicals Industries Association, Melbourne. 

4.6.3. ‘Recyclable’ claims and symbols

Recycling symbols should be used on all recyclable consumer and trade unit packaging, including shelf‐ready packaging and shippers.  

Claims and symbols that indicate a package can be recycled include the ‘chasing arrow’ and words such as ‘please recycle’ and ‘recyclable’. These should only be used on packaging that is being collected by most local councils in Australia through kerbside collection programs. The Australian Standard (AS/NZS 14021) states that (p. 13): 

If collection or drop‐off facilities for the purpose of recycling the product or packaging are not conveniently available to a reasonable proportion of purchasers, potential purchasers and users of the product in the area where the product is sold, the following shall apply: 

(a) A qualified claim of recyclability shall be used. 

(b) The qualified claim shall adequately convey the limited availability of collection facilities. 

(c) Generalised qualifications, such as ‘Recyclable where facilities exist’, which do not convey the limited availability of collection facilities, are not adequate. 

Materials that are currently collected at kerbside by the majority of councils in Australia include steel cans, aluminium cans, glass, liquid paperboard, paper, cardboard and some rigid plastic containers 

(PET, HDPE, PVC, LDPE and PP). However, the availability of services changes over time and should be reviewed regularly. 

Recyclable containers should include Woolworths’ preferred recycling symbology (see Attachment 5 – Woolworths’ preferred recycling and identification symbology for private label packaging). If more than one material is used and the consumer is expected to separate the package into recyclable components, provide advice to this effect on the label (Figure 3). 

 

Figure 3: Example of a recyclability claim and Woolworths preferred recycling symbology for a multi‐material pack 

Please separate the plastic and cardboard for recycling 

CARTON  INNER TRAY 

 

   

 

Product contents may inhibit recyclability, e.g. dangerous goods. Consult with recyclers about any products that you believe might pose any risks in the collection, sorting or recycling process. These products should be labelled for safe disposal, e.g. ‘Please dispose of empty container in your rubbish bin. Do not recycle.’ 

4.6.4. ‘Recycled content’ claims and symbols

Any claims about recycled content and its source need to be accurate and verifiable. However, in many cases the sources of raw material (pre‐consumer or post‐consumer) and the percentage of recycled content vary over time due to changes in the supply of recycled material. 

For this reason Woolworths does not currently recommend that packaging labels include information on recycled content. 

4.6.5. Beverage container deposits Beverage packaging sold in South Australia is covered by that State’s Container Deposit Legislation. Information on labelling requirements can be downloaded from the EPA’s web site10.  

4.6.6. Anti-litter claims and symbols

All products that are likely to be consumed away from home have potential to be littered. Wherever possible, an anti‐litter message and symbol (see Figure 4) should be added to these products, which include: 

sweets; 

pre‐prepared salads and snacks;  

                                                            10 http://www.epa.sa.gov.au/pdfs/cdlguide01.pdf (viewed 15/12/10). 

single‐serve fruit and yoghurt; and 

small beverage containers. 

 

Figure 4: Woolworths’ preferred anti‐litter message and symbol 

 

‘Please do not litter’ 

Conclusion These Guidelines have been developed to assist Woolworths’ buying and packaging teams and vendors to reduce the environmental impacts of private label packaging and comply with the APC. 

The Guidelines will be reviewed regularly. Any feedback or questions should be directed to: 

 

Mr Kane Hardingham 

Environmental Manager Woolworths Limited 1 Woolworths Way Bella Vista NSW 2153 Telephone: 02 8885 4277 Email: [email protected]

25 

References 

ACOR 2006, Recycling guide for fillers in PET containers, Australian Council of Recyclers, Sydney. 

 

Australian Packaging Covenant July 2010, Sustainable Packaging Guidelines  www.packagingcovenant.org.au/documents/File/Sustainable%20Packaging%20Guidelines%20‐%201%20Jul%2010.pdf 

 

Envirowise 2004, Sustainable design of electrical and electronic products to control costs and comply with legislation, Didcot, Oxfordshire. 

 

Envirowise 2008, Packguide: a guide to packaging eco‐design, Didcot, Oxfordshire. 

 

FDA 2006, Use of recycled plastics in food packaging:  chemistry considerations, U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Viewed 9 January 2007, http://www.fda.gov/food/guidancecomplianceregulatoryinformation/GuidanceDocuments/FoodIngredientsandPackaging/ucm120762.htm  

 

Hyder Consulting 2007, 2007 National plastics recycling survey, Report to the Plastic and Chemicals Industries Association, Melbourne. 

 

APCIA 2008, 2007 Industry Data Aggregation System (IDAS) KPI report, National Packaging Covenant Industry Association (APCIA), Sydney. 

 

Standards Australia 2006, AS 4736‐2006, Biodegradable plastics ‐ biodegradable plastics suitable for composting and other microbial treatment, Standards Australia, Sydney. 

 

Standards Australia and Standards New Zealand 2000, AS/NZS ISO 14021:2000, Environmental labels and declarations ‐ self‐declared environmental claims (type II environmental labelling), Standards Australia, Sydney. 

26 

Attachment 1: Embodied carbon for packaging materials Note: Data is for 1 kg of material 

 

Packaging material   Embodied CO2 * 

(kg CO2e) 

PET (Polyethylene terephthalate)   2.3 

HDPE (High density polyethylene)  2.2 

PVC (Polyvinyl chloride)   2.4 

LDPE (Low density polyethylene)  2.5 

PP (Polypropylene)  2.2 

PS (Polystyrene)  1.7 

HIPS (High impact polystyrene)  3.3 

EPS (Expanded Polystyrene)  2.7 

EVA (Polyethylene‐co vinyl acetate)  1.8 

ABS (Acrylonitrile butadiene styrene)  1.4 

Cardboard   0.8 

Cardboard – high wet strength  1.5 

Glass  0.8 

Aluminum  20.0 

Steel  1.6 

*From cradle to gate – i.e. includes all CO2 emissions generated from the extraction of the raw material through to the manufacture of the packaging material.  Excludes impacts associated with recycling at end of life or post consumer recycled content. 

27 

Attachment 2: Recycling services for packaging  

Percentage of Local Councils collecting packaging materials at kerbside in Australia, 2007 (Based on Hyder Consulting 2007, p. 38)  

Packaging material  Percentage of Councils collecting (%) 

Polyethylene terephthalate (PET) ‐ rigid  99.5% 

High density polyethylene (HDPE) ‐ rigid  99.4% 

Polyvinyl chloride (PVC) ‐ rigid  75.3% 

Low density polyethylene (LDPE) ‐ rigid  63.4% 

Polypropylene (PP) ‐ rigid  73.6% 

Polystyrene (PS) – rigid (excl. EPS)  41.5% 

Other plastics (rigid)  33.9% 

Plastic films   <5% 

 

 

For further information on recycling programs: 

National recycling programs – www.recyclingnearyou.org.au 

Victorian recycling programs – http://www.sustainability.vic.gov.au 

South Australian recycling programs – http://www.zerowaste.sa.gov.au 

Queensland recycling programs – http://www.epa.qld.gov.au 

NSW recycling programs – http://www.wasteservice.nsw.gov.au 

Plastics recycling programs – http://www.pacia.org.au 

 

(All web sites viewed 14/12/10) 

 

 

28 

Attachment 3: Use of the Plastics Identification Code (PIC) NB: The PIC should not be used on flexible plastics or films as these are not currently recyclable across most of Australia. 

Code  Type of plastic  Where the code should be used  Where it should not be used 

 

Polyethylene terephthalate (PET) 

PET bottles ‐ soft drinks, water, oil, laundry products etc. 

PET jars – peanut butter, jam etc.  

PET thermoformed packs – bakery trays, fresh produce clamshells etc. 

PET films/bags (pre‐cut salad bags etc.) 

Multi‐layer containers 

Dangerous goods packaging 

  

 

High density polyethylene (HDPE) 

HDPE bottles ‐ shampoo, household spray bottles, milk, pancake shake, laundry liquid, dishwashing concentrate, hand wash, tomato sauce etc. 

HDPE jars – nappy treatment, chest rub, pre‐treatment wash, etc. 

HDPE bags – shopping bags only 

HDPE bags (excluding shopping bags), e.g. sandwich bag packaging etc. 

Multi‐layer containers 

HDPE tubes, e.g. hand cream 

Dangerous goods packaging, e.g. bleach 

 

 

Polyvinyl chloride (PVC) 

PVC bottles – antiseptic solution, cordial bottles etc. 

PVC clamshells – strawberries, cherry tomatoes, sprouts etc 

PVC thermoformed trays and domes – block cakes etc. 

PVC film 

Multi‐layer containers 

 

  

Low density polyethylene (LDPE) 

LDPE bottles – baby wash, baby bath etc. 

 

Multi‐layer containers  

LDPE bags ‐ frozen chicken nuggets, frozen vegetables, fresh vegetables, toilet paper, cotton wool etc. 

LDPE shrink wrap, e.g. bottle multi‐packs, drink can multi‐packs etc. 

  

Polypropylene (PP) 

PP tubs – margarine, butter, cottage cheese, ice cream, preserved fruit etc. 

PP jars – preserved fruit, pool chlorine, pool tablets etc. 

PP hang sell labels – kitchen utensils etc. 

PP boxes – cotton tips 

Multi‐layer containers  

PP bags – sleepwear, spinach, lettuce, garlic bread, meat pies, sponges and wipes, lollies etc. 

PP shrink film – cutting boards etc. 

 

29 

 

 

Polystyrene (PS) 

General purpose polystyrene (GPPS) foam trays – meat, poultry 

High impact polystyrene (HIPS) tubs and trays – meat trays, salad, yoghurt, cream cheese, margarine, butter, etc. 

Expanded polystyrene (EPS) tubs – instant flavoured noodles 

Multi‐layer containers 

  

Other plastics 

 

Other plastics containers ‐ polyamides (nylons), ABS, SAN etc. 

Multi‐layer containers ‐ squeezable sauce bottles, thermoformed trays for fresh pasta etc. 

 

 

Multi‐layer pouches (paper, aluminium and plastic) – dry soup mix, burrito seasoning etc 

Plastic pouches – cat and dog food 

Multi‐layer plastic bags –cheese, nuts, dried fruit, biscuits etc. 

Plastic labels – e.g. preserved fruit 

30 

Attachment 4: Woolworths’ preferred recycling and identification symbology

Material  Label 

Steel

 

Aluminium 

 

Cardboard 

 

Paper 

 

Liquidpaperboard eg. Tetrapak 

 

Glass 

 

PET* 

 

HDPE* 

 

PVC* 

 

LDPE* 

 

PP* 

  

* Refer to guidelines on the appropriate use of the Plastics Identification Code (section 4.5.2)

31 

Attachment 5: Glossary of terms

Biodegradable  The ability of organic substances to be broken down by micro‐organisms in the presence of oxygen (aerobic) to carbon dioxide, water, biomass and mineral salts or any other elements that are present (mineralisation). Alternatively, the breakdown of organic substances by micro‐organisms without the presence of oxygen (anaerobic) to carbon dioxide, methane, water and biomass (Standards Australia, 2006, p. 5). 

Biopolymer  A polymer manufactured from a rapidly renewable material such as corn, maize or potato. 

Closed loop recycling  Recycling of a material into the same or a similar application, e.g. PET soft drink bottles into PET packaging. 

Composite packaging  Consumer packaging comprising two or more different packaging material types fused or joined together in a single medium so that they cannot be separated by the consumer (APCIA, 2008, p. 17). Examples include composite cans, aseptic packaging and liquidpaperboard cartons. 

Compostable  A characteristic of a product, packaging or associated component that allows it to biodegrade, generating a relatively homogenous and stable humus‐like substance (Standards Australia and Standards New Zealand, 2000, p. 9). 

Consumer unit packaging  Packaging used to contain a product until the product is consumed, (e.g., bottle and closure). Also referred to as the ‘retail unit’ or ‘primary pack’. 

Degradable  A characteristic of a product or package that, with respect to specific conditions, allows it to break down to a specific extent within a given time (Standards Australia and Standards New Zealand, 2000, p. 10). 

Downcycling  Recycling of a material into a different, lower value material, e.g. HDPE milk bottles into outdoor furniture. 

Environmental design  A product design process which explicitly considers, and tries to minimise, the environmental impacts of the product. 

High density polyethylene (HDPE) 

A type of plastic used to manufacture packaging, e.g. milk and detergent bottles. 

High wet strength paper / board 

Paper of cartonboard which has been chemically treated to withstand tearing or falling apart when saturated with water (ACOR, 2006a). 

Liquidpaperboard  A packaging material made of paper with a coating of low density polyethylene (LDPE), used to make milk and juice cartons.   

Logistical unit packaging  Packaging used to ship goods from their point of origin, such as a farm or factory, to their destination. Includes boxes, crates, pallets, or cushioning material (e.g. Expanded polystyrene). Also called ‘transport’ or ‘distribution’ packaging. 

Low density polyethylene (LDPE) 

A type of plastic used to manufacture packaging, e.g. bags and film. 

32 

Outer   See shipper. 

Polyethylene terephthalate (PET) 

A type of plastic used to manufacture packaging, e.g. soft drink bottles. 

Polypropylene (PP)  A type of plastic used to manufacture packaging, e.g. ice cream tubs, bags. 

Polyvinyl chloride (PVC)  A type of plastic used to manufacture packaging, e.g. cordial bottles with handles. 

Pre‐consumer recycled material 

Material diverted from the waste stream during a manufacturing process. Excluded is reutilisation of materials such as rework, regrind or scrap generated in a process and capable of being reclaimed within the same process that generated it (Standards Australia and Standards New Zealand, 1999, p. 14). 

Post‐consumer recycled material 

Material generated by households or by commercial, industrial and institutional facilities in their role as end‐users of the product which can no longer be used for its intended purpose. This includes returns of material from the distribution chain (Standards Australia and Standards New Zealand, 1999, p. 14).  

Recycled content  Proportion, by mass, of recycled material in a product or packaging. Only ‘pre‐consumer’ and ‘post‐consumer’ materials shall be considered as recycled content (Standards Australia and Standards New Zealand, 2000, p. 13). 

Retail unit  See ‘consumer unit packaging’. 

Shipper  See ‘trade unit packaging’. 

Trade unit packaging  Packaging used to deliver multiple units of a consumer product to the retailer. The most common packaging used for shippers is the corrugated cardboard box. Also called a ‘trade unit’ or ‘outer’. 

Transport packaging  See ‘logistical unit packaging’. 

 

33 

Attachment 6: Acronyms  

ABS  Acrylonitrile butadiene styrene 

ACOR  Australian Council of Recyclers 

APC  Australian Packaging Covenant 

CO2  Carbon dioxide 

CO2e  Carbon dioxide equivalent 

ECoPP  Environmental Code of Practice for Packaging 

EPDM  Ethylene‐propylene‐diene monomer (elastomer) 

EPM  Ethylene‐propylene rubber 

EPS  Expanded polystyrene 

EVA  Ethylene‐co‐vinyl acetate 

HDPE  High density polyethylene 

LCA  Life Cycle Assessment 

LDPE  Low density polyethylene 

LLDPE  Linear low density polyethylene 

PA  Polyamide (nylon) 

PACIA  Plastics and Chemicals Industries Association 

PBT  Polybutylene terephthalate 

PC  Polycarbonate 

PET  Polyethylene therephthalate 

PIC  Plastics Identification Code 

PIQET  Packaging Impact Quick Evaluation Tool 

PLA  Polylactic acid 

PMMA  Polymethyl methacrylate  

34 

PP  Polypropylene 

Ppm  Parts per million 

PS  Polystyrene 

PVC  Polyvinyl chloride 

SAN  Styrene acrylonitrile 

SBS  Styrene‐butadiene‐styrene 

ULDPE  Ultra low density polyethylene 

VLDPE  Very low density polyethylene 

35 

36 

Attachment 7: Vendor Packaging Data Checklist This Checklist must be completed for all new or renovated packaging. Its purpose is to collect specific data on the environmental aspects of Woolworths’ private label packaging.  

The checklist is shown in the table below. 

Responsibility Response Actions DocumentationProduct information Product name Vendor Product reference number Vendor Product size Vendor Vendor name Vendor Name of person(s) completing the checklist Vendor Contact details for person completing the checklist

Vendor

Date checklist was completed Vendor Packaging data Consumer packaging data Description of consumer unit packaging Vendor PET (code 1) Vendor HDPE (code 2) Vendor PVC (code 3) Vendor LDPE/LLDPE (code 4) Vendor PP (code 5) Vendor PS/EPS (code 6) Vendor Other plastic (code 7) Vendor Paper Vendor Cardboard (standard) Vendor Cardboard (waxed) Vendor Cardboard (high wet strength) Vendor Steel Vendor Aluminium Vendor Glass Vendor Composite packaging Vendor Other Vendor Trade unit packaging data Description of traded unit packaging (shipper) Vendor Quantity of product in one traded unit (units) Vendor PET (code 1) Vendor HDPE (code 2) Vendor PVC (code 3) Vendor LDPE/LLDPE (code 4) Vendor PP (code 5) Vendor PS/EPS (code 6) Vendor

37 

Responsibility Response Actions DocumentationOther plastic (code 7) Vendor Paper Vendor Cardboard (standard) Vendor Cardboard (waxed) Vendor Cardboard (high wet strength) Vendor Steel Vendor Aluminium Vendor Glass Vendor Composite packaging Vendor Other Vendor

 

38 

Attachment 8: Packaging Sustainability Design Checklist This Checklist must be completed for all individual new or renovated packaging, and for categories of existing packaging. The purpose is to help ensure that the Woolworths Packaging Sustainability Guidelines have been appropriately considered in the design of private label product packaging. 

Responsibility Response Actions DocumentationProduct information Product name Woolworths Packaging Product reference number Woolworths Packaging Product size Woolworths Packaging Vendor name Woolworths Packaging Name of person(s) completing the checklist

Woolworths Packaging

Contact details for person completing the checklist

Woolworths Packaging

Date checklist was completed Woolworths Packaging Design for efficiency Have you addressed Woolworths’ ‘design for efficiency’ guidelines during the design of this package? (Yes/No)

Woolworths Packaging

Has the amount of material used in the packaging been reduced? (Yes/No)

Woolworths Packaging

Please provide further information Woolworths Packaging Can the amount of material be further reduced? (Yes/No)

Woolworths Packaging

Please provide further information Woolworths Packaging Has the accessibility of the product been considered for likely users? (Yes/No)

Woolworths Packaging

Please provide further information Woolworths Packaging Design for reuse Is the trade unit packaging reusable? (Yes/No)

Woolworths Packaging

If yes, have you addressed Woolworths’ ‘design for reuse’ guidelines (Yes/No)

Woolworths Packaging

Please provide further information Woolworths Packaging If the trade unit is not reusable, is there any potential to shift to reusable packaging? (Yes/No)

Woolworths Packaging

Please provide further information Woolworths Packaging Design for recycling Were Woolworths’ ‘design for recycling’ guidelines addressed during the design of this package? (Yes/No)

Woolworths Packaging

39 

Responsibility Response Actions DocumentationCan the consumer package be recovered and recycled through an existing system? (Yes/No)

Woolworths Packaging

If yes, please explain how it can be recovered and recycled

Woolworths Packaging

Have you confirmed the recyclability of this package with relevant recyclers?

Woolworths Packaging

If the package is not currently recyclable, can it be redesigned to improve its recyclability? (Yes/No)

Woolworths Packaging

Please provide further information Woolworths Packaging Recycled content Does the consumer packaging contain recycled material? (Yes/No)

Woolworths Packaging

If yes, is it post-consumer or pre-consumer material?

Woolworths Packaging

What is the average content of recycled material in the consumer packaging, by weight (%)?

Woolworths Packaging

If there is no recycled content, please explain why not

Woolworths Packaging

Is there potential to increase the amount of recycled material in the package? Please explain

Woolworths Packaging

Does the trade unit packaging contain any recycled material? (Yes/No)

Woolworths Packaging

If yes, is it post-consumer or pre-consumer material? (refer to definitions in the guidelines)

Woolworths Packaging

What is the average content of recycled material in the trade packaging, by weight (%)?

Woolworths Packaging

If there is no recycled content in the trade packaging, please explain why not

Woolworths Packaging

Is there potential to increase the amount of recycled material in the shipper? Please explain

Woolworths Packaging

Design for litter reduction Is this product likely to be consumed away from home? (Yes/No)

Woolworths Packaging

If yes, have Woolworths’ ‘design for litter reduction’ guidelines been addressed during the design of the packaging? (Yes/No)

Woolworths Packaging

Please provide further information Woolworths Packaging Design for safety Have Woolworths’ ‘design for safety’ guidelines been addressed during the design of the packaging? (Yes/No)

Woolworths Packaging

40 

Responsibility Response Actions DocumentationIf yes, please explain how the guidelines have been addressed

Woolworths Packaging

Is the package manufactured with any substances containing lead, mercury, cadmium or hexavalent chromium? (Yes/No)

Woolworths Packaging

If yes, is the total concentration less than 100ppm?

Woolworths Packaging

Design for effective communication

Are there any environmental claims on the packaging? (Yes/No)

Woolworths Packaging

If yes, are the claims consistent with Woolworths’ Environmental Claims Policy? (Yes/No)

Woolworths Packaging

If the packaging is manufactured from plastic, is it labelled with the Plastics Identification Code? (Yes/No)

Woolworths Packaging

Is use of the Plastics Identification Code consistent with the guidelines? (Yes/No)

Woolworths Packaging

If the packaging can be recovered and recycled through an existing system, does it include the relevant recycling symbol? (Yes/No)

Woolworths Packaging

If the package is likely to be consumed away from home, does it include Woolworths’ preferred anti-litter symbol? (Yes/No)

Woolworths Packaging