W/NSA...V2 "A" latch random input auto spectral density 48 68. V2 c.g. response auto spectral...

70
-31638 NASA Technical Memorandum NASA TM- 86454 W/NSA RADIAL SI LATCHES VIBRATION TEST DATA REVIEW By Phillip M. Harrison and James Lee Smith Systems Dynamics Laboratory July 1984 National Aeronautics and Space Administration George C. Marshall Space Flight Center MSFC - Form 3190 (Rev. May 1983)

Transcript of W/NSA...V2 "A" latch random input auto spectral density 48 68. V2 c.g. response auto spectral...

  • - 3 1 6 3 8

    NASATechnicalMemorandum

    NASA TM- 86454

    W/NSA

    RADIAL SI LATCHES VIBRATION TEST DATA REVIEW

    By Phillip M. Harrison and James Lee Smith

    Systems Dynamics Laboratory

    July 1984

    National Aeronautics andSpace Administration

    George C. Marshall Space Flight Center

    MSFC - Form 3190 (Rev. May 1983)

  • TECHNICAL REPORT STANDARD TITLE PAGE1. REPORT NO.

    NASA TM-864542. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

    4. TITLE AND SUBTITLE

    Radial SI Latches Vibration Test Data Review

    5. REPORT DATE

    July 19846. PERFORMING ORGANIZATION CODE

    7. AUTHOR(S)

    Philip M. Harrison and James Lee Smith8. PERFORMING ORGANIZATION REPORT ff

    9. PERFORMING ORGANIZATION NAME AND ADDRESS

    George C. Marshall Space Flight CenterMarshall Space Flight Center, Alabama 35812

    10. WORK UNIT NO.

    1 1. CONTRACT OR GRANT NO.

    12. SPONSORING AGENCY NAME AND ADDRESS

    13. TYPE OF REPORT & PERIOD COVERED

    Technical MemorandumNational Aeronautics and Space AdministrationWashington, B.C. 20546 14. SPONSORING AGENCY CODE

    15. SUPPLEMENTARY NOTES

    Prepared by Systems Dynamics Laboratory, Science and Engineering

    16. ABSTRACT

    Dynamic testing of the Space Telescope Scientific Instrument Radial Latcheswas performed as specified by the designated test criteria. No structural failureswere observed during the test. The alignment stability of the instrument simulatorwas within required tolerances after testing. Particulates were discovered aroundthe latch bases, after testing, due to wearing at the "B" and "C" latch interfacesurfaces. This report covers criteria derivation, testing, and test results.

    17. KEf WORDS

    Space Telescope Scientific InstrumentsRadial Latches

    Vehicle TransientsRandom Vibration

    18. DISTRIBUTION STATEMENT

    Unclassified-Unlimited

    19. SECURITY CLASSIF. (of thU report!

    Unclassified20. SECURITY CLASSIF. (of this page)

    Unclassified21. NO. OF PAGES

    68

    22. PRICE

    NTIS

    MSFC - Form 3392 (May 1969)For sale by National Technical Information Service, Springfield. Virginia 22151

  • Page intentionally left blank

    Page intentionally left blank

  • TABLE OF CONTENTS

    Page

    I. INTRODUCTION 1

    II. DESCRIPTION OF TEST ITEMS 1

    III. TEST CRITERIA AND DEVELOPMENT 1

    A. Sinusoidal Diagnostic Survey 21. 0.1 G Level 22. 0.25 G Level 2

    B. Vehicle Transient 21. Half Level 32. Full Level 3

    C. Random Vibration 31. Half Level 32. Full Level 3

    IV. TEST APPARATUS 4

    V. TEST PROCEDURE 4

    VI. DATA AND EVALUATION 4

    A. Sinusoidal Diagnostic Survey 5B. Vehicle Transient 5C. Random Vibration 5

    VII. SUMMARY AND CONCLUSIONS 6

    A. Summary 6B. Conclusions 6

    APPENDIX A - DATA AND ILLUSTRATIONS 7

    APPENDIX B - DATA ANALYSIS PLOTS 33

    APPENDIX C - ANALYSIS EQUATIONS 59

    ill

  • LIST OF ILLUSTRATIONS

    Figure Title Page

    1. Test configuration 8

    1.1. Latch A, FPS half 9

    1.2. Latch A, SI half 10

    1.3. Latch B 11

    1.4. Latch C, SI half 12

    1.5. Latch C, FPS half , 12

    2. Vehicle transients 13

    3. Vehicle transients 13

    4. VI axis transient criteria 14

    5. V2 axis transient criteria 14

    6. V2 axis transient criteria 15

    7. V3 axis transient criteria 15

    8. V3 axis transient criteria 16

    9. Random vibration criteria - 145 dB basis 16

    10. Space shuttle cargo bay acoustic criteria 17

    11. Random vibration criteria - 139 dB basis 17

    12. Random vibration criteria 18

    13. Test configuration 18

    14. VI axis sine sweep control average 19

    15. VI axis e.g. pre- and post-test data 19

    16. VI axis transient control average 20

    17. VI axis e.g. transient response 20

    18. VI axis random control average 21

    19. VI axis e.g. random response 21

    20. V2 axis sine sweep control average 22

    IV

  • LIST OF ILLUSTRATIONS (Continued)

    Figure Title Page

    21. V2 axis e.g. pre- and post-test data 22

    22. V2 axis transient control average - test 1 23

    23. V2 axis e.g. transient response 23

    24. V2 axis transient control average - test 2 24

    25. V2 axis e.g. transient response 24

    26. V2 axis random control average 25

    27. V2 axis e.g. random response 25

    28. V3 axis sine sweep control average 26

    29. V3 axis e.g. pre- and post-test data 26

    30. V3 axis transient control average - test 1 27

    31. V3 axis e.g. transient response 27

    32. V3 axis transient control average - test 2 28

    33. V3 axis e.g. transient response 28

    34. V3 axis random control average 29

    35. V3 axis random response 29

    36. "A" latch random input 30

    37. "B" latch random input 30

    38. "C" latch random input 31

    39. VI "A" latch random auto spectral density 34

    40. VI inside "A" latch random auto spectral density 34

    41. "A" latch transfer function 35

    42. "A" latch coherence 35

    43. VI "B" latch random auto spectral density 36

    44. VI inside "B" latch random auto spectral density 36

    45. "B" latch transfer function 37

  • LIST OF ILLUSTRATIONS (Continued)

    Figure Title Page

    46. "B" latch coherence 37

    47. VI "C" latch random auto spectral density 38

    48. VI inside "C" latch random auto spectral density 38

    49. "C" latch transfer function 39

    50. "C" latch coherence 39

    51. VI "A" latch random input auto spectral density 40

    52. VI e.g. response auto spectral density 40

    53. VI "A" latch input versus e.g. transfer function 41

    54. VI input versus e.g. coherence 41

    55. V2 "A" latch random auto spectral density 42

    56. V2 "A" latch inside random auto spectral density 42

    57. V2 "A" latch transfer function 43

    58. V2 "A" latch coherence 43

    59. V2 "B" latch random auto spectral density 44

    60. V2 "B" latch inside random auto spectral density 44

    61. V2 "B" latch transfer function 45

    62. V2 "B" latch coherence 45

    63. V2 "C" latch random auto spectral density 46

    64. V2 "C" latch inside random auto spectral density 46

    65. V2 "C" latch transfer function 47

    66. V2 "C" latch coherence 47

    67. V2 "A" latch random input auto spectral density 48

    68. V2 c.g. response auto spectral density 48

    69. V2 input versus e.g. transfer function 49

    70. V2 input versus e.g. coherence 49

    vi

  • LIST OF ILLUSTRATIONS (Concluded)

    Figure Title Page

    71. V3 "A" latch random auto spectral density 50

    72. V3 "A" latch inside random auto spectral density 50

    73. V3 "A" latch transfer function 51

    74. V3 "A" latch coherence 51

    75. V3 "B" latch random auto spectral density 52

    76. V3 "B" latch inside random auto spectral density 52

    77. V3 "B" latch transfer function 53

    78. V3 "B" latch coherence 53

    79. V3 "C" latch random auto spectral density 54

    80. V3 "C" latch inside random auto spectral density 54

    81. V3 "C" latch transfer function 55

    82. V3 "C" latch coherence 55

    83. V3 "A" latch random input auto spectral density 56

    84. V3 c.g. response auto spectral density 56

    85. V3 input versus e.g. transfer function 57

    86. V3 input versus e.g. coherence 57

    Vll

  • TECHNICAL MEMORANDUM

    RADIAL SI LATCHES VIBRATION TEST DATA REVIEW

    I. INTRODUCTION

    A dynamic test program of the Space Telescope Scientific Instruments Latcheswas requested by the Marshall Space Flight Center Latch Design Audit Team. Thetest program included random vibration, transient shock, and modal testing on thelatches for the axial and radial scientific instruments. The test program was requiredfor flight qualification of the SI latches.

    This report describes the criteria development, types of testing, purposes fortesting, test apparatus, test procedure, and results and analysis of test data for theradial SI latches.

    II. DESCRIPTION OF TEST ITEMS

    Latch "A" (Figs. 1, 1.1, and 1.2) consists of two parallel interfaced plates.A threaded ball is permanently bound within a socket between the two plates. Inlatching, a threaded rod is secured to the ball. Latch "A" will accept loads in allthree directions.

    Latches "B" and "C" are pin-and-socket configurations. Each latch consists oftwo halves that interface perpendicularly. Latch "B" (Figs. 1 and 1.3) accepts loadin the VI direction only. Latch "C" (Figs. 1, 1.4, and 1.5) accepts loads in the VIand V2 directions.

    To securely latch a radial scientific instrument to the Space Telescope, the pinsof latches "B" and "C" are pulled into their receptors as the threaded rod isscrewed into latch "A".

    III. TEST CRITERIA AND DEVELOPMENT

    The test criteria for the series of dynamic tests to be performed on the radialSI latches is designed to evaluate the dynamic response of the test article and toexpose the test article to the simulated flight dynamic environments. The test criteriawill be notched if necessary to avoid exceeding the following maximum design loads:

    Axis Peak G's

    VI 6.23V2 2.33V3 3.11

  • A. Sinusoidal Diagnostic Survey Test Criteria

    Sinusoidal test criteria levels were chosen at levels and sweep rates to precludeexceedance of the above designated maximum design loads. Natural frequencies anddamping of the test article were predicted and the test level was determined suchthat the loading of the test article would not be significant during the sine sweeptests.

    1. 0.1 G Level

    A 0.1 g sine sweep from 5 to 2000 Hz at 3 octaves/min was used to identifyfundamental frequencies, to determine the damping factor, and to determine ifnotching was required in the 0.25 g sine sweep. This test also allowed checking ofcontrol and center-of-gravity (e.g.) accelerometers before beginning the 0.25 g sinesweep. This was the initial vibration test in each axis. A 0.1 g sine sweep wasselected at random for convenience because of its low level. A 0.05 g or 0.15 g testcould have been used.

    2. 0.25 G Level

    A 0.25 g level test was chosen because it produced the desired response level.The 0.25 g sine sweep was conducted at 3 octaves/min from 5 to 2000 Hz before andafter the random and the transient vibration tests. The vibration "signatures" fromthe pre- and post-test sine sweeps were analyzed to determine if any changesoccurred in the latches due to random or transient testing. Changes in the "signa-tures" usually indicate some structural change in the test specimen (broken or over-stressed members, loose bolts and nuts, binding, or work interfaces).

    B. Vehicle Transient Criteria

    Shock spectra and time histories were calculated by space shuttle coupled loadscomputer simulation analysis. Five liftoff and five landing cases were selected as"worst" cases. Forcing functions used in the computer model included space shuttlemain engine (SSME) thrust, solid rocket booster (SRB) thrust, SRB internal pressure,SRB ignition overpressure, SSME side loads, steady state wind and gusts, groundreactions at the base of the SRB's, and in landing: angle of attack, cross winds,horizontal velocity, and sink speeds. Figures 2 and 3 are examples of the shockspectra and time histories. See NASA memorandum ED22-84-25 for all of the data.

    Neither the response time histories nor the shock response spectra could bereproduced in the test laboratory due to test equipment limitations. Consequently,a fast sinusoidal sweep in the appropriate frequency range was chosen to simulate thetransient environment. Amplitudes for the test were obtained from the peak valuesof the calculated response time histories. Frequency ranges were determined fromthe shock response spectra of the transient time histories. Sinusoidal sweep rateswere adjusted to produce a factor of 3 on the number of peaks (between the maximumamplitude and six decibels below maximum amplitude) from the transient time histories.The resulting test criteria are presented in Figures 4 through 8.

  • 1. Half Level

    A half-level transient test was conducted as a calibration run. Data from thistest were evaluated to determine if the desired response amplitude and number ofcycles would be achieved during the full-level transients. Adjustments were made,if necessary, to the amplitude and sweep rate of the full-level transient test criteria,to achieve the desired response.

    2. Full Level

    A full-level transient test was then conducted at levels and sweep rates formu-lated from the half-level transient test data. The purpose of this test is to simulatethe liftoff vehicle transients of actual flight.

    C. Random Vibration Criteria

    The original predicted cargo bay acoustic criteria for the space shuttle was145 dB. Space Telescope (ST) random criteria were based on measured vibrationdata from the ST-Structural Dynamic Test Vehicle (SDTV) vibroacoustic test. Theresulting random criteria for the scientific instruments were 9.5 grms, as shown inFigure 9.

    Based upon the data from the first four shuttle missions, the cargo bay acousticcriteria were revised downward to 139 dB. Figure 10 compares 145 dB and 139 dBacoustic levels. Likewise, the random criteria were scaled downward to 4.6 grms, asshown in Figure 11.

    Evaluating STS flight payload data from missions 1 through 9 indicated thatstructure-borne excitation exceeds acoustically induced vibration in the 20 to 200 Hzfrequency range. A third criteria modification was made to include this low frequencyexceedance. Figure 12 illustrates the modified criteria used in the latch test.

    1. Half Level

    A half-level random test was conducted to verify control system capability, todetermine magnification factor (Q) at the fundamental frequency, to check cross axisresponse, and to determine if notching is required to stay within the maximum designloads.

    2. Full Level

    A 60-second full-level random test was conducted to qualify the latches for themaximum expected flight random vibration environment. Single mission random vibra-tion test time is based upon the actual time the environment is present times a factorof three (a factor of safety on the quality of the test article); however, a minimumtest time of 1 min is recommended for adequate equalization of the control system andto provide sufficient time for data acquisition. Test time for the SI latches is set bythe 1 min minimum.

  • IV. TEST APPARATUS

    Figure 1 illustrates the scientific instrument simulator. Attached to the simu-lator are the latches. Also the latches are attached to the test fixture. Figure 1also illustrates the locations of the control and response accelerometers.

    Figure 13 illustrates the test fixture and shaker table configurations for thethree axes. In the VI axis only one shaker is used. The latches, simulator and analuminum plate attach directly to the shaker. In the V2 and V3 axes, the followingconfiguration is used: two large granite "team" tables mount onto a concrete floor.A 2-in. thick magnesium plate is mounted upon the team tables. This plate is oillubricated. A 6-in. thick aluminum plate is bolted to the mangesium plate. Thisaluminum plate is machined out and foam filled. Another 2-in. thick aluminum platebolts above. The latches then bolt to this plate. Four shakers attach to the 6-in.aluminum plate at the four corners as indicated in the figure. A computer systemcontrols and monitors the shakers and processes data.

    V. TEST PROCEDURE

    The various tests were performed in the following order in each axis.

    1) 0.1 g sine sweep

    2) 0.25 g sine sweep

    3) Low level random vibration

    4) Full level random vibration

    5) -6 dB transient

    6) Full level transient

    7) 0.25 g sine sweep

    For a detailed list of test procedures see ST-SIL-TCP-001, December 15, 1982.

    VI. TEST DATA AND EVALUATION

    Figures 14 through 35 present the control average and e.g. response in eachaxis for the 0.25 g sine tests (pre- and post-), the full-level transient tests, andthe full-level random tests.

    Figures 14 through 19, 20 through 27, and 28 through 35 are data from the VI,V2, and V3 axes, respectively.

  • A. Sinusoidal Diagnostic Survey

    Figure 21 illustrates the center-of- gravity (e.g.) response for the V2 axis forinput in the V2 axis. The fundamental response frequency is 34 Hz. The magnification factor (Q) can be calculated as follows:

    Q _ Peak Response Level^ Input Level

    0.25 - 2 4~ 2'4

    Examining e.g. response data of VI axis, VI input and V3 axis, V3 inputreveals a system response frequency of approximately 35 Hz and a magnificationfactor, Q = 3.

    Comparison of the V2 axis pre- and post-test 0.25 g sine sweep data indicatesa positive frequency shift in the post-test data, as in Figure 21. Examination of the"B" and "C" latches after V2 axis testing revealed degradation of the internal inter-face surfaces of the latch halves and particulates in the area around these interfaces.Contact marks were observed on the point "C" bases — SI and FPS (focal planestructure) halves.

    B . Vehicle Transient

    Figure 16 is an example of the VI axis input for the 5 to 14 Hz vehicle tran-sient test. Figure 17 is the e.g. response for the above input in the VI axis. TheVI e.g. response, 4.17 g's, is well within the fifth cycle load limit of 6.23 g's. Thenumber of cycles is a factor of 3 to 4 due to test control system limitations (sweeprate, rise rate, and control feedback loop).

    C. Random Vibration

    In each axis the -6 dB random test indicated that notching of the full levelrandom vibration input criteria was not required to maintain e.g. response loadswithin the maximum design limits. Figures 36, 37, and 38 illustrate the inputs intoeach latch for the full level random VI axis test. Fixture resonances resulted inover testing at some frequencies, this may be seen in Figures 26 and 34 — the V2and V3 control averages. In addition, there was over testing resulting from cross-axis fixture resonances at some frequencies above 400 Hz. However, these exceed-ances are narrow band and well above the first fundamental frequency of the testarticle and are not considered significant.

    The figures in Appendix B illustrate auto spectral density, transfer function,and coherence plots for selected random vibration time histories. Appendix Cdescribes how the plots in Appendix B were calculated. The following descriptiondescribes the results of frequency domain analysis for the "A" latch in the VI axis:

    Figure 39 is an auto spectral density plot for the R2 accelerometer , locatedoutside of the "A" latch. Figure 40 is an auto spectral density plot for the R5

  • accelerometer, located inside of the "A" latch. Figure 41 is a transfer function plotfor the energy transfer between the R5 and R2 data. This describes the energytransfer through the latch. Notice that negligible energy transfer occurs above200 Hz. However, below 200 Hz considerable energy transfer occurs. Figure 42illustrates the coherence of the transfer of energy through the latch. Notice thatconsiderable energy transfer occurs only at particular frequencies.

    In examining the other H(f) plots and coherence plots, one can see that at somelocations energy transfer was minimal, while at other locations energy transfer wasas much as 95 percent.

    VII. SUMMARY AND CONCLUSIONS

    A. Summary

    Dynamic testing of the space telescope scientific instruments radial latches wasperformed as specified by the designated criteria. The specified test procedure wascarefully followed. No failures were discovered in testing. The alignment stabilityafter exposure to the dynamic environments was within the required tolerances.Participates were discovered in the latch interfaces after testing.

    B. Conclusions

    Pending positive dye penetrant test results, the latches are considered struc-turally qualified for the flight dynamic environment.

    Increased friction due to the worn latch surfaces may account for the frequencyincrease in the V2 axis post-test 0.25 g sine sweep. Another possibility is increasedfriction due to binding produced by misalignment in the V2 axis. The random vibra-tion time history data recorded during the V2 axis test indicated that impactingoccurred at the point "B" and "C" latches. This is attributed to setup error whichcaused the clearance between the bases to be below the minimum allowable. Thesetup error was corrected before proceeding with the V3 and VI axes. No furtherimpacting of latch half bases was observed.

    A lubricant must be added to trap participate matter that was produced bywearing of the latch registration interfaces. This lubricant is necessary sinceparticipate contamination of the Space Telescope optical surfaces could render ituseless.

  • APPENDIX A

    DATA AND ILLUSTRATIONS

  • B

    i.j

    ol

    A

    C

    V2/N

    V10

    3V3'

    A - T R I A X I A L RESPONSE ACC EUE ROMETER

    • - U N I A X I A L CONTROL A C C E LEROME TER

    Figure 1. Test configuration,

  • RADIAL, PT "A", FPS HALF

    SHEAR SLUGCOMPRESS IVE STRESSULT LOAD(NOT SHOWN)

    BOLTISOLATOR

    BALL

    BASE 6 AL-4V679-3973

    [ \ x-

    \ \ \ \ \ i \ \ \ \xx x x x x xx

    \FLEXUREBENDING STRESULT LOAD

    FPS HUB

    STEM.INVAR

    "XXX

    ALUM. COVERBEARING STRESSULT LOAD

    COVER, ALUM." CENTER

    Figure 1.1. Latch A, FPS half.

  • RADIAL SI, PT "A", SI HALF

    ADJ ROD

    BOLTISOLATORS

    SHEAR PINISOLATION

    Figure 1.2. Latch A, SI half.

    10

  • CQ^3o-i->03

    ;.©:; O

    f-i

    bD

    oin

    • CN

    11

  • RADIAL SI, PT "C", S1 HALF

    BOLT ISOLATOR

    FLEXURE

    FLEXURE

    BOLT ISOLATORS

    SHEAR SLUG

    Figure 1.4. Latch C, SI half.

    MYKROY AROUNDSLEEVEBEARING STRESSULT LOAD -675

    FLEXUREBENDING STRESSULT LOAD

    BEARING IN ALUM.COVERULT LOAD

    Figure 1.5. Latch C, FPS half.

    12

  • LIFTOFF COLD CASE LOB37 -- ACCEL. UFPC C.C. — Ul-AXIS

    G'S

    C'S

    C'S

    5.B —

    :

    10

    _-

    5

    -

    -5 —

    ,~>/v»«w**>

    t

    . Q •

    i i i i i i i i i i i i r

    illAA/Ww v>/v~^w */vv|rlj (1

    15 6 7

    TIHE-SEC

    5 .

    >irmTTTTfTTv jInrlf

    i U U J I I I I I I I I I I^

  • VI AXIS TRANSIENT TESTSWEEP RATE * 15 OCTAVES/MIN

    10

    FREQUENCY IN HERTZ

    5.00 Hz 6 0.10 Cph5.00- 7.30 Hz S 0.078 INCHES D.A. DISPLACEMENT

    7.00 Hz S 0.75 CpK7.00- M.30 Hz S 0.300 INCHES D.A. DISPLACEMENT

    14.00 Hz ® 3.88 Cpk

    Figure 4. VI axis transient criteria.

    V2 AXIS TRANSIENT TEST »1SWEEP RATE = 20 OCTAVES/MIN

    6.5FREQUENCY IN HERTZ

    5.00 Hz 6 0.60 CpK5.00- 5.50 Hz S

    5.50 Hz 65.50- 6.50 Hz @

    6.50 Hz 6

    0.470 INCHES D.A. DISPLACEMENT0.80 GpK0.518 INCHES D.A. DISPLACEMENT1.50 Gpk

    Figure 5. V2 axis transient criteria.

    14

  • V2 AXIS TRANSIENT TEST "2SWEEP RATE = 24 OCTAVES/MIN

    16

    16.00 Hz 616.00- 20.00 Hz 8

    20.00 Hz S20.00- 22.50 Hz @

    22.50 Hz §22.50- 23.00 Hz S

    23.00 Hz 6

    FREQUENCY IN HERTZ

    0.08 CpK0.006 INCHES D.A.0.64 GpK0.031 INCHES D.A.1.00 CpK0.039 INCHES D.A.0.90 CpK

    23

    DISPLACEMENT

    DISPLACEMENT

    DISPLACEMENT

    Figure 6. V2 axis transient criteria.

    V3 AXIS TRANSIENT TEST »2SWEEP RATE = 24 OCTAVES/MIN

    18FREQUENCY IN HERTZ

    5.00 Hz 65.00- 7.03 Hz 6

    7.00 Hz @7.00- 8.00 Hz e

    0.60 GpK0.470 INCHES D.A. DISPLACENENT

    I.75 GpKI.75 GpK

    Figure 7. V3 axis transient criteria.

    15

  • V3 AXIS TRANSIENT TEST «|SWEEP RATE = 21 OCTAVES/MIN

    X*»

    tM

    in0.

    10.0

    1.0

    0.1

    0.01

    0.001

    0.0001

    FREQUENCY IN HERTZ

    II.00 Hz S 0.17 CpKH.00- 14.00 Hz S 0.027 INCHES D.A. DISPLACEMENT

    14.00 Hz 6 1.60 CpK14.00- 18.00 Hz S 1.60 CpK

    Figure 8. V3 axis transient criteria.

    Xf

    r"\7

    r\ni

    >

    S

    1 — ^/

    • =4

    t

    r i i\i

    /ixr 1 \

    > \- — \

    V

    1\

    \

    \

    CRITERIA COWOSHI

    95 PERCENTILEDATA

    0 100 1000

    FREQUENCY (HZ)

    Figure 9. Random vibration criteria - 145 dB basis.

    16

  • 130

    120

    01>01

    01ua.

    c

    I

    90

    80

    70

    I 'I I I I I I I I I I I I I I I I I I I 'I

    — ORIGINAL CRITERIA

    REVISED CRITERIA

    10 20 100 1000 10.000

    1/3 Octave Frequency (Hz)

    Figure 5-2-1: Orblter Cargo BayAcoustic Spectrum

    Figure 10. Space shuttle cargo bay acoustic criteria.

    1.0

    ~ 0.1N

    •s.»40"̂

    QC/JDL

    0.01

    0.001

    0.00011C

    X"S"

    st—

    /

    11

    1

    X

    A^

    _i _V

    AA, \

    / \

    f-//

    /v

    r»/

    /\

    1/••

    »^

    X^

    4 -^

    x^\

    N

    ^

    \fc\

    \> 100 1000

    FREQUENCY ( H Z )

    CRITERIA COHPOSIT!4.6 GRMS

    95 PERCENTILEDATA

    Figure 11. Random vibration criteria - 139 dB basis.

    17

  • /RADIAL SI RANDOM.VIBRATION CRITERIA

    COMPOSITE: 3.34 Grms0. 1

    1 .0E-3

    1 0E-4

    1 [ 1 1 1 1 1 1

    ! /:

    -

    ~\\

    -

    \\ =-

    10 100 1000FREQUENCY IN HERTZ

    20 Hz 6 0.00240 g2/Hz20- 90 Hz 6 +5.0 dB/oci90- 200 Hz 6 0.03000 g2/Hz200-2000 Hz S -5.0 dB/oct

    2000 Hz S 0.00060 g2/Hz

    COMPOSITE = 3.34 Crms

    Figure 12. Random vibration criteria.

    D>

    V2 RADIAL

    / / / / / / T VVI RADIAL

    Figure 13. Test configuration.

    18

  • CONtROl AWtRACE

    POST TEST SUEEP I 1 UP

    k^

    18 °HZ LOO Sr SI RADIAL LATCHES Ul 55C

    Figure 14. VI axis sine sweep control average.

    R22 VI CGflCAS DATA' CH 1 • POST TEST SHEEP I 1 UP

    an*ST SI RADIAL LATCHES VI .25C

    Figure 15. VI axis e.g. pre- and post-test data.

    19

  • COKTROL MJfXME

    fOST TEST SUEIP t 1 UP

    SM

    ST SI RMIAl LATCHES VI 5-H HZ VO

    Figure 16. VI axis transient control average.

    92.2 VI CG R.Tint: CM.n UTHl

    20

    .1. !.!::;;-i

    . : . M i . i I i ..- : ; | . : - i i : i H.:I : . I J l.i . i

    Figure 17. VI axis e.g. transient response.

  • It"1 1

    -J

    -g

    -3

    -4

    CONTROL AUERACEPOST TEST

    RltS LEUEl • 3.3*7 G

    a SOR/HZ

    _^x"

    ^ ̂

    "̂̂

    ^

    '̂ ̂*&*

    ^

    ^ f

    l^x —

    S

  • CONTROL AVERAGESHEEP I 1 UP

    ia " ci

    5.M

    *HZ LOG LATCHES .250 Vi.

    2889

    Figure 20. V2 axis sine sweep control average.

    R24 V8m*S DATA< CM SUEEP * 1 UP

    It * UNITS

    1* * HZ LOG LATCtCS .2SC

    Figure 21. V2 axis e.g. pre- and post-test data.

    22

  • COKTROt AMMCC

    POST TEST SHEEP I 1 UP

    -1

    SM*-3I* "J HZ UK UtTCHES U2

    Figure 22. V2 axis transient control average - test 1.

    •M '-./? ccn FULL LEVEL VDIf-ir =..:H. ' l :- RL'RL e :< i s- : ',•

    cr x i s : ;.:

    ' i'ifi f i f

    '•„'

    f":

    -1

    'l.\'

    '"

    .V ••!

    ' • i "

    ]1•l-l-u

    1(.1

    fj

    —r i • r

    \

    \!|!I*5

    -r

    ,

    ,

    1

    11

    "('

    , t | f_..t j.. _«.,..(... J _.,(.. -i -

    I1

    J

    ,.|Ja.K ij ' j

    ' "li ' ' l T""

    1 Uj

    j i j 1 '••(i '. ! i

    ' ' 1 > Ii .|.L ...j!' «

    T , '

    *

    •• f •.:-. sr-«ninc,

    ,j.__j i i... i... j_ .;. .'.. ^«. .

    -j t

    -'- -l-li I .f j '

    ; I • " '•-.'•

    . l.'i.i [ t

    i.. i ...j, u i.,. ...... L...r

    -V* .— »••• :~ :™ 1— ;•• f J

    : . ! J

    l. .

    lfj

    i

    1

    1

    i i i - 1

    ;

    tej...jj. j/...'.i i.. .*ib

    i -:";

    i t gHi

    .798r -, •-.

    . •_. • .' f-

    .266y

    - ?f-;i':;

    - .?332

    ",73!:!

    1 Ml~-

    •1 .33

    Figure 23. V2 axis e.g. transient response.

    23

  • CONTROL AVERAGE

    POST TEST SUEEP t 1 UP

    -1

    1EM 33M

    LATCHES U2

    Figure 24. V2 axis transient control average - test 2.

    K24 V? CG 1G-23 Hz FUN ! I-v-TI '.'2I'lMF.'. CH.H RF.RL V ax is: G" s

    i

    J

    ;!

    1

    't -\

    !

    ij... jj'i

    i

    !....

  • CONTROL MOMG£POST TtST

    RRS LEW. • 3.S73 C'S

    ELAPSED TIKE • El SCCS AT .M Dl

    DELTA f • 4.883 OOF. 745

    -3

    aeoaID " HZ IOC ST SI RADIAL LATCHES U2

    Figure 26. V2 axis random control average.

    -a

    -3

    R24 U2 CG

    POUCR SPECTRAL DENSITY

    RRS LEUEL * 3.083

    G2'HZ

    2MI

    II * HZ IOC ST SI RMIAL LATOCS U3

    Figure 27. V2 axis e.g. random response.

    25

  • CONTROL AVERAGE

    POST TEST 5UEEP 1 1 UP

    *O* V1

    16 ' HZ LOG ST SI RADIAL LATCtCS V3 .3SC POST TE

    Figure 28. V3 axis sine sweep control average.

    R23 V3 CO

    KEAS DATA' CH 2 • POST TEST SJEEP t 1 UP

    It ° HZ LOG ST SI RADIAL LATCHES U3 .BC

    Figure 29. V3 axis e.g. pre- and post- test data.

    26

  • Cl A UTCH 5x2 > 1 UP

    -2

    s»«e geee-31* JH2 LOtt ST SI RAD101 UTCHES U3 5-8 HZ FULL

    Figure 30. V3 axis transient control average - test 1.

    R23 V3 CG FULL LEVEL 5-8 Hz V3TIME CH.R RERL Y axis: G's

    X axis: s

    (Ti c spac i ng: .1 )

    Figure 31. V3 axis e.g. transient response,

    27

  • Cl A LATCH S/24/I4

    POST TEST SUEEP t 1 -UP

    1*

    18M

    ST SI MO LATCHES W II-18H2

    Figure 32. V3 axis transient control average - test 2.

    :^3 V.;i = . .G n.JI. I.. LEVEL 11-10 Hz V-:i 1NE Ci i .H REHL Y "ax' is: G

    X ax i s : s

    III I

    l . G

    .'1

    13

    •A- .a- 1 . 2

    i i.: sp:!it: i 1 )

    Figure 33. V3 axis e.g. transient response.

    28

  • CONTROL MKBME T8

    POST TEST

    BIS LCUCL - 3.ttt fl-t

    c SOB/HZ

    EUPSEO T1IC • 4J 5ECS *T .«* tl

    OEIT* F • 4.883 MF> 743 MJF' 32

    /\

    X

    19. S

    1* * « LOG ST SI RUIM. LATCHES FULL LEVEL V3

    Figure 34. V3 axis random control average.

    R23 VI C6

    POUER SPECTRKl DENSITY

    UK ICVEL • 1.919

    GZ/N2

    X

    -3

    HI*

    1* ' HZ LOG ST SI RIU)I«l UTOCS FULL LEVEL

  • Ct A LATCH

    POUER SPECTRAL DENSITY

    RW LEVEL • 3.4M

    tt/HZ

    _ / \ A

    -i

    -J

    ai i* HZ LOC ST SI RADIAL LATCHES FULL LEVEL VI

    Figure 36. "A" latch random input.

    C3 I LATCMPOWER SPECTRAL DENSITY

    RRS LEVEL • 3.51}

    G2/HZ

    W

    ait!• * HZ LOG ST SI RADIAL LATCHES FULL LEVEL VI

    Figure 37. "B" latch random input.

    30

  • C3 C LATCHPOUei) SPCCTRAL OENSITV

    RRS LEUEl • 3.444

    It

    -3

    it 'HZ ST SI RAOIAl LATCHES FULL LEVEL Ul

    Figure 38. "C" latch random input.

    31

  • blank

    Page /

  • APPENDIX B

    DATA ANALYSIS PLOTS

    33

  • :.:' Vi M Li l i 'CH n.. RRHOOfl VII ' / K ' '.:.pi::c UM.H v a x i s : (is.':.: I.I X a x i s : Hz

    # Mvq: 381

    j

    i '. ..'.'.'.'.'.'.',''.i

    ' .

    t -

    !

    1

    : :.I

    'n

    j',

    ,•,..'

    _1 1

    I

    -

    .1.1

    f \

    It

    >

    - •

    ...

    '. t; n c. i-;i

    % .̂..ft.|...ji

    r .i |I T

    ,'

    |V'

    ana

    •• ivu* w .,

    J-fo

    1 t:.

    |lli

    I.....L.ti '

    11t 1'()'

    ,-

    i;'.i i£) r i Z

    iW !A ! :

    Jf ' L •VI '' LTjb^ i «• ) •% 1 ? i

    1 v k j l j! iNJ :'l

    •.:-.:•::: ::::::!::":?-.:i|51:?.'

    : T ' - F f - '"

    • • • • i i • • • • : • • '. :•i i : •-- : :•

    1000

    Figure 39. VI "A" latch random auto spectral density.

    l '5 VI. IMS IDE R L.F1TCH f"L RRNDOM VIi liJ ! 0 of- ' f 'C CM. B 'V ax i s : G?.i'.S.'.'i X a x i s : H?.

    . ,;:'I ;1 drms b e t w e e n 20 and Ih0y'"hz

    • -t

    - •!

    •-

    >::.:|1

    |

    t\ •

    f~ ' '

    • • ••

    [j

    = =

    :::

    ...

    X

    ...

    !r

    |::::

    ...

    ...

    ._

    I:::

    ...

    W=f.J

    ->

    ' 1

    :::̂ ::1.;|l̂|/

    J.r i'luv/tw

    — •

    ;•!Jt %^

    .. ..

    « -T —

    1 1

    f

    1 1

    i i i

    Mb*i j.-Wl

    I i

    ::::

    ft

    . .,

    *:;'".:.;

    ....;,..

    =

    :tVi

    .;..

    . t.'Li •:.

    i:< i

    Figure 40. VI inside "A" latch random auto spectral density.

    34

  • R'5 VI H LFITCHESP HI

    Fl RF1NDOM VIY ax i s :X a x i s : Hz* Flvq: 381

    clj

    Figure 41. "A" latch transfer function.

    --.? ;;:/ -- . ' I R LHTCH \ - \ . RiiNDufi vi

    '•'

    •;. ~i•-* n./g: 3:3

    i - ' , /.s&m

    1000

    ga

    Figure 42. "A" latch coherence.

    35

  • -•':.: VI P, I..IHCFI FL RRNDOri VIr i I'O i:;L'L( (":H.R V axis: Q?.,

    •-' •.-;!:! X axis: H?-ft Hvg : -123

    '! .-f:-:! !it in? between 20 and 1C MM bz

    1008

    Figure 43. VI "B" latch random auto spectral density.

    i - 'M VI ING1DE B LRTCII FL RRMJX.UI VInuro v-;r^:c CM. B

    X ax i •'.• : Hzt R \ / c :

    ••i . U4 Gr-ms be tween ^Q and 1600"!

    Figure 44. VI inside "B" latch random auto spectral density.

    36

  • :: v& Rll VI B LflTCHPi;'-' RC'SP Ml HUG

    FL RFlNDOfl VIY a x i s :X ax i s : Hz:# Rvg: 423

    Figure 45. "B" latch transfer function.

    ] VI (3 I...ill CM FL HRNin. iM V

    i

    1

    1

    1

    £Q

    ! I..I

    ,'

    \ j

    JU-

    i

    1111

    |

    1

    *! 1

    /[

    |

    | .

    .

    f| '

    ,'

    1

    fit*\

    \

    ...

    ...

    1

    '/

    ••

    .... 4it

    IU''

    \

    A{

    \]

    i

    iji

    i;

    !

    , :

    J|

    1 fiill

    It 1 1II ij' i

    a xaxRv

    i s ::J :

    1:

    . . . :

    ii1! IS

    1; t\.r :ii *3 :!JM ):li;jt

    Hz

    t I

    1Jj

    i

    1 ?lî-.1

    ;lPi

    Figure 46. "B" latch coherence.

    37

  • ! • ' ! ' ? VI C I RICH FL RFINDOM VI• s | - , , •".-; j.•:.[:: f ,;;| j _ j. ( V ax i S :

    • Ti X a x i s :* Rvg:

    •'•'. H .'•"' 'T: ins hetujeen 20 andI

    Figure 47. VI "C" latch random auto spectral density.

    ° i i - Vi !N \JJ ] )E C LHTCI1 FF RRr-llJOH VIax s: j:-.

    X a x i s : Hz# flvcj: 42P1

    CntT!!5 ; be tween ^0 and 1600 hz

    Figure 48. VI inside "C" latch random auto spectral density.

    38

  • vs R17 VI C I..RTCH PL RRNDOI1 VIA RflSP HI NRG Y ax is:

    X ax i s: Hztt Rvg: '120

    rn 'J ! '1

    Figure 49. "C" latch transfer function.

    \ < } 7 '••?'[ c i . - i 1 1

    t-Iz£01

    Figure 50. "C" latch coherence.

    39

  • ..i VI .M UTTCHI ' i i G SPCC CH.fl

    .:! . •! Gi i'iV:": bet i.uee

    ..

    1

    i

    i

    ...,-. .• ll1'

    : i-...|....|...

    ....j i.U.'.U/

    J

    f4

    tt

    ... .

    J

    ....

    ...

    "

    FL ^'FIND-ON VIY a x i sX ax i ;-:t Rvq

    n 20 and 1600 hi

    |...J

    ii

    ••••* •>

    Ml ': I

    M f1L"|-: I 1: [ j

    : |J

    i

    1

    V::::::̂ r

    nf\

    : 0. : 1-

    4c

    •"tc" •-7

    f j

    .. .A... j... ;..

    J

    \\

    . . .

    (L i

    ll

    .f...ft10013

    Figure 51. VI "A" latch random input auto spectral density.

    G r m x

    FL RHNDON -VICH.B V a x i s :

    X ax i s :t llvq:

    between 2(!\ a n d I '

    Figure 52. VI e.g. response auto spectral density.

    40

  • ( .1 22 V )RF.SP HI

    FL RRNDOM VIMRG Y axis:

    X axis: Hz# Hvg: 428

    • i ii,

    '•-̂ .n?1 000

    Figure 53. VI "A" latch input versus e.g. transfer function.

    1 II. RRNMON V iY ax i sX ax i st Rvq :

    Hz

    •V

    1809

    Figure 54. VI input versus e.g. coherence.

    r;

    4

    41

  • R •! V? R LRTCH PL RHNDOM V2nuro SPEC CH.R Y a:

    # Rvq: 381• " ! . f - - i ? ( T i m s between 20 .^nd 1G0U l..i

    ? PI

    Figure 55. V2 "A" latch random auto spectral density.

    Pb V2 JNGIDE R LRTCM Fl. RRNUON V?MI..HO SPEC CH.B Y axis: r;£i'-'SU X axis: Hz

    t Rvq: 381S . f t H Grins between £0 and IGOy hz

    Figure 56. V2 "A" latch inside random auto spectral density.

    42

  • RG- V? R LRTCH:•?!•: o Rf-:f.;;p HI MRG

    f:L KRNDOM Vi?V ax i s :X axis: Hz* Rvg: 391

    Figure 57. V2 "A" latch transfer function.

    .' " 11 '.

    • r - l ,-!•

    ;ii " 1:

    *t• • •'• .- . ••

    i! ;

    i • i'

    .. , i

    | :T. f

    11

    !i(\

    i

    '"!I

    - ..

    . 1 :

    1 r ""-. i "»

    ••CI

    ''•

    i «

    ~]!

    r

    ii (

    • ._

    ..f l l 'CI-

    ::lCn ;/\i

    !1

    i " l . Pl lV

    stti1

    IIt

    J^

    f ••! 1 1

    Hv

    1i i

    II

    I •-

    t;

    XA

    1iI

    i r

    • •

    , j1

    h.i

    |

    fl

    li. I

    :-?M !;il"lt"l

    Figure 58. V2 "A" latch coherence.

    43

  • .' '? '. V

    I IJIO:'SJJ

    "; . :'-: 1

    ..-•—•--.

    ;.' B LRTCH I"!. RRNDOM V2SPEC CH.FI Y a x i s : G

    X ax is: Ht- R v y : 42

    Grrns between 20 and 1G80 hz

    ,

    • • "i •:•- ••-! - - - i - - - i - - - i - - - - :•

    _.•-"'.1 •• i

    ,'•••

    <

    ,'\

    ...

    ,

    :::::::::;;:::::::::::ft/ L! "i

    'i /V'J ii[i ,.<

    i i i-

    ^iMi i" ;if flAfl

    i1 il i ff i L i J

    i\V'

    •• :

    J

    1

    • i::

    C.

    "i.1

    t

    •1 !

    cU

    Figure 59. V2 "B" latch random auto spectral density.

    - ' i ' J ' - . • • : I f . l ' j l JJE B [..RICH /I. RRNDOM Vr:R U I O sPSrr t :H. B Y ax i s : G?/!kr-'3i:i X ax i s : Hz

    * Rvq: 423'":• , ' . - -1 Grnr>; b e t w e e n 20 acid IGMO'hz

    Figure 60. V2 "B" latch random auto spectral density.

    44

  • R,1 vs RIO V2 B I..HTCHFfciro RIL'SF* HI MflG

    ' l i

    FL RhHDOrV ax i s•

    Vc'

    I 1,

    Figure 61. V2 "B" latch transfer function.

    B I...HTCH FL r'RNlJON V.1V . a x i s :X a x i s : Hz* rivci 423

    Figure 62. V2 "B" latch coherence.

    45

  • ifri o' 'SD

    '-'I '•".

    " "--••:.

    V? C 1 IT! CH FL RRNDOM '•/?.SPEC CH.H ' V a x i s

    X ax i s# _ Hvg

    Gria;~ between 20 and Ib 00 h.

    ,-?

    ..'"

    fJ

    f

    ..-

    ,'

    1 '

    • •

    v1'1 |l'4

    ...

    f\ Ltr-;- "Virrl

    L i\ j 1 IV

    ijLr K ,fV

    rr •• i

    'b fit I.

    :

    :i":i:||I|::.::..:.::. :::.:.] . :.|.

    z

    ll

    hiz"i r*ir> t.i

    V '11 t

    1I100

    Figure 63. V2 "C" latch random auto spectral density.

    R : ' G ' V ? INSIDE C I .RICH Fl. . R R f J D O M VPH I ! T O SPEC C M . B V a x i s : G?/'l!;"oIJ X a x i s : l-lz

    t R v q : -r.;:^•i , 1 J Grrns be tween 'dR and 1 6 0 W " h 2 . ' j 4 Q

    * i _ ~ L '

    . nn i :;if-;

    Figure 64. V2 "C" latch inside random auto spectral density.

    46

  • U!13 vs RJb V2 C LRTCH FL RRNDOH V2!>?rn RTSF'1 111 MRG V a x i s :

    X ax i s : Hzt Rvq: 43ft

    Figure 65. V2 "C" latch transfer function.

    RJB V:-? C I..RICH F"L RRNIi'.'

    .5

    1UU0ii

    Figure 66. V2 "C" latch coherence.

    47

  • '1 '« '

    :•: . \?.

    ' .- "

    L'-n

    ? .i'i 1..H

    !. i r ! ri 5

    . ....,'.

    _.!'

    •TV ... .f

    f i

    TCH FL RRNDOM V2•Jl-!. R Y a x i s

    X ax i st Rvq

    b e t in e e r i 20 a n d 1 6 0 0 " 1

    >

    •••••-•:• - -

    >v'/

    .'i

    ...

    ...

    ...

    1 J1 \ • i

    M'\, I'V1 f Iau• "J

    i :::::::::::

    ,::":::::::::::.:... .:...j •I,!il nlTra llj 1

    l/» HiM tlB .1.

    ....

    11

    1 Z

    I"

    ;_

    10f

    Hz98

    J1ft

    '1

    *|

    . £?. ':i:.:.i

    ;:;^j . HHU;-T,f-30 - - -

    Figure 67. V2 "A" latch random input auto spectral density.

    tt?.'t V? CG FL. RflNDOM V2MUTO Si-EC CH.B Y a x i s : G2-r'-JU X ax is: Hz

    # Rvg: 398_'• i ' L"' i""" .- «.-. ... I.. — -L . . —, _ ... ""i i"Ti _ ... _1 1 i"' f~Jti~T-t I.. .._

    *"'.

    "\

    \...\

    " "

    "

    ....

    ...

    L-'

    . .,

    -

    ....

    £

    ....

    •-

    :f

    /'...

    ...

    ...

    P.

    Alr.V./ . ..,.

    ,::::::::f::-.::::l:-:::j

    :̂:::=--

    '

    ,1 if

    ;.'lil:::"

    J:::Mm1 lii

    ::::::::::::.:::|

    1

    .I::::::,:::,

    t::::- : :

    ..11 1

    ..%fl?

    -i i-- -- i • • • • j

    . : i •::

    :i:l:::n;inIt

    i'l frJi

    = 1•!v:: ''

    |

    •:

    ~ .:.....;...

    48

    Figure 68. V2 e.g. response auto spectral density.

  • FLRHNnOH V211

    _I IMG a x i s :

    X ax i s : Hz# Rvg : 39o

    1000

    Figure 69. V2 input versus e.g. transfer function.

    .ONE U'LNct:F'l. PRNDOM V;'1

    Figure 70. V2 input versus e.g. coherence.

    49

  • R 2 r 3 ' V 3 R LFITCH F'L RHNDOM V3FlUTO SPL'C CH.R Y a x i s : G2-I'-'SD X ax i s : Hz

    * Rvg: 315' • ••- . . '~>' .- \ Ojrrns between 2W and 1GOW hiz

    Figure 71. V3 "A" latch random auto spectral density.

    •1 V:-; INS I LIE R LFITCHU4u sr;'i:C CH.B

    F'L RHNUOM V_Y ax i s : Qc

    >ii X ax i s : Hi# Hvg: 31

    ' j 5 Ci r • i i i s b e t u.i e e n 2 0 a n d 1 G Q H f't 7.l t '3

    nf-u:i: :Sh

    Figure 72. V3 "A" latch inside random auto spectral density.

    50

  • .3 R4 V3 R LHTCHRP'SP ill MRG

    Ft. RflNDOM V3V a x i s :X a x i s : Hz# Rvg

    1000

    Figure 73. V3 "A" latch transfer function.

    K?5 vs R4 V3 R LRTCHco i I[.:RQ,ICE

    X ax i s : Hz* Rvci US

    , C J

    . 1

    H

    Figure 74. V3 "A" latch coherence.

    51

  • RM V3 B LRTCHi-iuro SPEC CH.R

    PL RRNDOM V3Y a x i sX a x i st Flvq:

    Hz3.8B

    - -. c• . i -. i G r- in s b e t w e e n 2 0 a r "i d 1 R l/i 0" I ( z

    Figure 75. V3 "B" latch random auto spectral density.

    Ric V3 INSIDE B LRTCH PL RRNDOM V3i'UJ'IO SPEC CH.B Y axis: G5/1P'Sl.'i )( ax i s : Hz

    * Rvq: 28G:•'. II 'or ms between 20 and H.-i00 hz

    n

    . i-!C20 1000

    Figure 76. V3 "B" latch inside random auto spectral density.

    52

  • R12 V3 B L..RTCHRE3P HI NRG

    FL RRNDOM V3Y ax i i? :X ax i s : Hzt Rvq

    Figure 77. V3 "B" latch transfer function.

    RH v- R12 V3 B LilTCH PL. RRNIJOM V:, . ' , ' i - i l :

    .

    . ..':•--.. ii *

    ?y

    KI- . . I

    r. 1'i /

    I1 •.1- .t

    Ii1*J1

    I/

    t

    '

    ,'1

    AV\ 1 i1

    'l

    |

    1

    .I1

    \||'

    i Li'in i1'.\ \

    ••• iilln

    i\ f

    j* .jM

    •-j. X

    ?i >.'

    1, J.•w

    i :--: -

    ilP

    \%

    n

    ;;

    ,i

    I'J

    i :

    IIk"Jlf

    1I

    (nJ If f

    1

    l \

    1 1. l.l

    . !

    V.

    .1. 1

    .•)

    K 1.

    1, I.1-1

    Figure 78. V3 "B" latch coherence.

    53

  • ;M VJ C I .RICH El.. RfiNDOM V3|!.iTO SPEC CH.R . Y ax i s : Gel.'SP X a x i s : I-la

    =11= Rvq: 260

    /'.•

    u r

    i ...-

    • I l l - :

    i1*

    .. ..%

    ,-••

    D C

    >.... .

    • -^

    r'

    1 1 LI.

    ....|....

    •^

    — i —

    ....!• ..

    .(...

    ....|....

    F

    ...

    t)'

    ...

    • -•...

    e n c w

    ,rj..̂

    a n a

    •;

    %::::wfl

    1 b

    i,M »r

    ^n

    Lll

    ::|

    ll

    1V

    ... .

    ... .

    :J

    ••

    -•

    ••

    I

    • -

    n zi

    1 4

    ! ! i

    I

    k(1̂ - 4

    T

    ...,.;.-...

    ,.....>..̂

    > ...fr--'

    .... A ...

    1 iif:.:

    riP,ll

    ^ - >

    J1

    I IB

    IE

    Figure 79. V3 "C" latch random auto spectral density.

    RIO V3 INSIDE C I..HTCH Kl Rnt--inon .nUIC' SPEC CH.B Y ax is : GXpr.^D X ax is: |-!y.

    * Rvq: : -?eS-py1:' Grrtis between ^0 and "

    Figure 80. V3 "C" latch inside random auto spectral density.

    54

  • ;-:H vs RIO vs c LfiTci-i!"kl::0 'RCSP HI MflG

    FL RRNDOM v;7;Y axis:

    ax i *L

    • n

    Figure 81. V3 "C" latch transfer function.

    RJ8 V3 C LHTCI-I F"L RRNDOM V:1.!JCL Y ax i s- :

    X ax i s : hlz* R v q : 268

    10UU

    Figure 82. V3 "C" latch coherence.

    55

  • Cl V3 R LRTCH F~L RRNDOM V3MUTO SPEC CH.R Y axis: G2P'-P X axis: Hz

    * Rvcj: ?7b':j.:"'3 Grms between c(3 and 1G00 h?

    Figure 83. V3 "A" latch random input auto spectral density.

    !:VJ V3 CG FL RRNDOM V3HI.I"10 Spf-'C CH.B V axis: G2.PSD X ax i s: Hz

    # Hy9 : ^?flI . !'-!:fi i.ir'Tiis be tween i-ilU and 1UW0 hz

    1000

    Figure 84. V3 e.g. response auto spectral density.

    56

  • P23 V3 FL RRNDOM V3ESP 111 NRG Y axis:

    X axis: Hz# RYU: 276

    Figure 85. V3 input versus e.g. transfer function.

    KL RflNJ'iOHax i •ax iRvt]

    .11

    Figure 86. V3 input versus e.g. coherence.

    57

  • Page intentionally left blank

    Page intentionally left blank

  • APPENDIX C

    ANALYSIS EQUATIONS

    59

  • Correlation is a measure of similarity between two vibration waveforms. It isused to detect hidden periodic signals in noise and to determine other informationsuch as energy transfer, etc.

    An autocorrelation analysis multiplies the ordinates at time, t, and t + T (a timeshift), then time averages. Autocorrelation is defined mathematically as follows:

    RXX(T) =^m Y f X(t) X(t + T) dt

    T/2

    f-T/2

    An autocorrelation of a random signal using a small T will tend to highlight theresonances of the system. Cross correlation is a correlation between two differentwaveforms. It is defined mathematically as follows:

    RX Y(T) = f X(t) Y(t + T) dt

    T/2

    f-T/2

    Once time domain analysis is completed, frequency domain analysis can begin.The auto spectral density (a power spectral density of the autocorrelation) is definedas follows:

    G x x ( f ) = 2 /Rx x(T)e-i 2 r f T

    The cross spectral density is defined as follows:

    Gxy(f) = 2 / RX Y(T) e ""il dt

    The cross spectral density determines frequencies of greatest transfer.

    Coherence, in the frequency domain, is analogous to the correlation coefficiento

    in the time domain. Coherence values of YXY < 1 indicate that the response is not

    attributable to the input. Coherence describes the percentage of energy transfer atany particular frequency. It is defined as follows:

    60

  • " GXX< f ) Gyy(1) *

    A transfer function describing energy transfer through a system can be cal-culated as follows:

    GXY ( f )

    Gu

    61

  • APPROVAL

    RADIAL SI LATCHES VIBRATION TEST DATA REVIEW

    By Phillip M. Harrison and James Lee Smith

    The information in this report has been reviewed for technical content. Reviewof any information concerning Department of Defense or nuclear energy activities orprograms has been made by the MSFC Security Classification Officer. This report,in its entirety, has been determined to be unclassified.

    G. F. McDONOUGHDirector, Systems Dynamics Laboratory

    62•&U.S. GOVERNMENT PRINTING OFFICE 1984-746-070/10012