with even amount Detec%ng(Anomalies(in(Very( between photos...

39
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-XXXXP Detec%ng Anomalies in Very Large Graphs Michael Wolf, Sandia Na%onal Laboratories Ben Miller, MIT Lincoln Laboratory SIAM CSC 2014 July 22, 2014 The Lincoln Laboratory portion of this work is sponsored by the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract FA8721-05-C-0002. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA or the U.S. Government.

Transcript of with even amount Detec%ng(Anomalies(in(Very( between photos...

Page 1: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Photos placed in horizontal position with even amount

of white space between photos

and header

Photos placed in horizontal position

with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-XXXXP

Detec%ng  Anomalies  in  Very  Large  Graphs  Michael  Wolf,  Sandia  Na%onal  Laboratories  Ben  Miller,  MIT  Lincoln  Laboratory      SIAM  CSC  2014  July  22,  2014    

The Lincoln Laboratory portion of this work is sponsored by the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract FA8721-05-C-0002. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA or the U.S. Government.

Page 2: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Example  Applica%ons  of  Graph  Analy%cs  Cyber

•  Graphs represent communication patterns of computers on a network

•  1,000,000s – 1,000,000,000s network events

•  GOAL: Detect cyber attacks or malicious software

Social

•  Graphs represent relationships between individuals or documents

•  10,000s – 10,000,000s individual and interactions

•  GOAL: Identify hidden social networks

•  Graphs represent entities and relationships detected through multiple sources

•  1,000s – 1,000,000s tracks and locations

•  GOAL: Identify anomalous patterns of life

ISR

Cross-Mission Challenge: Detection of subtle patterns in massive multi-source noisy datasets

2  

Page 3: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Example:  Network  Traffic  Surrogate  Graph Statistics

•  R-Mat •  Parameters derived from network

traffic data •  1024 vertices

3  

Page 4: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Big  Data  Challenge:    Ac%vity  Signatures  Graph Statistics

•  R-Mat •  Parameters derived from network

traffic data •  1024 vertices •  Anomaly: 12 vertices •  Anomaly: 1% of graph

(often smaller)

Challenge: Activity signature is typically a weak signal 4  

Page 5: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

§  Anomaly  Detec%on  in  Very  Large  Graphs  §  Signal  Processing  for  Graphs  (SPG)  §  Improving  Sparse  Matrix-­‐Vector  Mul%plica%on  (SpMV)  

Performance  through  2D  Par%%oning  §  Par%%oning:  Dynamic  Graphs  and  Sampling  §  Summary  

Outline  

5  

Page 6: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Sta%s%cal  Detec%on  Framework  for  Graphs  

Develop fundamental graph signal processing concepts

Demonstrate in simulation

Apply to real data

THRESHOLD

NOISE SIGNAL ‘+’

NOISE H0 H1

Graph Theory Detection Theory

6  

Page 7: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Residuals  Example:  Anomalous  Subgraph  

- = H1

Detection framework is designed to detect coordinated deviations from the expected topology

•  Residual graph represents the difference between the observed and expected

•  Coordinated vertices (subsets of vertices connected by edges with large edge weights) in residual graph will produce much stronger signal than uncoordinated vertices

Graph Model E[G]

Observed Graph G1

Residual Graph R[G1]

7  

Page 8: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

SPG  Processing  Chain  GRAPH MODEL CONSTRUCTION

RESIDUAL DECOMPOSITION

COMPONENT SELECTION

ANOMALY DETECTION IDENTIFICATION TEMPORAL

INTEGRATION

DIMENSIONALITY REDUCTION

Input

•  Graph •  No cue

Output

•  Statistically anomalous subgraph(s)

8  

Page 9: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Anomaly  Detec%on:  Setup  Phase  GRAPH MODEL CONSTRUCTION

RESIDUAL DECOMPOSITION

COMPONENT SELECTION

ANOMALY DETECTION IDENTIFICATION TEMPORAL

INTEGRATION

H0 – Null hypothesis, no signal H1 – Alternative hypothesis, signal

Detection Setup

× 1. Monte-Carlo simulations to generate density functions

2. ROC-curve generated from density function

3. Threshold chosen from ROC-curve (e.g., based on specific false alarm rate)

1. Monte-Carlo simulations to generate density functions

1. Monte-Carlo simulations to generate density functions

2. ROC-curve generated from density function

Threshold

9  

Page 10: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Anomaly  Detec%on  GRAPH MODEL CONSTRUCTION

RESIDUAL DECOMPOSITION

COMPONENT SELECTION

ANOMALY DETECTION IDENTIFICATION TEMPORAL

INTEGRATION

Test statistic value significantly larger than test statistic value

threshold corresponding to 1% false alarm rate

Test statistic calculated for observed graph:

Threshold

H0 – Null hypothesis, no signal H1 – Alternative hypothesis, signal

Test statistic

10  

Page 11: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Computa%onal  Focus:  Dimensionality  Reduc%on  

GRAPH MODEL CONSTRUCTION

RESIDUAL DECOMPOSITION

COMPONENT SELECTION

ANOMALY DETECTION IDENTIFICATION TEMPORAL

INTEGRATION

DIMENSIONALITY REDUCTION

•  Dimensionality reduction dominates computation •  Eigen decomposition is key computational kernel •  Parallel implementation required for very large graph problems -  Fit into memory, minimize runtime

Need fast parallel eigensolvers 11  

B = (A−E[A])

Bxi = λi xi, i =1,…,mSolve:

Example: Modularity Matrix

E[As ]= k kT / (2 e )

|e| – Number of edges in graph G(A) k – degree vector ki = degree(vi),

vi ∈G(A)

Eigensystem

Page 12: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Detec%on  Methods,  Effec%veness,  and  Cost  D

etec

tion

Pow

er

Computation Cost

Notional Comparison of Power and Effectiveness

•  More powerful methods require more computation

•  For detection of subtle anomalies, need to calculate 100s of eigenvectors fast

1 EV

2 EV

σ1, λ1

χ2 in 2 Principal Components

Eigenvectors L1 Norms

Spectral Norm

100s EVs

O((|E|r+|V|r2+r3)h)* to compute r eigenvectors

12  

Page 13: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Parallel  Implementa%on  

§  Using  Anasazi  (Trilinos)  Eigensolver    §  Block  Krylov-­‐Schur  §  Eigenpairs  corresponding  to  eigenvalues  with  largest  real  component  §  User  defined  operators  (don’t  form  matrix  explicitly)  

§  Ini%al  Numerical  Experiments  §  R-­‐Mat  (a=0.5,  b=0.125,  c=0.125,  d=0.25)    

§  Average  nonzeros  per  row:  8  §  Number  of  rows:  222  to  232  

§  Two  systems  §  LLGrid  (MIT  LL)  –  compute  cluster  (10  GB  ethernet)  §  Hopper*  (NERSC)  -­‐-­‐  Cray  XE6  supercomputer  

§  Ini%ally:  1D  random  row  distribu%on  (good  load  balance)  13  

Page 14: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Weak  Scaling  –  Hopper*  

Solved system for up to 4 billion vertex graph

1"

10"

100"

1000"

16" 32" 64" 128" 256" 512" 1024" 2048" 4096" 8196" 16384"

Time%(s)%

Number%of%Cores%

Run2me%to%Find%1st%Eigenvalue%(R<MAT,%218%ver2ces%per%core)%

Hopper"1D"4 billion vertices

Runtime to Find 1st Eigenvector

R-MAT, 218 vertices/core Modularity Matrix

1D random partitioning

14  

* This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Page 15: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Strong  Scaling  Results  

Scalability limited and runtime increases for large numbers of cores

1.00$

10.00$

100.00$

1000.00$

1$ 4$ 16$ 64$ 256$ 1024$ 4096$ 16384$

Time%(s)%

Number%of%Cores%

LLGrid$1D$

Hopper$1D$

R-MAT, 223 vertices Modularity Matrix

Runtime to Find 1st Eigenvector

1D random partitioning

15  

* This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Page 16: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Finding  Mul%ple  Eigenvectors  –  LLGrid  

Significant increase in runtime when finding additional eigenvectors

1"

10"

100"

1000"

10000"

100000"

1" 4" 16" 64"

Time%(s)%

Number%of%Cores%

1 eigenvector

2 eigenvectors

10 eigenvectors

100 eigenvectors

LLGrid system

R-MAT, 223 vertices Modularity Matrix

1D random partitioning

Time to find 1, 2, 10, 100 eigenvalues/vectors

16  

Page 17: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

§  Anomaly  Detec%on  in  Very  Large  Graphs  §  Signal  Processing  for  Graphs  (SPG)  §  Improving  Sparse  Matrix-­‐Vector  Mul%plica%on  (SpMV)  

Performance  through  2D  Par%%oning  §  Par%%oning:  Dynamic  Graphs  and  Sampling  §  Summary  

Outline  

17  

Page 18: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Sparse  Matrix-­‐Vector  Mul%plica%on  

§  Sparse  matrix-­‐dense  vector  mul%plica%on  (SpMV)  key  computa%onal  kernel  in  eigensolver  

§  Performance  of  SpMV  challenging  for  matrices  resul%ng  from  power-­‐law  graphs  §  Load  imbalance  §  Irregular  communica%on  §  Liile  data  locality    

§  Important  to  improve  performance  of  SpMV  

=

18  

Page 19: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

SpMV  Strong  Scaling  -­‐-­‐  LLGrid  

0.1$

1$

10$

100$

1$ 4$ 16$ 64$ 256$ 1024$

Run$

me'(s)'

Number'of'Cores'

SpMV'Run$me'

LLGrid$

R-Mat, 223 vertices Modularity Matrix

1D random partitioning

Scalability limited and runtime increases for large numbers of cores 19  

Page 20: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Data  Par%%oning  to  Improve  SpMV  

•  Partition matrix nonzeros •  Partition vectors

12431421

15000400

61800000

09120000

00710060

05001300

00008190

00000312

00070041

y1y2y3y4y5y6y7y8

20  

Page 21: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Communica%on  Paiern:  1D  Block  Par%%oning  

NNZ/process min: 1.17E+06 max: 1.18E+06 avg: 1.18E+06 max/avg: 1.00 # Messages (Phase 1) total: 126 max: 2 Volume (Phase 1) total: 2.58E+05 max: 4.10E+03

sour

ce p

roce

ss

destination process P=64

Nice properties: Great load balance Small number of messages Low communication volume

2D Finite Difference Matrix (9 point) Number of Rows: 223

Nonzeros/Row: 9

21  

Page 22: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Communica%on  Paiern:  1D  Random  Par%%oning  

NNZ/process min: 1.05E+06 max: 1.07E+06 avg: 1.06E+06 max/avg: 1.01 # Messages (Phase 1) total: 4032 max: 63 Volume (Phase 1) total: 5.48E+07 max: 8.62E+05

sour

ce p

roce

ss

destination process P=64 Challenges: All-to-all communication

R-Mat (0.5, 0.125, 0.125, 0.25) Number of Rows: 223

Nonzeros/Row: 8

Nice properties: Great load balance

22  

Page 23: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

2D  Par%%oning  

§  2D  Par%%oning  §  More  flexibility:  no  par%cular  part  for  en%re  row/column,  more  general  sets  of  nonzeros  

§  Use  flexibility  of  2D  par%%oning  to  bound  number  of  messages  §  Distribute  nonzeros  in  permuted  2D  Cartesian  block  manner    

§  2D  Random  (Cartesian)*  §  Block  Cartesian  with  rows/columns  randomly  distributed  §  Cyclic  striping  to  minimize  number  of  messages  

§  2D  Cartesian  (Hyper)graph**    §  Replace  random  par%%oning  with  hyper(graph)  par%%%oning  to  minimize  

communica%on  volume  

*Hendrickson, et al.; Bisseling; Yoo, et al. **Boman, Devine, Rajamanickam, “Scalable Matrix Computations on Large Scale-Free Graphs Using 2D Partitioning, SC2013.

2D Cartesian (Hyper)graph** 2D Random (Cartesian)*

= =

(permuted) (permuted)

23  

Page 24: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Communica%on  Paiern:  2D  Random  Par%%oning  Cartesian  Blocks  (2DR)  

NNZ/process min: 1.04E+06 max: 1.05E+06 avg: 1.05E+06 max/avg: 1.01 # Messages (Phase 1) total: 448 max: 7 Volume (Phase 1) total: 2.57E+07 max: 4.03E+05

sour

ce p

roce

ss

destination process P=64

Number of Rows: 223

Nonzeros/Row: 8

Nice properties: No all-to-all communication Total volume lower than 1DR

1DR = 1D Random

R-Mat (0.5, 0.125, 0.125, 0.25)

24  

Page 25: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Communica%on  Paiern:  2D  Random  Par%%oning  Cartesian  Blocks  (2DR)  

NNZ/process min: 1.04E+06 max: 1.05E+06 avg: 1.05E+06 max/avg: 1.01 # Messages (Phase 2) total: 448 max: 7 Volume (Phase 2) total: 2.57E+07 max: 4.03E+05

sour

ce p

roce

ss

destination process P=64

Number of Rows: 223

Nonzeros/Row: 8

Nice properties: No all-to-all communication Total volume lower than 1DR

1DR = 1D Random

R-Mat (0.5, 0.125, 0.125, 0.25)

25  

Page 26: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Communica%on  Paiern:  2D  Cartesian    Hypergraph  Par%%oning    

NNZ/process min: 5.88E+05 max: 1.29E+06 avg: 1.05E+06 max/avg: 1.23 # Messages (Phase 1) total: 448 max: 7 Volume (Phase 1) total: 2.33E+07 max: 4.52E+05

sour

ce p

roce

ss

destination process P=64

R-Mat (0.5, 0.125, 0.125, 0.25) Number of Rows: 223

Nonzeros/Row: 8

Challenges: Imbalance worse than 2DR

Nice properties: No all-to-all communication Total volume lower than 2DR

2DR = 2D Random Cartesian

26  

Page 27: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Improved  Results:  SpMV  –  LLGrid  

1.00E+00&

1.00E+01&

1.00E+02&

1& 4& 16& 64& 256&

Time%

Number%of%Processors%

LLGrid&1D&

LLGrid&2D&

R-Mat, 223 vertices/rows

Time needed to compute 10 SpMV operations

Number of Cores

Simple 2D method shows improved scalability 27  

Page 28: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Improved  Results  –  NERSC  Hopper*  

2D methods show improved scalability

Runtime to Find 1st Eigenvector

0.10$

1.00$

10.00$

100.00$

1000.00$

1$ 4$ 16$ 64$ 256$ 1024$ 4096$ 16384$

Time%(s)%

Number%of%Cores%

1D$Random$

2D$Random$

2D$Hypergraph$

R-Mat, 223 vertices Modularity Matrix

28  

* This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Page 29: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

§  Anomaly  Detec%on  in  Very  Large  Graphs  §  Signal  Processing  for  Graphs  (SPG)  §  Improving  Sparse  Matrix-­‐Vector  Mul%plica%on  (SpMV)  

Performance  through  2D  Par%%oning  §  Par%%oning:  Dynamic  Graphs  and  Sampling  §  Summary  

Outline  

29  

Page 30: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

§  High  par%%oning  cost  of  graph/hypergraph  methods  must  be  amor%zed  by  compu%ng  many  SpMV  opera%ons  

§  Detec%on*  requires  at  most  1000s  of  SpMV  opera%ons  §  Expensive  par%%ons  need  to  be  effec%ve  for  mul%ple  graphs  

1.00E%01&

1.00E+00&

1.00E+01&

1.00E+02&

1.00E+03&

1.00E+04&

1.00E+05&

1& 10& 100& 1000& 10000& 100000& 1000000&

Time%(

s)%

Number%of%SpMV%Opera5ons%

Time%to%Par55on%and%Compute%SpMV%opera5ons%

2D&random&

2D&hypergraph&

~40,000 SpMVs

R-Mat, 223 vertices 1024 cores

NERSC Hopper

*L1 norm method: computing 100 eigenvectors 30  

Challenge  with  Hypergraph/Graph  Par%%oning  

Wolf, Miller: “Sparse Matrix Partitioning for Parallel Eigenanalysis of Large Static and Dynamic Graphs,” 2014 IEEE HPEC Proc.

Page 31: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

§  Key  ques%on:  How  long  will  a  par%%on  be  effec%ve?  §  Ini%al  experiment  

§  Evolving  R-­‐Mat  matrices:  fixed  number  of  rows,  R-­‐Mat  parameters  (a,b,c,d)  

§  Start  with  a  given  number  of  nonzeros  (|e0|)  §  Itera%vely  add  nonzeros  un%l  target  number  of  nonzeros  is  reached        

(|en|)  

Experiment:  Par%%oning  for  Dynamic  Graphs  

Evolving Graph

Initial Graph, G0 e0 edges

G1 e1 edges

Final graph, Gn en edges

31  

Wolf, Miller: 2014 IEEE HPEC Proc.

Page 32: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Results:  Par%%oning  for  Dynamic  Graphs  

32  

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

1.00" 2.75" 4.50" 6.25" 8.00" 9.75" 11.50" 13.25" 15.00" 16.75"

Average'SpMV'Time'(s)'

NNZ'/'NNZ(0)'

SpMV'Time'

2DH"

2DR"

NERSC Hopper*

2DR = 2D Random Cartesian 2DH = 2D Cartesian Hypergraph

|ei| / |e0|

Hypergraph partition surprising effective after more than 16x |e0| edges added

Wolf, Miller: 2014 IEEE HPEC Proc. * This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Page 33: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Sampling  and  Par%%oning  for  Web/SN  Graphs  

§  Idea:  Par%%on  sampled  graph  to  reduce  par%%oning  %me  §  Steps:  

1.  Produce  smaller  graph  G’  by  sampling  edges  in  graph  G  (uniform  random  sampling),  keep  ver%ces  same  

2.  Par%%on  G’  (2D  Cartesian  Hypergraph)  3.  Apply  par%%on  to  G  

33  

Graph Sampling and Partitioning

Input Graph, G=(V, E)

G’=(V,E’) G1=(V1,E1) G2=(V2,E2)

Sample E Partition G’

G1’=(V1,E1’) G2’=(V2,E2’)

Apply partition to G

Wolf, Miller: 2014 IEEE HPEC Proc.

Page 34: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

hollywood-­‐2009*  Graph  

*The University of Florida Sparse Matrix Collection

34  

Edge sampling greatly reduces partitioning time

0"

100"

200"

300"

400"

500"

600"

700"

1" 0.9" 0.8" 0.7" 0.6" 0.5" 0.4" 0.3" 0.2" 0.1"

Time%(s)%

Sampling%Rate%

hollywood62009%Graph:%%Par>>oning%Time%

P=16"

P=64"

P=256"

P=1024"

NERSC Hopper

2D Cartesian Hypergraph

Wolf, Miller: 2014 IEEE HPEC Proc.

Page 35: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

hollywood-­‐2009*  Graph  

*The University of Florida Sparse Matrix Collection

35  

Resulting SpMV time does not increase for modest sampling

0"

0.01"

0.02"

0.03"

0.04"

0.05"

0.06"

0.07"

0.08"

0.09"

0.1"

1" 0.9" 0.8" 0.7" 0.6" 0.5" 0.4" 0.3" 0.2" 0.1"

Time%(s)%

Sampling%Rate%

hollywood62009%Graph:%%SpMV%Time%

P=16"

P=64"

P=256"

P=1024"

NERSC Hopper

2D Cartesian Hypergraph

Wolf, Miller: 2014 IEEE HPEC Proc.

Page 36: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

36  

* This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Challenge  with  Hypergraph  Par%%oning  Revisited  

0.1$

1$

10$

100$

1000$

1$ 10$ 100$ 1000$ 10000$ 100000$

Time%(s)%

Number%of%SpMV%Opera5ons%

Time%to%Par55on%and%Compute%SpMV%Opera5ons%

2DR$

2DH$

2DH$w/$Sampling$NERSC Hopper*

~100,000 SpMVs

~10,000 SpMVs

hollywood-2009 1024 cores

Sampling reduces overhead of hypergraph partitioning (fewer SpMVs needed to amortize partitioning cost)

2DR = 2D Random Cartesian 2DH = 2D Cartesian Hypergraph

Wolf, Miller: 2014 IEEE HPEC Proc.

Page 37: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

§  Anomaly  Detec%on  in  Very  Large  Graphs  §  Signal  Processing  for  Graphs  (SPG)  §  Improving  Sparse  Matrix-­‐Vector  Mul%plica%on  (SpMV)  

Performance  through  2D  Par%%oning  §  Par%%oning:  Dynamic  Graphs  and  Sampling  §  Summary  

Outline  

37  

Page 38: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Summary  §  Outlined  HPC  approach  to  processing  big  data  

§  Signal  processing  for  graphs    §  Sta%s%cal  framework  for  anomaly  detec%on  in  graphs  

§  Key  component  is  eigensolver  for  dimensionality  reduc%on  §  Solving  eigensystems  resul%ng  from  power  law  graphs  

challenging  §  Load  imbalance  §  Poor  data  locality  

§  SpMV  key  computa%onal  kernel  §  1D  data  par%%oning  limits  performance  due  to  all-­‐to-­‐all  communica%on  §  2D  data  par%%oning  can  be  used  to  improve  scalability  

§  Sampling  can  improve  hypergraph-­‐based  par%%oning  performance  for  web/SN  graphs  

38  

Page 39: with even amount Detec%ng(Anomalies(in(Very( between photos …mmwolf/presentations/Conferences/... · 2014-11-13 · Residuals(Example:(Anomalous(Subgraph(H 1 - = Detection framework

Acknowledgements  

§  Nicholas  Arcolano  (MITLL)  §  Michelle  Beard  (MITLL)  §  Nadya  Bliss  (ASU)  §  Jeremy  Kepner  (MITLL)  §  Dan  Kimball  (MITLL)  §  Lisie  Michel  (MITLL)  §  Sanjeev  Mohindra  (MITLL)  §  Eddie  Rutledge  (MITLL)  §  Scoi  Sawyer  (MITLL)  §  Mai  Schmidt  (MITLL)  

39