Wireless Sensor Networks for Smart Metering - TUHH · PDF fileIntroduction Introduction What?...

17
Wireless Sensor Networks for Smart Metering Andreas Weigel , Christian Renner, Volker Turau, Holger Ernst EnergyCon 2014 - IEEE International Energy Conference Dubrovnik, Crotia, 13-16 May, 2014 May 14 th , 2014 TUHH TUHH Institute of Telematics Institute of Telematics Hamburg University of Technology Hamburg University of Technology

Transcript of Wireless Sensor Networks for Smart Metering - TUHH · PDF fileIntroduction Introduction What?...

Wireless Sensor Networks for SmartMetering

Andreas Weigel, Christian Renner, Volker Turau, Holger Ernst

EnergyCon 2014 - IEEE International Energy ConferenceDubrovnik, Crotia, 13-16 May, 2014

May 14th, 2014

TUHHTUHHInstitute of TelematicsInstitute of TelematicsHamburg University of TechnologyHamburg University of Technology

IntroductionIntroduction

Introduction� What? Smart Metering / Advanced Metering Infrastructure.� How? Wireless sensor network.

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 11

IntroductionIntroduction

Introduction� What? Smart Metering / Advanced Metering Infrastructure.� How? Wireless sensor network.

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 11

IntroductionIntroduction

Alternatives

� PLC: straightforward, viable option around electricity meters⇒ not feasible in some regions

� Customer DSL/Broadband: fast, reliable, high bandwidth⇒ legal implications; may necesssitate additional WiFi

� Cellular: Simple deployment, no additional infrastructure⇒ additional communication cost, communication problems in

cellars� Wireless sensor networks

⇒ license free bands, no communication cost⇒ low cost, low power consumption; but also: lossy

environment, low bandwidth

⇒ attractive alternative

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 22

IntroductionIntroduction

Alternatives

� PLC: straightforward, viable option around electricity meters⇒ not feasible in some regions

� Customer DSL/Broadband: fast, reliable, high bandwidth⇒ legal implications; may necesssitate additional WiFi

� Cellular: Simple deployment, no additional infrastructure⇒ additional communication cost, communication problems in

cellars� Wireless sensor networks

⇒ license free bands, no communication cost⇒ low cost, low power consumption; but also: lossy

environment, low bandwidth⇒ attractive alternative

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 22

RequirementsRequirements

Use Cases / Latency Requirements

Meter → DC� Collect energy consumption, load profiles: 1 h to 1 day

DC → Meter� Regular distribution of price tables: 1 h (individual) 24 h

(whole network)� Ad-hoc commands (e.g., (dis)connection): 10 min to 1 h

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 33

Protocol StackProtocol Stack

Software Architecture

NwkLayer(Forwarding, Association) LQE

OMNeT++MiXiM

LBT-basedlink layer

Dispatch

MacAbstractionLayer

NetworkManager

Otap

Queue

ReliableBlockTrRbtSenderRbtSenderRbtSenderRbtSender

RbtReceiverRbtReceiverRbtReceiver

ReliableBlockTrRbtSenderRbtSenderRbtSenderRbtSender

RbtReceiverRbtReceiverRbtReceiver

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 44

Protocol StackProtocol Stack

Network Layer

Different routing for different directions of communication:

Meters → DC (many-to-one)� Tree constructed from periodic beacons� Expected number of transmissions metric to determine next

hop

DC → Meters (one-to-many)� Restricted re-broadcasting based on subtree tables

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 55

EvaluationEvaluation

Experiment Setup

� Hardware: LPC1763 (CortexM3) + CC1120 transceiver� Experiment:

� 1 DC, 63 meters, 3 floors of large office building� 5 blocks of 1 kB, 50 blocks of 75 B, both directions� 5 runs per setup

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 66

EvaluationEvaluation

Evaluation - Collection and Distribution

0 1 2 3 4 5 60

6

12

18

24

30

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

many-to-one: 5× 1000byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

6

12

18

24

30

Avg. number of hopsA

vg.

Late

ncy

perB

lock

[s]

one-to-many: 5× 1000byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

1

2

3

4

5

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

many-to-one: 50× 75byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

1

2

3

4

5

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

one-to-many: 50× 75byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 77

EvaluationEvaluation

Evaluation - Collection and Distribution

0 1 2 3 4 5 60

6

12

18

24

30

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

many-to-one: 5× 1000byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

6

12

18

24

30

Avg. number of hopsA

vg.

Late

ncy

perB

lock

[s]

one-to-many: 5× 1000byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

1

2

3

4

5

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

many-to-one: 50× 75byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

1

2

3

4

5

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

one-to-many: 50× 75byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

⇒ Latency Requirements fulfilled

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 77

ConclusionConclusion

Conclusion

� Latency requirements could be fulfilled

� Wireless sensor networks: possible solution for AMI

� Unacknowledged broadcasts cause performance problems

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 88

Wireless Sensor Networks for SmartMetering

Andreas Weigel, Christian Renner, Volker Turau, Holger Ernst

EnergyCon 2014 - IEEE International Energy ConferenceDubrovnik, Crotia, 13-16 May, 2014

May 14th, 2014

Andreas WeigelResearch Assistant

Phone +49 / (0)40 428 78 3746

e-Mail [email protected]

http://www.ti5.tuhh.de/staff/weigel

TUHHTUHHInstitute of TelematicsInstitute of TelematicsHamburg University of TechnologyHamburg University of Technology

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 99

Association Results

� Duration of association for different groups of nodes:� All 64 nodes� 7 co-located nodes� 6 spatially scattered nodes

0 25 50 75 100 125 150 175 200 225 250 275 300 3250.0

0.2

0.4

0.6

0.8

1.0

Duration of association (s)

Port

ion

ofas

soci

ated

node

s

scattered groupco-located groupwhole network

Andreas Weigel Wireless Sensor Networks for Smart MeteringAndreas Weigel Wireless Sensor Networks for Smart Metering 1010

Evaluation - Collection and Distribution (1)

0 1 2 3 4 5 60

6

12

18

24

30

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

many-to-one: 5× 1000byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

6

12

18

24

30

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

one-to-many: 5× 1000byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

1

2

3

4

5

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

many-to-one: 50× 75byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

1

2

3

4

5

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

one-to-many: 50× 75byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

Evaluation - Collection and Distribution (2)

0 1 2 3 4 5 60

6

12

18

24

30

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

many-to-one: 5× 1000byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

6

12

18

24

30

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

one-to-many: 5× 1000byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

1

2

3

4

5

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

many-to-one: 50× 75byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io

0 1 2 3 4 5 60

1

2

3

4

5

Avg. number of hops

Avg

.La

tenc

ype

rBlo

ck[s

]

one-to-many: 50× 75byte

0.0

0.2

0.4

0.6

0.8

1.0

Blo

ckR

ecep

tion

Rat

io