Windblown Sand Modelling and Mitigation

39
1 1 1 Windblown Sand Modelling and Mitigation January 28 th , 2021 von Karman Institute for Fluid Dynamics Environmental and Applied Fluid Dynamics department Lorenzo RAFFAELE MAFD - TCS

Transcript of Windblown Sand Modelling and Mitigation

Page 1: Windblown Sand Modelling and Mitigation

111

Windblown Sand Modelling and Mitigation

January 28th, 2021

von Karman Institute for Fluid Dynamics

Environmental and Applied Fluid Dynamics department

Lorenzo RAFFAELE

MAFD - TCS

Page 2: Windblown Sand Modelling and Mitigation

2

Industrial Motivation: coastal zones

+44%

+96%

Windstorm frequency

Windstorm intensity

US

EU

Page 3: Windblown Sand Modelling and Mitigation

3

Industrial Motivation: desert regions

Structure scale Urban scale Infrastructure scale

Page 4: Windblown Sand Modelling and Mitigation

4

0

4

3

0

1

0

0

6

5

0

6

5

0

9

8

0

9

8

0

9

8

0

9

8

Industrial Motivation: railway megaprojects

B$

Market potential

β€’

Railway length

Kmβ€’

arid regions

northern desert belt

0

100

200

300

400

2010 2012 2014 2016 2018

B$

year

Arab League Network

Gulf Cooperation Council Network

Iron Silk Road

Railway megaprojects

Page 5: Windblown Sand Modelling and Mitigation

5

Sand 𝑑 ∈ 0.063,2 mm

Dust 𝑑 < 0.063 mm β€’ long-term suspension

β€’ short-term suspension

Engineering interest

β€’ creep

β€’ saltation

𝑄 = ΰΆ±0

+∞

π‘ž(𝑧) 𝑑𝑧Sand transport rate

[π‘˜π‘” π‘šβˆ’1π‘ βˆ’1]

WbS saltation condition

π‘ž 𝑧 > 0 𝜏 > πœπ‘‘

π‘’βˆ— > π‘’βˆ—π‘‘π‘’βˆ— = 𝜏/πœŒπ‘Ž

Threshold shear velocity

Saltation

π‘₯

𝑧

Phenomenology

Page 6: Windblown Sand Modelling and Mitigation

6

Deterministic models

Microscopic models

β€’ Equilibrium of the

momentsEntraining aerodynamic forces VSStabilizing forces

Macroscopic models

β€’ Semi-empirical

(free parameters)

β€’ Trend VS d

𝐿

𝐷

𝐼

𝐺

𝑂

Probabilistic models

β€’ Scatter of experimental data

β€’ Random turbulent wind flow, bed

grain geometry, interparticle

forces Zimon (1982)

Duan et al. (2013)

4 microscopic r.v.s

Modelling and technical

difficulties

π‘’βˆ—π‘‘ = π‘¨πœŒπ‘ βˆ’ πœŒπ‘Ž

πœŒπ‘Žπ‘”π‘‘

Bagnold (1941) dust sand

Modelling: π‘’βˆ—π‘‘

Page 7: Windblown Sand Modelling and Mitigation

7

Modelling: 𝑄Semi-empirical models

Bagnold type

𝑄~π‘’βˆ—3

Modified Bagnold type

𝑄~π‘’βˆ—,𝑒𝑓𝑓3 π‘’βˆ—, π‘’βˆ—π‘‘

O’ Brien-Rindlaub type

𝑄~𝑒

Complex

Dong et al. (2003)

Large discrepancies due to:

β€’ large randomness of physical

phenomenon

β€’ debated scaling

𝑄 = 2.78πœŒπ‘Žπ‘”π‘’βˆ—3 1 βˆ’

π‘’βˆ—π‘‘2

π‘’βˆ—2

1 +π‘’βˆ—π‘‘π‘’βˆ—

𝑄 = 0.25 +πœ”π‘ 3π‘’βˆ—

πœŒπ‘Žπ‘”π‘’βˆ—3 1 βˆ’

π‘’βˆ—π‘‘2

π‘’βˆ—2

𝑄 = 6.7𝑑

π‘‘π‘Ÿ

πœŒπ‘Žπ‘”π‘’βˆ—3 1 βˆ’

π‘’βˆ—π‘‘π‘’βˆ—

𝑄 = 5πœŒπ‘Žπ‘”π‘’βˆ—π‘‘π‘’βˆ—

2 1 βˆ’π‘’βˆ—π‘‘2

π‘’βˆ—2

Kawamura (1951)

Lettau & Lettau (1951)

Owen (1964)

Kok et al. (2012)

Page 8: Windblown Sand Modelling and Mitigation

8

upwind strip downwind strip

source windblown sand path receiver

Source SMM

β€’ Layer system

gravel surfacestraw checkerboard array line-like obstacles

asphalt-latex mixture

β€’ Hedge system

natural crusting

𝑄 ∝ π‘’βˆ—,𝑒𝑓𝑓 ∝ π‘’βˆ—π‘› βˆ’ π‘’βˆ—π‘‘

𝑛

Hedge system Layer system

Sand Mitigation Measures: Source

Path SMMReceiver SMM

Page 9: Windblown Sand Modelling and Mitigation

9

upwind strip downwind strip

source windblown sand path receiver

Path SMM

Sand Mitigation Measures: Path

Straight Vertical Wall (SVW)

β€’ Surface-like

β€’ Volume-like

porous fence Shield for Sand (S4S)

dyke ditch

WO 2016/181417 A1

porous solid

Page 10: Windblown Sand Modelling and Mitigation

10

upwind strip downwind strip

source windblown sand path receiver

Receiver SMM

Sand Mitigation Measures: Receiver

β€’ Aerodynamic based

β€’ Sand-resistantCN/102002916

Humped sleepersUS4958806A

T-Track system Continuous slab Lubricant free turnout

Jet roofs Venturi effect-based

Page 11: Windblown Sand Modelling and Mitigation

11

an uncharted territory for modern engineering…

Page 12: Windblown Sand Modelling and Mitigation

12

Windblown Sand Action: categorization

Environmental

β€’ site-dependent

β€’ inborn

randomness

probabilistic

modelling

~ wind

an

alo

go

us

to

Free

β€’ wind-

dependent

accumulation

~ windblown snow

Wind and sand

modelling

Variable

β€’ long-term varying

accumulation

process

~ snow

β€’ non monotonic

(periodic sand

removal)

~/β‰  snow

Time-variant

reliability analysis

Evaluation of sand

removal period

2 months later…

mo

de

llin

g

fallo

ut

Win

db

low

n

Sa

nd

Page 13: Windblown Sand Modelling and Mitigation

13

Windblown Sand Action: modelling chainSite

an

aly

sis

Incoming Wind

Aerodynamics

Wind action

Ass

ess

me

nt

Incoming Windblown Sand

Aerodynamics / Morphodynamics

Windblown sand action

β€’ π‘ˆ10

β€’ 𝐹‒ 𝑉 𝐹 …

β€’ 𝑄𝑖𝑛(π‘ˆ10, 𝑑)

𝑄𝑖𝑛

πœƒ

𝑉𝑄𝑖𝑛

Windblown sand action VS Wind action

π‘ˆ10

πœƒπΉ

π‘ˆ10 𝐹

β€’ 𝐢𝑠 πœƒ, Ξ“0, 𝑉

aerodyn. morphodyn.

β€’ 𝐢𝑓 πœƒ, Ξ“0

1

2

3

Page 14: Windblown Sand Modelling and Mitigation

14

Incoming Windblown Sand

Uncertainty

Aleatory

Epistemic

β€’ Sand uncertainties: grain size,

shape, relative position, surface

cleanliness, grain size

distribution.

β€’ Wind uncertainties: turbulent flow inborn variability, uncontrolled

environmental conditions, e.g. temperature, humidity.

β€’ Model uncertainty: simplified representation of the real physical

behaviour, identification of relevant variables, hypothesis, interactions

left out. Lack of a shared definition of π‘’βˆ—π‘‘ Shao (2008)

β€’ Measurement uncertainty: errors and/or different procedures.

β€’ Parameter uncertainty: values of model parameters.

β€œLack of exact knowledge, regardless of what is

the cause of this deficiency” Refsgaard et al. (2007)

Statistical approach β€’ Nonlinear regression

β€’ Copula-based regression

𝑄𝑖𝑛 π‘’βˆ—π‘‘ , πœ”π‘ , π‘’βˆ—

Page 15: Windblown Sand Modelling and Mitigation

15

Incoming Windblown Sand: probabilistic π‘’βˆ—π‘‘

β€’ Collected studies range from 1937 to 2004.

β€’ #=133 #=109 from in L. Raffaele, L. Bruno, F. Pellerey, L. Preziosi (2016), Aeolian Res.

Page 16: Windblown Sand Modelling and Mitigation

16

𝑅2 β‰ˆ 0.75

π‘’βˆ—π‘‘ = π‘¨π’ƒπœŒπ‘ βˆ’ πœŒπ‘ŽπœŒπ‘Ž

𝑔𝑑

π‘’βˆ—π‘‘ = π‘¨π’”πœŒπ‘ βˆ’ πœŒπ‘ŽπœŒπ‘Ž

𝑔𝑑 +𝜸

πœŒπ‘Žπ‘‘

Bagnold (1941)

Shao & Lu (2000)

fine medium coarse

Incoming Windblown Sand: probabilistic π‘’βˆ—π‘‘

Page 17: Windblown Sand Modelling and Mitigation

17

Incoming Windblown Sand: probabilistic π‘’βˆ—π‘‘

𝐹(𝑑), 𝐹(π‘’βˆ—π‘‘) , 𝑑, π‘’βˆ—π‘‘ ∈ ℝ

Fitting of marginal distributions

𝐹 𝑑, π‘’βˆ—π‘‘ = 𝐢 𝐹(𝑑), 𝐹(π‘’βˆ—π‘‘) 𝐢: 0,1 2 β†’ 0,1

𝐢 𝑒, 𝑣 = 𝑒 + 𝑣 βˆ’ 1 + 1 βˆ’ 𝑒 βˆ’1/𝛼 + 1 βˆ’ 𝑣 βˆ’1/𝛼 βˆ’ 1βˆ’π›Ό

𝑒, 𝑣 ∈ 0,1 , 𝛼 > 0

Fitting of Inverted Clayton Copula

𝑑, π‘’βˆ—π‘‘ = πΉβˆ’1 𝑒 , πΉβˆ’1 𝑣

From copula to original scale

From original to copula scale1 2

34

Page 18: Windblown Sand Modelling and Mitigation

18

Incoming Windblown Sand: probabilistic π‘’βˆ—π‘‘

from in L. Raffaele, L. Bruno, F. Pellerey, L. Preziosi (2016), Aeolian Res.

Page 19: Windblown Sand Modelling and Mitigation

19

β€’ Discrepancy among semi-empirical laws

β€’ Sedimentation velocity affects the mode

of transport, distribution of particles above

the ground, and transport rate

β€’ Sedimentation velocity bound to drag

coefficient

from L. Raffaele, L. Bruno, D. Sherman (2020), Aeolian Research

Incoming Windblown Sand: probabilistic πœ”π‘ 

𝑄𝑖𝑛 π‘’βˆ—π‘‘ , πœ”π‘ , π‘’βˆ—

Page 20: Windblown Sand Modelling and Mitigation

20

𝐹𝑑 =1

2πœŒπ‘“πœ”π‘ 

2πΆπ‘‘πœ‹π‘‘2

4

𝐹𝑔 = πœŒπ‘π‘”πœ‹π‘‘3

6

𝐹𝑏 = πœŒπ‘“π‘”πœ‹π‘‘3

6

𝑅𝑒 =πœ”π‘ π‘‘

πœˆπ‘“

𝐢𝑑 =4

3

πœŒπ‘“(πœŒπ‘ βˆ’ πœŒπ‘“)

𝑅𝑒2πœ‡π‘“2 𝑔𝑑3

𝑑 =3

4

𝐢𝑑𝑅𝑒2πœ‡π‘“

2

πœŒπ‘“ πœŒπ‘ βˆ’ πœŒπ‘“ 𝑔

1/3

πœ”π‘  =𝑅𝑒 πœˆπ‘“π‘‘

Incoming Windblown Sand: probabilistic πœ”π‘ 

Page 21: Windblown Sand Modelling and Mitigation

21

Incoming Windblown Sand

Threshold shear velocity π‘’βˆ—π‘‘ β‰ˆ π‘’βˆ—π‘‘(𝑑)

Wind shear velocity π‘’βˆ— = π‘’βˆ— π‘ˆ10, 𝑧0

𝑄𝑖𝑛 = ΰΆ±0

+∞

π‘ž(𝑧) 𝑑𝑧

β‰ˆ 𝑄𝑖𝑛(π‘’βˆ—, π‘’βˆ—π‘‘)

Incoming

sand transport rate

𝑓(π‘’βˆ—π‘‘ 𝑑 from Raffaele et al (2016)

if

if

π‘’βˆ— > π‘’βˆ—π‘‘

π‘’βˆ— ≀ π‘’βˆ—π‘‘

𝑓(𝑄𝑖𝑛) =𝐴

𝑑

π‘‘π‘Ÿ

πœŒπ‘Žπ‘”π‘“ π‘’βˆ—

3 1 βˆ’π‘“(π‘’βˆ—π‘‘ 𝑑

𝑓(π‘’βˆ—)

0

mean wind velocity profile

shear stress @ wind-sand interfacesand bed

sand flux profile

1

2

3

𝑓(π‘’βˆ—) =π‘˜π‘“ π‘ˆ10,π‘Ÿπ‘’π‘“

ln π‘§π‘Ÿπ‘’π‘“/𝑧0

π‘’βˆ—π‘‘

𝑑

from Raffaele et al (2017a)

Page 22: Windblown Sand Modelling and Mitigation

22

Aerodynamics/Morphodynamics1

2

3source windblown sand path structure

Plan view

Side view

𝑄𝑖𝑛Sedimentation coefficient

β€’ 𝐢𝑠 = 𝑄𝑠/𝑄𝑖𝑛 ∈ 0,1

β€’ 𝐢𝑠 πœƒ, Ξ“0, 𝑉

β€’ monotonic decreasing vs 𝑉

β€’ No closed forms

𝐢𝑠

𝑉

WT or CFD testing

𝑓 𝑄𝑠 = 𝐢𝑠𝑓 𝑄𝑖𝑛

𝑓 π‘„π‘œπ‘’π‘‘ = 1 βˆ’ 𝐢𝑠 𝑓 𝑄𝑖𝑛

Sedimentation rate

Outgoing transport rate

Page 23: Windblown Sand Modelling and Mitigation

23

Windblown sand action1

2

3

Resistant sand volume 𝑉𝑅

β€’ Structure/Infrastructure

β€’ SMM

SLS

efficiency (π‘ͺ𝒔)

Time-variant WbS action 𝑉(𝑑)

𝑓𝑉(𝑑) =

𝑛=1

∞

𝑔1 βˆ— 𝑔𝑖 βˆ— β‹―βˆ— 𝑔𝑛 𝑄𝑠P[π‘πœƒ = 𝑛]

e.g. 𝑝𝑓,π‘˜ = 5%

𝑉 𝑑 < 𝑉𝑅Time variant reliability analysis

π‘‰π‘˜

t

π‘‡π‘˜ = π‘π‘“βˆ’1(𝑝𝑓,π‘˜)

Characteristic time of failure

𝑝𝑓 𝑑 = 𝑃 𝑉 𝑑 β‰₯ 𝑉𝑅

= ΰΆ±0

+∞

𝐹𝑉𝑅 π‘₯ 𝑓𝑉 π‘₯, 𝑑 𝑑π‘₯ = 1 βˆ’ 𝐹𝑉(𝑉𝑅 , 𝑑)

Probability of failure

sand removal period ≀ π‘‡π‘˜

Page 24: Windblown Sand Modelling and Mitigation

24

Site characteristics𝑧0 = 4𝑒 βˆ’ 3 mWind statistics

from Raffaele et al (2017b)

π’–βˆ—π’• statistics (𝑑 = 0.35 mm)

.5

1

1.5

2

.2 .4 .6 .8π‘’βˆ—π‘‘

π‘“π‘’βˆ—π‘‘π‘‘

Page 25: Windblown Sand Modelling and Mitigation

25

Sedimentation coefficient: SVW

3 mπœƒ = 90Β°

Wind flow: RANS k-

Sand phase: sand mass conservation equation

πœ•πœ™π‘ πœ•π‘‘

+ 𝛻 βˆ™ 𝒒 = 0

𝒒 = π’–π‘‘π‘Ÿπœ™π‘  +π’˜π’”πœ™π‘  βˆ’ πœˆπ‘’π‘“π‘“πœ™π‘ π‘˜βˆ’1π›»πœ™π‘ 

Eulerian 1st order multiphase model for windblown sand

Straight Vertical Wall (SVW) from multiphase CFD simulation

from A. Lo Giudice, L. Preziosi (2020), App. Math. Modelling

Page 26: Windblown Sand Modelling and Mitigation

26

Sedimentation coefficient: SVW

Page 27: Windblown Sand Modelling and Mitigation

27

Sedimentation coefficient: SVW

𝑉

𝐢𝑠

𝑉/ ഀ𝑉0 .2 .4 .6 .8 1

.2

.4

.6

.8

1data

fitting

β€’ Multiphase simulation

β€’ Standard CFD simulation

Page 28: Windblown Sand Modelling and Mitigation

28

Sedimentation coefficient: S4S

1. Trapping vortex

2. Reversed flow close to the ground

3. Sand subtraction from the

incoming flux

Shield for Sand (S4S) from WT tests @

3 m

Page 29: Windblown Sand Modelling and Mitigation

29

Sedimentation coefficient: S4S

β€’ Wind tunnel setup in L-1B

β€’ PIV-PTV measurement setup

Page 30: Windblown Sand Modelling and Mitigation

30

Sedimentation coefficient: S4S

β€’ Sand concentration and morphodynamics

from Raffaele et al (under review)

Page 31: Windblown Sand Modelling and Mitigation

31

Sedimentation coefficient: S4S

data

fitting

𝑉/ ഀ𝑉0 .2 .4 .6 .8 1

.2

.4

.6

.8

1

𝐢𝑠

𝑉

β€’ Wind Tunnel test

β€’ Standard CFD simulation

Page 32: Windblown Sand Modelling and Mitigation

32

data

fitting

𝑉𝑠/ ഀ𝑉

0 .2 .4 .6 .8 1

.2

.4

.6

.8

1

𝐢𝑠

40% porosity fence from WT tests Hotta and Horikawa (1990)

𝑉𝑅 𝑉𝑅𝑉𝑅

3 m

Sedimentation coefficient: porous fence

Page 33: Windblown Sand Modelling and Mitigation

33

Sedimentation coefficient: embankment & track

SMM embankmenttrack

4 mπœƒ = 90Β°

From WT tests Hotta & Horikawa (1990)

conjectured

𝐢𝑠

0.25 m

2.5 m

Ballast void filling

𝑉𝑅 = 0,9 ഀ𝑉

SULS full coveringdata

fitting

𝐢𝑠

𝑉𝑅

𝑉𝑅

source

Page 34: Windblown Sand Modelling and Mitigation

34

Results: SVW configuration, North side

Page 35: Windblown Sand Modelling and Mitigation

35

Results: SVW configuration, North side

π‘‡π‘˜ π‘‡π‘˜

𝑝𝑓,π‘˜=5%

π‘‡π‘˜

𝑝𝑓,π‘˜=5%

𝑝𝑓,π‘˜=5%

Page 36: Windblown Sand Modelling and Mitigation

36

Lesson learnt: design perspective

β€’ The higher the wind occurrence (i.e. North side):

β€’ the lower π‘‡π‘˜, for a given SMM capacity

β€’ the higher the required capacity, for a given π‘‡π‘˜

π‘‡π‘˜ as a design requirement for SMM

β€’ S4S scores overall good performance, while SVW shows the poorest performance.

π‘‡π‘˜,π‘‘π‘Ÿπ‘Žπ‘π‘˜ S4S

π‘‡π‘˜,π‘‘π‘Ÿπ‘Žπ‘π‘˜ SVW~6

π‘‡π‘˜,π‘’π‘šπ‘ S4S

π‘‡π‘˜,π‘’π‘šπ‘ SVW~6

π‘‡π‘˜,𝑆𝑀𝑀 S4S

π‘‡π‘˜,𝑆𝑀𝑀 SVW~3

from Raffaele & Bruno (2020)

Page 37: Windblown Sand Modelling and Mitigation

37

Life Cycle Cost Analysis

paritySMM completion

S4S savings ~6M$/km

SVW savings ~3M$/km

S4S savings ~12M$/km

SVW savings ~6M$/km

cumulated savings are impressive w.r.t. railway avg worth (in ME ~4M$/km)from Raffaele & Bruno (2020)

Page 38: Windblown Sand Modelling and Mitigation

38

Conclusion & Perspectives

To conclude..

β€’ Assess the performances of SMMs

β€’ Plan sand removal maintenance operations

The proposed modelling framework allows to:

β€’ Move from trial-and-error to rationale design

β€’ Assess the economic impact of SMMs

Some perspectives…

β€’ Development of innovative Wind-Sand tunnel tests to assess the sedimentation

coefficient of different SMM

β€’ Extrapolation from scale to full-scale conditions under different environmental

setups

Page 39: Windblown Sand Modelling and Mitigation

39

HyPer SMM received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkΕ‚odowska‐Curie grant agreement No 885985

EU Horizon 2020 Marie Curie Individual Fellowship

Hybrid Performance assessment of

Sand Mitigation Measures

Conclusion & Perspectives