WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

11
[[email protected] ] Page 1 of 11 WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA Introduction This steel structure will be constructed on the roof top of high rise building in Doha, Qatar. Cladding material will be used to cover this frame as façade or artificial structure to add architectural value of this building. Wind load design is highly prioritized to be put into engineering calculation as top elevation of this structure is about 160 mtr above Qatar datum. Basic Engineering Design In this article, we are going to modelling this structure into Staad Pro v8 SS6 as Finite Element Analysis Software and apply wind load as dynamic pressure following QCS 2014. According to QCS2014 in General Chapter under Introduction sub‐chapter, Wind speed is designed for 50 year return period in three circumstances: 1. Nominal wind speed for 3 sec gust = 38 m/s (ASCE 7‐05 / IBC 2012) 2. Mean hourly wind speed = 25 m/s (BS 6399‐2) 3. Mean 10 minutes wind speed = 27 m/s (BS EN 1991‐1‐4) This wind load is designed in extreme condition as the arch will be erected on the roof top. There are two design procedure we are comparing to find accurate solution to be used for this Tower. 3D PERSPECTIVE OF ARCH STRUCTURE 3D figures above are rendered using Sketchup and Vray software

Transcript of WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

Page 1: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 1 of 11

WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA 

 

Introduction 

This steel structure will be constructed on the roof top of high rise building in Doha, Qatar. Cladding material will be 

used to cover this frame as façade or artificial structure to add architectural value of this building. Wind load design 

is highly prioritized to be put into engineering calculation as top elevation of this structure is about 160 mtr above 

Qatar datum. 

Basic Engineering Design 

In this article, we are going to modelling this structure into Staad Pro v8 SS6 as Finite Element Analysis Software and 

apply wind load as dynamic pressure following QCS 2014. 

According to QCS2014 in General Chapter under Introduction sub‐chapter, Wind speed is designed for 50 year return 

period in three circumstances: 

1. Nominal wind speed for 3 sec gust  = 38 m/s (ASCE 7‐05 / IBC 2012) 

2. Mean hourly wind speed    = 25 m/s (BS 6399‐2) 

3. Mean 10 minutes wind speed    = 27 m/s (BS EN 1991‐1‐4) 

This wind  load  is designed  in extreme condition as the arch will be erected on the roof top. There are two design 

procedure we are comparing to find accurate solution to be used for this Tower. 

 

3D PERSPECTIVE OF ARCH STRUCTURE 

 

3D figures above are rendered using Sketchup and Vray software 

Page 2: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 2 of 11  

 

Revised Steel Frame Structure including Cladding frame 

 

3D figure above is taken from Staad Pro software 

 

 

 

 

 

 

 

 

 

 

 

 

Page 3: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 3 of 11  

Wind Load (WL) Design 

First code is British Standard (BS) 6399‐1997 where we can conclude in such chart below: 

 

According  to  wind  speed  map  of  Qatar,  Doha  city  has  minimum  basic  wind  speed  25  m/s. 

The site wind speed (Vs) for any particular direction should be calculated as below 

 

Sa = 1 + 0.001∆s  ; ∆s = Site altitude above sea level, tower top elevation is 160 mtr from sea level. Sa 

= 1 + 0.001*160 = 1.16 

Page 4: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 4 of 11

Sd  is usually used  to adjust  the basic wind speed  to produce wind speeds with the same risk of being 

exceeded  in any wind direction.  If    the orientation of building  is unknown or  ignored, the value of the 

direction factor should be taken as Sd = 1.0 for all direction. 

Ss is used to reduce the basic wind speed for buildings which are expected to be exposed to the wind for 

spesific subannual periods. For Permanent  buildings, value of Ss is 1.0. 

Sp is used to change the risk of the basic wind speed. For all normal design, Ss value is 1.0 

Vs = 25 x 1.16 x 1 x 1 x 1 = 29 m/s 

Effective wind speed calculation in accordance with BS 6399‐2 is taken from table 4 as below 

 

According to table above, effective wind speed (Sb) is 2.12. 

Ve = Vs * Sb = 29 x 2.12 = 61.4861 m/s 

ExternalpressurecoefficientsTable5iscoefficientofexternalpressureforverticalbuilding,dependentontheproportion/ratioofthebuildingaspicturebelow

Page 5: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 5 of 11

Ht=He=160mtra1=Diagonaldimension=162,67m(RedLine)a2=Diagonaldimension=162,22m(Blueline)

 

L/He=0.183Longitudinal coefficient 

Cpe windward = 0.8 

Cpe Leeward = ‐0.3 

W/He=0.167Transversal coefficient 

Cpe windward = 0.8 

Cpe Leeward = ‐0.3 

W = 26.780 m 

L = 29.389 m 

He

Page 6: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 6 of 11

 

Ca_longitudinal = 0.79 

Ca_transversal = 0.81 

Dynamic pressure according to BS 6399‐2 2.1.2 is 

 

qs = 0.613*(61.48)^2 = 2317,01 Pa = 2,31 kPa 

Pe_windward_Longitudinal = 2,31 * 0.8 * 0.79 = 1.46 kPa = 146 kg/m2 

Pe_leeward_Longitudinal = 2,31 *(‐0.3) 0.79 = ‐0.55 kPa = ‐55 kg/m2 

Pe_windward_Transv = 2,31 * 0.8 * 0.81 = 1,5 kPa = 150 kg/m2 

Pe_leeward_Transv = 2,31 *(‐0.3) 0.81 = ‐0.56 kPa = ‐56 kg/m2 

 

 

Page 7: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 7 of 11

Second code we are considering to calculate wind load using Staad Pro software is ASCE‐7 as described following 

picture below 

 

 

 

As a conclusion from both wind code, ASCE‐7 code is more extreme than BS 6399‐2 code. In this design, we are using 

wind load generated from ASCE‐7. 

 

 

 

 

 

 

Page 8: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 8 of 11  

Wind Load X+ Direction (Windward face)

  

Wind Load X+ Direction (Leeward face) 

  

 

 

 

 

 

 

 

Page 9: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 9 of 11  

Wind Load X‐ Direction (Windward face) 

  

Wind Load X‐ Direction (Leeward face) 

  

 

 

 

 

 

 

 

Page 10: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 10 of 11  

Wind Load Z+ Direction (Windward face) 

 

  

Wind Load Z+ Direction (Leeward face) 

 

 

 

 

 

 

Page 11: WIND LOAD DESIGN OF STEEL STRUCTURE ON ROOF TOP UNDER QCS 2014 CASE STUDY : OFFICE TOWER IN DOHA

[[email protected]] Page 11 of 11  

Wind Load Z‐ Direction (Windward face) 

 

Wind Load Z‐ Direction (Leeward face)