Wind Calculation Sheet

32
72" Flare Stack - B3 U&O Package Reference / Remarks Vessel Geomatry Vessel Diameter D = 1.83 m Effective Diameter De = 2.56 m Piping without ladders (1.4*D) Projected Area Af = 5.16 m2 Vessel Height h = 187.00 m Vessel thickness t = 16.00 mm Vessel mean radius Rm = 1814.00 mm Ratios check Rm/t = 113.38 mm (if > 200, wind anaylsis is required) h/D = 102.19 (if > 15 , wind anaylsis is required) Stud Bolt / Nut Material High Strength Low Alloy Steel (ASTM A 193 Grade B7 / A 194 Gr. 2H) Modulus of Elasticity Eb = 8.00E+02 Mpa ASME BPVC Sec II, Part D, Table TM-1 Poisson's Ratio νb = 0.3 ASME BPVC Sec II, Part D, Table PRD Yield Strength σyb = 500 Mpa ASME BPVC Sec II, Part D, Table 1-A Design Conditions Basic Wind Speed Vbasic = 160 km/hr Wind Speed converted to ft/sec. V = 145.81 ft/sec Design Pressure P = 250 Mpa Design Temperature T = 100 C Allowable Stress for vessel material at design temperature S = 20000 Mpa ASME BPVC Sec II, Part D, Table 1-A Allowable Stress for bolt material at design temperature Sb = 23000 Mpa ASME BPVC Sec II, Part D, Table 1-A Allowable Stress for bolt material at atm. Temperature Sa = 23000 Mpa ASME BPVC Sec II, Part D, Table 1-A Time Period Calculation Weight, uniform w = 1000 kg/m Modulus of Elasticity for shell material at design temperature E = 2.02E+11 Pa ASME BPVC Sec II, Part D, Table TM-1 Modulus of Elasticity for shell material at room temperature E = 2.02E+11 Pa ASME BPVC Sec II, Part D, Table TM-1 Moment of Inertia for shell area 3.14*(D/2) 3 *t I = 0.0385 m 4 Factor for first mode of vibration K = 1.79 Period of Vibration K√(wh 4 /EI) T = 22.44 sec Frequency of vibration f = 0.0446 Hz Wind Force Calculation Structual category III (Structures cotaining toxic or explosive substances) Importance Factor I = 1.15 (Based on Structual category III) Exposure Category C Open terrain with scattered obstructions Gust Factor G = 0.85 (Based on Exposure category C) Gust Response Factor (flexible vessels) Gf = Equivalent height 'z' of vessel z = m Intensity of turbulence at height 'z' Iz = Velocity pressure coefficient at height 'z' Kz = Topographic factor KzT = 1 Vessel is not located near or on an isolated hill Mean hourly speed at height 'z' Vz = 1 ft/sec Velocity pressure at height 'z' 0.0256KzKzTV 2 I qz = psf (1/2*(air density)*V 2 *I) = qz (when V in ft/sec) Minimum design height zmin = m Period of vibration T = sec Fundamental natural frequency f = Hz Background response Q = Coefficient or Calculation Factors Resonance response factor R = Structure damping coefficient β = 0.005 (0.005 for vessel on rock or pile foundation & 0.015 for vesse Coefficient factors α = (Table 3-3 of D.R. Moss) b = (Table 3-3 of D.R. Moss) c = (Table 3-3 of D.R. Moss) I = (Table 3-3 of D.R. Moss) ϵ = (Table 3-3 of D.R. Moss) Calculation factors Ni = Nh = Nb = Nd = Rh = Rb = Rd = = Gasket Type & Dimensions Gasket Type & Material Spiral Wound Gasket (Stainless Steel, 304) with inner & outer ring Basic gasket seating width b0 = 1 in. ASME Sec VIII, Div. 1, Appendix 2, Table 2-5.2 Conversion Factor Cb = 0.5 ASME Sec VIII, Div. 1, Appendix 2 Effective gasket seating width b = 0.500 in. ASME Sec VIII, Div. 1, Appendix 2, table 2-5.2 Mean diameter of gasket contact face = 67 in. Outside diameter of gasket contact face = 68 in. Diameter at location of gasket load reaction G = 67.00 in. ASME Sec VIII, Div. 1, Appendix 2 Design of Pressure Vessels under Wind Load in accordance with ASCE - 07

Transcript of Wind Calculation Sheet

Page 1: Wind Calculation Sheet

72" Flare Stack - B3 U&O Package Reference / Remarks

Vessel GeomatryVessel Diameter D = 1.83 m

Effective Diameter De = 2.56 m Piping without ladders (1.4*D)

Projected Area Af = 5.16 m2

Vessel Height h = 187.00 m

Vessel thickness t = 16.00 mm

Vessel mean radius Rm = 1814.00 mm

Ratios check Rm/t = 113.38 mm (if > 200, wind anaylsis is required)

h/D = 102.19 (if > 15 , wind anaylsis is required)

Stud Bolt / Nut Material High Strength Low Alloy Steel (ASTM A 193 Grade B7 / A 194 Gr. 2H)

Modulus of Elasticity Eb = 8.00E+02 Mpa ASME BPVC Sec II, Part D, Table TM-1

Poisson's Ratio νb = 0.3 ASME BPVC Sec II, Part D, Table PRD

Yield Strength σyb = 500 Mpa ASME BPVC Sec II, Part D, Table 1-A

Design Conditions

Basic Wind Speed Vbasic = 160 km/hr

Wind Speed converted to ft/sec. V = 145.81 ft/sec

Design Pressure P = 250 Mpa

Design Temperature T = 100 C

Allowable Stress for vessel material at design temperature S = 20000 Mpa ASME BPVC Sec II, Part D, Table 1-A

Allowable Stress for bolt material at design temperature Sb = 23000 Mpa ASME BPVC Sec II, Part D, Table 1-A

Allowable Stress for bolt material at atm. Temperature Sa = 23000 Mpa ASME BPVC Sec II, Part D, Table 1-A

Time Period Calculation

Weight, uniform w = 1000 kg/m

Modulus of Elasticity for shell material at design temperature E = 2.02E+11 Pa ASME BPVC Sec II, Part D, Table TM-1

Modulus of Elasticity for shell material at room temperature E = 2.02E+11 Pa ASME BPVC Sec II, Part D, Table TM-1

Moment of Inertia for shell area 3.14*(D/2)3*t I = 0.0385 m4

Factor for first mode of vibration K = 1.79

Period of Vibration K√(wh4/EI) T = 22.44 sec

Frequency of vibration f = 0.0446 Hz

Wind Force Calculation

Structual category III (Structures cotaining toxic or explosive substances)

Importance Factor I = 1.15 (Based on Structual category III)

Exposure Category C Open terrain with scattered obstructions

Gust Factor G = 0.85 (Based on Exposure category C)

Gust Response Factor (flexible vessels) Gf =

Equivalent height 'z' of vessel z = m

Intensity of turbulence at height 'z' Iz =

Velocity pressure coefficient at height 'z' Kz =

Topographic factor KzT = 1 Vessel is not located near or on an isolated hill

Mean hourly speed at height 'z' Vz = 1 ft/sec

Velocity pressure at height 'z' 0.0256KzKzTV2I qz = psf (1/2*(air density)*V2*I) = qz (when V in ft/sec)

Minimum design height zmin = m

Period of vibration T = sec

Fundamental natural frequency f = Hz

Background response Q =

Coefficient or Calculation Factors

Resonance response factor R =

Structure damping coefficient β = 0.005 (0.005 for vessel on rock or pile foundation & 0.015 for vessel on soft soil or inside structure)

Coefficient factors α = (Table 3-3 of D.R. Moss)

b = (Table 3-3 of D.R. Moss)

c = (Table 3-3 of D.R. Moss)

I = (Table 3-3 of D.R. Moss)

ϵ = (Table 3-3 of D.R. Moss)Calculation factors Ni =

Nh =

Nb =

Nd =

Rh =Rb =

Rd =

=

Gasket Type & Dimensions

Gasket Type & Material Spiral Wound Gasket (Stainless Steel, 304) with inner & outer ringBasic gasket seating width b0 = 1 in. ASME Sec VIII, Div. 1, Appendix 2, Table 2-5.2

Conversion Factor Cb = 0.5 ASME Sec VIII, Div. 1, Appendix 2

Effective gasket seating width b = 0.500 in. ASME Sec VIII, Div. 1, Appendix 2, table 2-5.2

Mean diameter of gasket contact face = 67 in.

Outside diameter of gasket contact face = 68 in.

Diameter at location of gasket load reaction G = 67.00 in. ASME Sec VIII, Div. 1, Appendix 2

Design of Pressure Vessels under Wind Load in accordance with ASCE - 07

Page 2: Wind Calculation Sheet

Min. gasket seating stress (SWG, Stainless steel) y = 10000 psi ASME Sec VIII, Div. 1, Appendix 2, Table 2-5.1

Gasket factor m = 3 ASME Sec VIII, Div. 1, Appendix 2, Table 2-5.1

Bolting Dimensions

Nominal stud bolt diameter a = 1.125 in.Root diameter of thread ar = 1.1 in.

Cross sectional area at root of thread Ab = 0.95 in2.

Number of bolts = 56

Bolt Spacing Bs = 0.00 in. ASME Sec VIII, Div. 1, Appendix 2

Maximum Bolt spacing Bsmax 2a+ [6t/(m+0.5)] = 2.25 in. ASME Sec VIII, Div. 1, Appendix 2

Loads Acting on Flange

Total hydrstatic end force H 0.785G2P = 563818 lbs. ASME Sec VIII, Div. 1, Appendix 2

Hydrostatic end force action on area inside of flange HD 0.785B2P = 0.00314 lbs. ASME Sec VIII, Div. 1, Appendix 2

Difference between two hydrostatic end forces HT H-HD = 563818 lbs. ASME Sec VIII, Div. 1, Appendix 2

Gasket Load HG W-H = 425716 lbs. ASME Sec VIII, Div. 1, Appendix 2

Total Joint contact surface compression load HP 2bx3.14GmP = 100982 lbs. ASME Sec VIII, Div. 1, Appendix 2

Minimum required bolt load for operating conditions Wm1 H+HP = 664801 lbs. ASME Sec VIII, Div. 1, Appendix 2

Minimum required bolt load for gasket seating conditions Wm2 3.14bGy = 1051900 lbs. ASME Sec VIII, Div. 1, Appendix 2

Flange design bolt load W = 989535 lbs.

Page 3: Wind Calculation Sheet

Design of Bolting

Required bolt area for operating conditions Am1 Wm1 / Sb = 29 in2. ASME Sec VIII, Div. 1, Appendix 2

Required bolt area for gasket seating Am2 Wm2 / Sa = 46 in2. ASME Sec VIII, Div. 1, Appendix 2

Required bolt area Am = 46 in2. Greater of Am1 & Am2

Available bolt area Ab = 53.22 in2. Bolt cross section area x No. of bolts

Flange Moments

Moment arm for HG hG (C-G)/2 = -33.5000 in. ASME Sec VIII, Div. 1, Appendix 2

Moment arm for HT hT (R+g1+hG)/2 = -16.7513 in. ASME Sec VIII, Div. 1, Appendix 2

Moment arm for HD hD R+0.5g1 = -0.0025 in. ASME Sec VIII, Div. 1, Appendix 2

Component of moment due to HG MG HGhG = -14261502 lb-in ASME Sec VIII, Div. 1, Appendix 2

Component of moment due to HT MT HThT = -9444663 lb-in ASME Sec VIII, Div. 1, Appendix 2

Component of moment due to HD MD HDhD = -0.00000785 lb-in ASME Sec VIII, Div. 1, Appendix 2

Total Flange moment for operating conditions M1 Sum = -23706165 lb-in ASME Sec VIII, Div. 1, Appendix 2

Total moment for gasket seating conditions M2 W(C-G)/2 = -38121831 lb-in ASME Sec VIII, Div. 1, Appendix 2

Total Flange Moment Mo = -23706165 lb-in Greater of M1 & M2

Flange Geomatry Parameters

(Following factors found using Figures 2-7.1, 2-7.2, 2-7.3 & 2-7.3 of Appendix 2* ) (Following factors calculated using formulae, Article 2-3 of Appendix 2*)

F = 0.865 d = (U/V).h0g02

0.00

f = 1.1 e = (F/h0) #DIV/0!

T = 1.84 L = (te+1)/T+t3/d #DIV/0!

U = 9 K = A/B 0.00

V = 0.32 tx = 2g0 0.00

Y = 7.6 h0 = sqrt(Bg0) 0.00 in.

Z = 4 B1 = (B+g1) 0.01 in.

R = (C-B-2g1)/2 0.00 in.

h/h0 #DIV/0!

* Appendix 2 of ASME Sec VIII, Div. 1 g1/g0 #DIV/0!

Flange Stresses & Allowable Flange Design Stresses

Result

(ASME Sec VIII, Div. 1, Appendix 2, Article 2-7) (ASME Sec VIII, Div. 1, Appendix 2, Article 2-8)

Longitudinal Hub Stress SH fMo/Lg12B = #DIV/0! psi SH < 1.5 Sf 30000 #DIV/0!

Radial Flange Stress SR (1.33te+1)Mo/Lt2B = #DIV/0! psi SR < Sf 20000 #DIV/0!

Tangential Flange Stress ST YMo/t2B -ZSR = #DIV/0! psi ST < Sf 20000 #DIV/0!

(SH + SR)/2 = #DIV/0! (SH + SR)/2 < Sf 20000 #DIV/0!

(SH + ST)/2 = #DIV/0! (SH + ST)/2 < Sf 20000 #DIV/0!

Flange Stresses Allowable Design Stresses

Page 4: Wind Calculation Sheet

FEM Results

Analysis 1 Analysis 2

Longitudinal Hub

Stress (psi) 26904

Radial Flange Stress

(psi) 13047

Tangential Flange

Stress (psi) 5128

Combined Stress (SH

+ SR)/2 19976 0 0

Combined Stress (SH

+ ST)/2 16016 0 0

ASME BPVC

Calculations

4000

4500

5000

5500

Analysis 1 Analysis 2

ASME BPVCCalculations

FEM Results

Tangential Flange Stress (psi)

Page 5: Wind Calculation Sheet

Analysis 1

30000

Primary General

MembranePm 10820

20000Primary Bending Pb 11600

20000Membrane + Bending Q 15870

20000 Total (including Peak) F 28920

20000

FEM ResultsAllowable

Design Stress Stress Category

12000

12500

13000

13500

Analysis 1 Analysis 2

ASME BPVC Calculations FEM Results

Radial Flange Stress (psi)

Page 6: Wind Calculation Sheet

Analysis 2

10410 Sf 20000 Safe

12020 1.5Sf 30000 Safe

14300 1.5Sf 30000 Safe

24470 2Sf 40000 Safe

FEM ResultsStress Limit Allowable Design

Stress (psi) Result

25000

25500

26000

26500

27000

Analysis 1

ASME BPVC Calculations

Longitudinal Hub Stress (psi)

Page 7: Wind Calculation Sheet

Longitudinal Hub Stress (psi) 26904 30000 Safe

Radial Flange Stress (psi) 13047 20000 Safe

Tangential Flange Stress (psi) 5128 20000 Safe

Combined Stress (SH + SR)/2 19976 20000 Safe

Combined Stress (SH + ST)/2 16016 20000 Safe

Flange Stresses ASME BPVC

Calculations

Allowable

Design Stress Result

Analysis 2

FEM Results

Longitudinal Hub Stress (psi)

Page 8: Wind Calculation Sheet

r g0=g1

B

t

AR

G

Page 9: Wind Calculation Sheet

HD

hGb

HGhT

HT

Page 10: Wind Calculation Sheet

g0=g1

R C

Page 11: Wind Calculation Sheet

g0/2

WhD

Page 12: Wind Calculation Sheet

55.625 9.375 46.25

55.625 8.125 47.5

55.625 7.25 48.375

Page 13: Wind Calculation Sheet

B

t

A

r g1G

Page 14: Wind Calculation Sheet

hGb

HG HDhT

HT

Page 15: Wind Calculation Sheet

ID 9

0 in

.

Page 16: Wind Calculation Sheet

C

g1

78

104.5g0

Page 17: Wind Calculation Sheet

HT

WhD

HG

Page 18: Wind Calculation Sheet
Page 19: Wind Calculation Sheet

7.3

71.25

66

78

15.16

104.5

r

Page 20: Wind Calculation Sheet

Internal Pressure

W

hT

hG

Page 21: Wind Calculation Sheet

Gasket

Page 22: Wind Calculation Sheet

118

4.5

12

95

Page 23: Wind Calculation Sheet

hD

Internal Pressure

W

HD

Page 24: Wind Calculation Sheet

Stud & Nuts

Flange

Page 25: Wind Calculation Sheet

111.25

r

12

4.5

90

6.75

Page 26: Wind Calculation Sheet

Internal Pressure

ContactFace

Page 27: Wind Calculation Sheet

Stud & Nuts

Page 28: Wind Calculation Sheet
Page 29: Wind Calculation Sheet

W

hD

HD

Internal Pressure

Page 30: Wind Calculation Sheet
Page 31: Wind Calculation Sheet
Page 32: Wind Calculation Sheet

HD