Wigner molecules in carbon-nanotube quantum dots

17
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy

description

Wigner molecules in carbon-nanotube quantum dots. Massimo Rontani and Andrea Secchi. S3, Istituto di Nanoscienze – CNR, Modena, Italy. ultraclean semiconducting nanotubes. Bockrath group, Nature Phys. 2008. McEuen group, Nature 2008. gate-defined quantum dots. - PowerPoint PPT Presentation

Transcript of Wigner molecules in carbon-nanotube quantum dots

Page 1: Wigner molecules in carbon-nanotube quantum dots

Wigner moleculesin carbon-nanotube quantum dots

Massimo Rontani and Andrea SecchiS3, Istituto di Nanoscienze – CNR, Modena, Italy

Page 2: Wigner molecules in carbon-nanotube quantum dots

ultraclean semiconducting nanotubes

Bockrath group, Nature Phys. 2008 McEuen group, Nature 2008

gate-defined quantum dots

shallow confinement potentials (approx. parabolic)

Page 3: Wigner molecules in carbon-nanotube quantum dots

ultraclean semiconducting nanotubesMcEuen group, Nature 2008

chem

ical p

ote

nti

al (

N)Bockrath group, Nature Phys. 2008

chem

ical p

ote

nti

al (

N)

0 8B (T)

1h

3h

5h

B (T)B (T)

1e

2e

3e

20 2

*)(

mRg

BEN B

Page 4: Wigner molecules in carbon-nanotube quantum dots

ultraclean semiconducting nanotubesBockrath group, Nature Phys. 2008 McEuen group, Nature 2008

chem

ical p

ote

nti

al (

N)

chem

ical p

ote

nti

al (

N)

0 8B (T)

1h

3h

5h

B (T)B (T)

1e

2e

3e

20 2

*)(

mRg

BEN B

)1()( 000 NENEE

independent from B

Page 5: Wigner molecules in carbon-nanotube quantum dots

ultraclean semiconducting nanotubesBockrath group, Nature Phys. 2008 McEuen group, Nature 2008

chem

ical p

ote

nti

al (

N)

chem

ical p

ote

nti

al (

N)

0 8B (T)

1h

3h

5h

B (T)B (T)

1e

2e

3e

20 2

*)(

mRg

BEN B

)1()( NN spin added electron

Page 6: Wigner molecules in carbon-nanotube quantum dots

ultraclean semiconducting nanotubesBockrath group, Nature Phys. 2008 McEuen group, Nature 2008

chem

ical p

ote

nti

al (

N)

chem

ical p

ote

nti

al (

N)

0 8B (T)

1h

3h

5h

B (T)B (T)

1e

2e

3e

20 2

*)(

mRg

BEN B

)1()( NN isospin added el.(angular momentum)

Page 7: Wigner molecules in carbon-nanotube quantum dots

ultraclean semiconducting nanotubesBockrath group, Nature Phys. 2008 McEuen group, Nature 2008

chem

ical p

ote

nti

al (

N)

chem

ical p

ote

nti

al (

N)

0 8B (T)

1h

3h

5h

B (T)B (T)

1e

2e

3e

20 2

*)(

mRg

BEN B

ground statespin & isospinpolarized

Wigner molecule?

single-particle + spin-orbit

Page 8: Wigner molecules in carbon-nanotube quantum dots

motivation

Coulomb interaction vs single-particle physics

role of interaction?

exps at Harvard and Delft on coherent spin manipulation

outlook (I)

similar issues for graphene quantum dots

similar theoretical approach (see next slide)

Page 9: Wigner molecules in carbon-nanotube quantum dots

Hamiltonian

exact diagonalisation ground & excited states

many-body term: Ohno potential, inter- and intra-valley channels (including short range terms)many-body term: Ohno potential, inter- and intra-valley channels (including short range terms)

compute the wavefunction as a superposition of Slater compute the wavefunction as a superposition of Slater

determinantsdeterminants ij

i

Ni

NiN HHc 0|| †

''† ml

Ni cc

Rontani et al., J. Chem. Phys. 124, 124102 (2006)

single-particle term: mass + isospin + 1D harmonic confinement + single-particle term: mass + isospin + 1D harmonic confinement + BB + spin-orbit coupling + spin-orbit coupling

compute compute ((NN), ), nn((xx), ), gg((xx),… ),…

envelope function envelope function approximationapproximationLuttinger and Kohn 1955, Ando 2005

)(),,()();,,( szyxxFszyx nn

)2()1( ˆˆˆ VHH

Page 10: Wigner molecules in carbon-nanotube quantum dots

experimental evidence

split 4-fold degenerate spin-orbitals

Page 11: Wigner molecules in carbon-nanotube quantum dots

non-interacting physics?

two-electron ground state:

one Slater determinant

no correlation chem

ical

pote

nti

al

the simplest interpretation

Page 12: Wigner molecules in carbon-nanotube quantum dots

theory vs experiment

theoryPRB 80, 041404(R) (2009) McEuen group 2008

B (T)

dielectric constant

fitting parameter

Page 13: Wigner molecules in carbon-nanotube quantum dots

strongly correlated wave functions

A & B states:

strongly correlated

same orbital wave functions

differ in isospin only

A. Secchi and M.R., PRB 80, 041404(R) (2009)

isospin = valley population

Page 14: Wigner molecules in carbon-nanotube quantum dots

spectrum affected by interaction

N = 2

N = 1

A. Secchi & M.R., PRB 80, 041404(R) (2009)

interaction strength

SO

SO

Page 15: Wigner molecules in carbon-nanotube quantum dots

crystallization criterionA. Secchi & M.R., PRB 82, 035417 (2010) Bockrath group, Nature Phys. 2008

chem

ical p

ote

nti

al (

N)

0 8B (T)

1h

3h

5h

Page 16: Wigner molecules in carbon-nanotube quantum dots

crystallization criterionA. Secchi & M.R., PRB 82, 035417 (2010) A. Secchi & M.R., PRB 82, 035417 (2010)

a = WMb = particle-in-a-box

a

b

Page 17: Wigner molecules in carbon-nanotube quantum dots

conclusions

Wigner molecules form in realistic samples

outlook (II)quantum devices (localization + spin-orbit coupling + electric control)

scanning tunneling spectroscopy

ww

w.n

an

oscie

nce

.un

imore

.it/max.h

tml

ww

w.n

an

o.c

nr.

it

nanotube quantum dots strongly correlated

graphene quantum dots

few-body physics of cold Fermi atomsM. Rontani et al., PRL 102, 060401 (2009)