What Theory Can Do
Embed Size (px)
Transcript of What Theory Can Do

What Theory Can Do
Strength and Weakness

李振华制造2013/10/14 What Theory Can Do 2
理论计算起到了非常重要的作用
Fig. 1 The linkages between thermochemical kinetics and other subjects. Ref. Walsh, R. Chem. Soc. Rev. 2008, 37, 686.

李振华制造2013/10/14 What Theory Can Do 3
Strength
For small and regular molecules
Chemical Accuracy:Energetics: Error < 1 kcal/mol
Structures: Error in Bond Lengths < 0.01 Å
Frequencies: A few cm-1

李振华制造2013/10/14 What Theory Can Do 4
Ref: Hoffman, B.C.; Sherrill, C. D.; Schaefer III, H. F. J. Chem. Phys. 1997, 107(24), 10616.

李振华制造2013/10/14 What Theory Can Do 5
Ref: Bak K. L. et al. J. Chem. Phys. 2001, 114(15), 6548.

李振华制造2013/10/14 What Theory Can Do 6
Ref: Bak K. L. et al. J. Chem. Phys. 2001, 114(15), 6548.

李振华制造2013/10/14 What Theory Can Do 7
Ref: Bak K. L. et al. J. Chem. Phys. 2001, 114(15), 6548.

李振华制造2013/10/14 What Theory Can Do 8
Ref: Bak K. L. et al. J. Chem. Phys. 2001, 114(15), 6548.

李振华制造2013/10/14 What Theory Can Do 9
Ref: Abrams, M. L. PhD Thesis, General-Order Single-Reference and Multi-Reference
Methods in Quantum Chemistry, 2005

李振华制造2013/10/14 What Theory Can Do 10
Ref: Abrams, M. L. PhD Thesis, General-Order Single-Reference and Multi-Reference
Methods in Quantum Chemistry, 2005
BH, CH+, NH, OH+, HF, C2

李振华制造2013/10/14 What Theory Can Do 11
Accurate Calculations Can Give Better Results Than Experiment
CCSD(T)/CBSa G3 G3X Literature c
P2 34.4±1.0 35.5 34.3 34.3±0.5d
P4 12.1±2.5 18.2 16.2 14.1±0.05d
PH 56.6±1.0 56.0 55.7 60.6±8.0e 57.4±0.6f
PH2 31.5±1.0 32.6 32.2 26±23g 33.1±0.6f
POi –7.6±1.0 –7.1 –7.7 –5.6±1.0d –6.8±1.9j –
7.8k
PO2 –69.7±1.5 –67.5 –69.2 –66.2±3j –70.3k
HOPO –112.0±1.5 –108.3 –110.3 –110.6±3l –112.4k
HOPO2 –170.6±2.0 –164.8 –167.4 –168.8±4l –171.4k
Table VII. Enthalpies of formation at 298 K (in kcal mol–1).Ref: Haworth, N. L.; Bacskay, G. B. J. Chem. Phys. 2002, 117(24), 11175.

李振华制造2013/10/14 What Theory Can Do 12
Accurate Calculations Can Give Better Results Than Experiment
Table VII. Average Error in Atomization Energy at 0 K (in kcal mol–1).(H2O,C2H2,CH3,CH4,CH,CO2,CO,F2,HF,N2,NH3,N2O,NO,O2,O3,NO2,Cl2,ClF,CS,H2S,HCl,HOCl,PH3,SO,SO2,O
CS,ClCN,C2H4,H2CO,HNO)
Ref: Karton, A.; Rabinovich, E.; Martin J. M. L.; Ruscic, Branko, R. J. Chem. Phys. 2006, 125, 144108.
Method W2.2 W3.2 W4lite W4
MAD 0.44 0.19 0.13 0.10
MAX 3.46 0.7 0.84 0.63
Min 0.02 0.02 0.01 0.00

李振华制造2013/10/14 What Theory Can Do 13
Accurate Calculations Can Give Better Results Than Experiment
Table I. Recommended Gas-Phase Heats of Formation at 0 K (in kcal mol–1).Ref: Karton, A.; Martin J. M. L. J. Phys. Chem. A 2007, 111(26), 5936.
element JANAF CODATA OPW9 Theo. Recom.
Be 76.42±1.20 75.8±0.8 76.4±0.6
B 132.6 133.82±1.20 136.2±0.2 135.1±0.2
Al 78.23 78.30±0.96 80.2±0.4
Si 106.5±1.9 108.1±0.5 107.15±0.2

李振华制造2013/10/14 What Theory Can Do 14
Accurate Calculations Can Give Better Results Than Experiment
Table 8 Ionization energy and heat of formation of B2F4 at 298 K.Ref: Li, Z. H.; Fan, K. N. J. Phys. Chem. A 2002, 106(28), 6659.
This Work G3 G3S G3SCB Exp.
IP 271.70 271.58 270.94 270.34≤282.03 e
278.34 f
ΔHf(298)
B2F4 (D2h) -339.82 -339.71 -339.18 -340.69 -342.20 g

李振华制造2013/10/14 What Theory Can Do 15
Weakness
Results sensitive to
Basis set,
MethodVery Expensive For Reliable Predictions
Wrong conclusion from inaccurate calculations
DFT: Good in geometry, frequency, long way to
reliable quantitative predictions

李振华制造
Everyone uses “Density Functional Theory”
Publications from 1980 to 2011 in SCI-Expanded
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006
2008
2010

李振华制造
Everyone uses B3LYP
Publications from 1994 to 2010 in SCI-Expanded
0
500
1000
1500
2000
2500
3000
1993 1998 2003 2008
B3LYP
PBE
PW91

李振华制造
DFT: Good in GeometryMUE in Bond Length (Å)Ref: Zhao, Y.; Truhlar, D. G. Theo. Chem. Acc. 2008, 120, 215.
MGBL19 MLBL13 TMBL7
HF 0.035
PBE 0.009 0.010 0.029
B3LYP 0.005 0.010 0.057
B98 0.005 0.011 0.086
TPSSh 0.004 0.010 0.047
M06-HF 0.012
M06 0.007 0.018 0.056
Average (DFT) 0.008 0.017 0.068

李振华制造
DFT: Not So Bad in Frequency and ZPE
Error in Frequency (cm-1) and ZPE (kcal/mol)Ref: Zhao, Y.; Truhlar, D. G. Theo. Chem. Acc. 2008, 120, 215.
Frequency (Scaled) ZPE (Scaled)
HF 69 0.20
PBE 29 0.08
B3LYP 31 0.08
B98 30 0.08
TPSSh 28 0.09
M06-HF 68 0.22
M06 59 0.16
Average (DFT) 41 0.12

李振华制造
Bad Thing

李振华制造2013/10/14 What Theory Can Do 21
Small Vibrational Frequency Very Sensitive to Basis SetTable 1 The lowest harmonic vibrational frequency (cm-1) of the eclipsed (D2h) and staggered (D2d) conformations of B2F4.Ref: Li, Z. H.; Fan, K. N. J. Phys. Chem. A 2002, 106(28), 6659.
HF B3LYP MP2 QCISD
D2h D2d D2h D2d D2h D2d D2h D2d
6-31G(d) -12.5 20.4 15.7 9.4 17.2 -1.2 15.7 3.8
6-31+G(d) 18.2 7.6 14.7 13.6 19.6 -4.0 18.2 -7.4
6-311G(d) 20.7 4.0 20.8 3.9 28.3 -20.6 30.0 -23.1
6-311+G(d) 27.1 8.9 19.7 13.4 27.0 4.7
cc-pVDZ 23.4 -9.0 26.1 -16.9 28.1 -21.1 29.6 -23.1
cc-pVTZ 8.8 -1.4 -4.5 9.1 16.6 -14.9
cc-pVQZ 3.3 -7.2 4.4 6.2

李振华制造2013/10/14 What Theory Can Do 22
Frequency Calculation: Sensitive to Grid Point
The low harmonic vibrational frequencies (cm-1) of Zn(C2H4)42+ by the B3PW91
method. Li, Z. H., unpublished
Frequency (cm-1) qvib(298.15) qvib(800)
Fine Ultrafine Fine Ultrafine Fine Ultrafine
14.9 33.6 14.4 6.7 37.9 17.0
43.1 44.8 5.3 5.1 13.4 12.9
69.2 63.7 3.5 3.8 8.5 9.2
80.4 70.0 3.1 3.5 7.4 8.5
108.8 103.9 2.4 2.5 5.6 5.9
114.1 115.2 2.4 2.3 5.4 5.3
qvib 4871 2696 9.8105 5.4105
Ratio 1.8 1.8
DG 0.35 0.94

李振华制造2013/10/14 What Theory Can Do 23
Very Slow Basis-Set
Convergence
Ref: Persson, B. J.; Taylor, P. R.; Lee, T.
J. J. Chem. Phys. 1997, 107(13), 5051

李振华制造2013/10/14 What Theory Can Do 24
Wrong Conclusion Can be Drawn from Cheap Calculation
Ref: Persson, B. J.; Taylor, P. R.; Lee, T. J. J. Chem. Phys. 1997, 107(13), 5051

李振华制造2013/10/14 What Theory Can Do 25
Wrong Conclusion Can be Drawn from Cheap CalculationRef: Persson, B. J.; Taylor, P. R.; Lee, T. J. J. Chem. Phys. 1997, 107(13), 5051

李振华制造
Conclusion by Taylor P. R. in 2000
So, we’ve exhausted our armoury and we disagree with
experiment by 0.03 Å on the bond length and by up to
25 cm−1 (!) in the vibrational fundamentals.
In addition, the heat of the reaction P4 → 2P2 is
estimated computationally to be 63.2 kcal/mol,
whereas the experimental estimate is around 54
kcal/mol.
NIST thermochemist: “All phosphorus thermochemical
results are suspect.”

李振华制造
New Conclusion by Martin JML in 2007Ref. Karton, A.; Martin, J. M. L. Mol. Phys. 2007, 105(19-22), 2499.
Contrary to previous studies, we find the experimental
thermochemistry to be fundamentally sound. The
reaction enthalpy for P4 -> 2P2 has a very significant
contribution from post-CCSD(T) correlation effects.
We derive a gas-phase heat of formation for the
phosphorus atom of DH0(f) [P(g)] = 75.54 0.1 kcal
mol-1 and DH298(f) [P(g)] = 75.74 0.1 kcal mol-1, in
the upper half of the CODATA uncertainty interval.
CODATA: DH0(f) [P(g)] = 75.45 0.24

李振华制造
Difficult Cases: Open-Shell Systems with Strong
Multireference Character
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
0.8 1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8
MP2
MP3
CCSD
CCSD(T)
RCCSD(T)
MRCI(0)
UPBE
RPBE
UPBE/G03
Potential Energy Surface of HF (kcal/mol), basis set: DZP Siesta
1.3f (UPBE, RPBE); 6-311++G(2df,2p) for Others

李振华制造
Difficult Cases: Open-Shell Systems with Strong
Multireference CharacterError in Potential Energy Surface of HF (kcal/mol), basis set: DZP
Siesta 1.3f (UPBE, RPBE); 6-311++G(2df,2p) for Others
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
1 1.5 2 2.5 3 3.5 4 4.5 5
MP2
MP3
CCSD
CCSD(T)
RCCSD(T)
UPBE
RPBE
UPBE/G03

李振华制造2013/10/14 What Theory Can Do 30
Potential Energy Surface of N2
Ref: Robinson, D. J. Comput. Chem. 2013, 34, 2625.
N2 Energy Curve

李振华制造
Difficult Cases: Open-Shell Systems with Strong Multireference Character
Relative Energy of FeO2− (in kcal/mol)
Ref: Li, Z. H.; Gong, Y.; Fan, K. N.; Zhou, M. F. J. Phys. Chem. A. 2008, 112(51), 13641-13649
C2v Dh
Method 2A12B1
4A24B2
6A12Dg
2g+ 4g
6g+
B3LYP 7.8 8.3 0.2 0.0 2.5 9.5 17.1 1.8 3.7
B3PW91 10.6 11.1 0.2 0.0 0.9 12.5 18.9 2.1 2.1
B97-2 10.6 11.1 1.2 1.2 0.0 12.9 18.4 2.8 0.0
MP2 8.8 9.5 31.6 29.5 c 11.1 24.2 50.5 0.0
MP3 c c 79.3 48.9 c 46.4 66.0 31.8 0.0
CCSD 26.5 26.5 d c c 27.0 39.2 9.7 0.0
CCSD(T) e 10.4 10.6 d c c 12.2 20.1 9.0 0.0
MRCI 0.0 4.6 9.9

李振华制造
Difficult Cases: Open-Shell Systems with Strong Multireference Character
3 Vibrational Frequency of Relative Energy of FeO2-
Ref: Li, Z. H.; Gong, Y.; Fan, K. N.; Zhou, M. F. J. Phys. Chem. A. 2008, in press
C2v Dh
Method 2A12B1
4A24B2
6A12Δg
b 2Σg+ 4g
b 6Σg+
B3LYP 994 998 888 884 850 1002 985 797 854
B3PW91 876 1010 896 895 868 1014 996 800 872
B972 994 997 882 875 850 998 988 778 851
MP2 3751 1103 678 997 c 1054 983 2649i 847
MP3 c c 170 d c 1010 971 19452i 941
CCSD d e d c c 1023 992 696 895
EXP 870.6

李振华制造
Difficult Cases: Open-Shell Systems with Strong Multireference Character
Excitation Energy of Fe2− (Relative to 8g
−Ground State)Ref: Sorkin, A.; Iron, M. A.; Truhlar, D. G. J. Chem. Theo. Comput. 2008, 4(2), 307.
DE
(kcal/mol)Re (Å) we (cm-1)
8Dg
8g
8Dg
8g
8Dg
HF 110.5 2.640 2.330 206 297
PBE -15.7 2.209 2.068 281 349
M06-L -2.8 2.212 2.099 299 337
M06 16.6 2.188 2.048 315 375
B3LYP 3.2 2.178 2.046 316 375
CCSD(T) 9.2 2.24 2.12 276 321
MRCI+Q 18.4 2.266 255
Exp 250

李振华制造
Difficult Cases: Open-Shell Systems with Strong Multireference Character
Excitation Energy of FeO+ (Relative to 6+ Ground State)Ref: Sorkin, A.; Iron, M. A.; Truhlar, D. G. J. Chem. Theo. Comput. 2008, 4(2), 307.
DE (kcal/mol)
C6v C4v C2v Not Stated
HF 256.4 42.0 -40.6
PBE 21.7 12.0 12.7
M06-L 34.4 22.4 13.8
M06 66.0 39.0 12.9
B3LYP 59.5 29.3 7.6
CCSD(T) 13.1
QMC/B3LYP 8.3

李振华制造
Difficult Cases: Open-Shell Systems with Strong Multireference Character
Bond Length of Cr2Ref: Schultz N. E.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 4388.

李振华制造
Difficult Cases: Open-Shell Systems with Strong Multireference Character
Error in the Bond Energies (kcal/mol) of Ag2, AgCu, Cr2, Cu2, Mo2,
Ni2, V2, Zr2, ZrVRef: Schultz N. E.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 4388.
MSE MAD RMSE
HF -53.5 53.5 58.2
PBE 3.9 7.7 9.3
mPWPW91 0.5 6.5 8.6
B3LYP -16.7 16.7 20.5
B98 -8.9 9.7 13.1
TPSS -1.3 6.1 10.0
B1B95 -21.9 21.9 29.1
TPSSh -11.0 11.0 16.4

李振华制造
Difficult Cases: Open-Shell Systems with Strong Multireference Character
Computed J12 (cm−1) values for [Cu2Cl6]2− on passing from square
planar (=0°) to pseudo-tetrahedral geometriesRef: Bencini, A. Inorg. Chimica. Acta 2008, 361, 3820.
Method
0° 45° 70°
Ab initio 36 −58 87
Xa-BS 122 −309 72
LDA-BS 362 −246 191
BP-BS 256 −200 109
B3LYP-BS 271 −95 57
Xa-SD −41 −437 −106
Experiment 0, 40 −80, −90

李振华制造
Difficult Cases
(DFT): Noncovalent
Interactions
Ref: Zhao, Y.; Truhlar, D. G. Acc.
Chem. Res. 2008, 41(2), 157.

李振华制造
Difficult Cases (DFT):
Noncovalent
Interactions
Ref: Zhao, Y.; Truhlar, D. G. Acc.
Chem. Res. 2008, 41(2), 157.

李振华制造
Difficult Cases (DFT):
Noncovalent
Interactions
Ref: Zhao, Y.; Truhlar, D. G. Acc.
Chem. Res. 2008, 41(2), 157.

李振华制造
Difficult Cases: Charge Transfer Excitation Energies
Excitation Energies (eV)Ref: Zhao, Y.; Truhlar, D. G. Theo. Chem. Acc. 2008, 120, 215.
Tetraacene
Valence B2u La
NH3…F2 C2H4…C2F4
HF 3.9 11.1 13.9
PBE 3.0 0.1 5.1
B3LYP 3.4 2.2 7.0
B98 3.5 2.6 6.4
TPSSh 3.4 1.5 10.0
M06-HF 3.8 9.4 12.6
Best Estimate 3.4 9.5 12.6

李振华制造
Don
ald G
. Tru
hlar

李振华制造
DFT: Reaction Energy and Equilibrium Constants
Error in Reaction Energy at 0 K (kcal/mol) Li Z. H. unpublished.
Difference to G3B3 PBE PW91 B3LYP PBE0 BMK
C3H8 --> H2 + C3H6 7.8 8.0 5.6 11.3 10.2
C3H8+1/2O2-->C3H6+H2O 7.0 6.6 3.7 7.8 4.4
C3H8+CO2 --> C3H6 + H2O + CO 15.1 15.0 6.8 14.4 9.7
H2+CO2 --> HCOOH -6.8 -7.4 -6.0 -9.8 -7.4
C3H8+CO2 --> HCOOH + C3H6 1.0 0.6 -0.4 1.5 2.8
H2+CO2 --> CO + H2O 7.3 7.0 1.2 3.1 -0.6
CO + H2O --> HCOOH -14.1 -14.4 -7.2 -12.9 -6.8
MAD 8.4 8.4 4.4 8.7 6.0

李振华制造
DFT: Reaction Energy and Equilibrium Constants
Equilibrium Constant at 298 K (KDFT/KAcc) Li Z. H. unpublished.
PBE PW91 B3LYP PBE0 BMK
C3H8 --> H2 + C3H6 2.010-6 1.410-6 8.310-6 5.110-9 3.210-8
C3H8+1/2O2-->C3H6+H2O 7.610-6 1.510-5 2.010-3 1.810-8 6.310-4
C3H8+CO2 --> C3H6 + H2O + CO 8.310-12 1.010-11 1.010-5 2.710-11 8.410-8
H2+CO2 --> HCOOH 1.0105 2.7105 2.4104 1.6107 2.7105
C3H8+CO2 --> HCOOH + C3H6 0.20 0.38 2.0 8.210-2 8.710-3
CO2+H2 --> CO + H2O 4.210-6 7.210-6 0.13 5.310-3 2.6
CO + H2O --> HCOOH 2.31010 3.71010 1.9105 3.0109 1.0105

李振华制造
Reaction Energy at 0 K (kcal/mol)
PBE PW91 B3LYP PBE0 BMK G3B3
H2+CO2 --> HCOOH -1.1 -1.7 -0.2 -4.1 -1.7 6.9
HCOOH --> CO + H2O 19.9 20.2 12.9 18.7 12.6 5.8
H2+CO2 --> CO + H2O 18.8 18.5 12.7 14.6 10.9 11.5
Free energy change (kcal/mol) at 800 K
PBE PW91 B3LYP PBE0 BMK G3B3
C3H8 --> H2 + C3H6 11.9 12.1 9.7 15.4 14.3 4.1
C3H8+CO2 --> C3H6 + H2O + CO 23.3 23.1 14.9 22.6 17.8 8.2
K2/K1 0.08% 0.1% 3.6% 1.1% 11% 7.9%

李振华制造
DFT: Bad Energy Barriers for Hydrogen Transfer Reactions
Ref: Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 2715.

李振华制造

李振华制造
Prediction on Selectivity?
Figure From: Somorjai, G. A.; Park, J. Y. Angew. Chem. Int. Ed. 2008, 47, 9212.
# '/( ) v G RTBr
k Tk V e
h
D D
298 800
80%:20% 0.8 2.2
90%:10% 1.3 3.5
99%:1% 2.7 7.3
不同的选择性对应的自由能垒的差别 (kcal/mol)

李振华制造
怎样做好的计算
Right Reason for the Right
Answer

李振华制造
怎样做好的计算
了解所研究的体系
建立合理的模型
选择合适的方法
理论方法:HF, MP2, DFT, 半经验,经验
基组
可靠性
性价比
分析结果
得到结论
Right Reason for the Right Answer

李振华制造
理论计算中的常见错误
随便选择一个方法就进行计算
B3LYP, DFT
计算不够细致
开壳层,闭壳层
Grid, k点,基组大小

李振华制造
理论计算中的常见错误
开壳层 or闭壳层?
O2: 基态,triplet, 3g-, 第一激发态,singlet, 1Dg
B3LYP CCSD MRCI Exp
RHF 38.5 33.1 22.9 22.6
UHF 10.0 11.7 -
O2第一激发能 (kcal/mol), basis set: 6-311+G(3df)
Li, Z.H. unpublished.

李振华制造
理论计算中的常见错误
开壳层 or闭壳层?

李振华制造
理论计算中的常见错误
基本概念错误
如活化能
RTEaAek/D
# 'aE E RTD D
DE0DEe
DEa

李振华制造
理论计算中的常见错误
几种能垒的比较
H + H2 H2 + H
DEe 10.1
DE0 9.3
DEa 9.6

李振华制造
理论计算中的常见错误
基本公式错误
JACS
( ) (0 )eF E T TS E ZPE E T TS D
B
B vib
ln
ln
e
e
F E ZPE k T q
E ZPE k T q

李振华制造
理论计算中的常见错误
计算细节语焉不详,无法重复计算结果
基组
方法
程序
随意调整计算方法中的参数,凑实验结果
溶液模型
基组:BSSE的问题

李振华制造
理论计算中的常见错误
得出结论非常大胆:用了很多近似,却推出非常新颖的结论

李振华制造

李振华制造2013/10/14 What Theory Can Do 60
Ref: Bak K. L. et al. J. Chem. Phys. 2001, 114(15), 6548.

李振华制造2013/10/14 What Theory Can Do 61
Ref: Bak K. L. et al. J. Chem. Phys. 2001, 114(15), 6548.