What goes up must come down, unless…

8
{ What goes up must come down, unless… Escape velocity

description

What goes up must come down, unless…. Escape v elocity . Consider masses M and m placed in space a distance R from each other. The two masses have gravitational potential energy, which is stored in their gravitational field. - PowerPoint PPT Presentation

Transcript of What goes up must come down, unless…

Page 1: What goes up must come down, unless…

{

What goes up must come down, unless…

Escape velocity

Page 2: What goes up must come down, unless…

Consider masses M and m placed in space a distance R from each other. The two masses have gravitational potential energy, which is stored in their gravitational field.

This energy is there because work had to be done to move one of the masses from infinity to the position near the mass.

Gravitational Potential Energy

Page 3: What goes up must come down, unless…

How fast does it have to go to not come back down? The total energy of a mass m moving near a large stationary

mass M is ; where v is the speed of m when it is a distance r from M. (if M is also free to move, then you need to include a term ; where u is the speed of M.)

The only force acting on m is the gravitational attraction of M. Suppose that m is launched with a speed v0 from M. Will m escape from the pull of M and move very far away from it?

Total energy must be zero or positive

Escape velocity

Page 4: What goes up must come down, unless…

E>0: mass escapes and never returns E<0: mass moves out a certain distance,

but returns – trapped E=0: the critical case separating the

other two – mass barely escapes

Which of these would be good for a space shuttle?

Escape velocity

Page 5: What goes up must come down, unless…

How fast something must go in order to escape the gravitational pull of an object.

Smallest v for which v∞ = 0 Kinetic energy = gravitational potential energy

Not dependent on the mass of the objectDoes not account for frictional forces (air resistance) or

other external forces.

Escape velocity

Page 6: What goes up must come down, unless…

Earth’s escape velocity

Page 7: What goes up must come down, unless…

What must the radius of a star of mass M be such that the escape velocity from the star is equal to the speed of light, c?

Example – the Swarzchild Radius

Page 8: What goes up must come down, unless…

Compute the swarzchild radius of the earth and the sun.

Example