Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

46
Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development NREM 665 1

Transcript of Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Page 1: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Wetland & Estuarine Formation & Development

Wetland & Estuarine Formation & Development

NREM 665

1

Page 2: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

I. Wetland Formation & Development

A. Favorable climate (PPT > ET), temperature

1 don’t get WTLs in1. don t get WTLs in

B. Favorable geol/substrate

1. high H2O holding capacity &

C. Hydrologic factors & WTL dvpt

1. H2O source effects what types of WTL dvp1. H2O source effects what types of WTL dvp

2

Page 3: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

General model of hydrologic inputs which control wetland development 3

Page 4: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

II. Estuary Formation

A. Estuary Def: semi-enclosed coastal body of H2O which is connected w/ open sea & in which SW dil t d / FW d i d f l d d i (P it h ddiluted w/ FW derived from land drainage (Pritchard 1967)

4

Page 5: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

B. 2 Main Physical Processes in Estuaries

1. Stratification (Layering): FW lighter than SW

a tides & winds mix layersa. tides & winds mix layers

2. Settling: Rivers bring susp. sediment to estuary

a. Aggregation/flocculation as FW hits SW

5

Page 6: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

6

Page 7: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

C. Estuary Formation: 5 Main patterns based on geomorphology (Day et al 1989 Mann 2000)geomorphology (Day et al. 1989, Mann 2000)

1. Drowned river valleys (or coastal plain estuaries)

a. SW progressively extends into river valleys w/ SL rise

i. SL rise occ in most places since last glaciationsglaciations

b. Common in temperate climates w/ TSMs

c. Broad vs narrow dep on size of cont shelf

7

d. Classic example?

Page 8: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Estuary formation via river valley drowningdrowning

8

Page 9: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Drowned river valley or coastal plain estuary

Chesapeake and Delaware bays 9

Page 10: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

2. Fjords formed by glacial erosion

a. form in river valley scoured by Pleistocene glaciers

b. U-shaped, typically very deep

i Ex:i. Ex:

c. little sediment, dom by plankton, temperateclimates

10

Page 11: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

FjordjGulf of St. Lawrence

http://www.erudit.org/revue/gpq/1999/v53/n3/004873ar_fig01.gif

11

Page 12: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

FjordPuget Sound

12

Page 13: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

13

Page 14: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

3. Bar Built

a. Form where deposition of sediment kept pace w/ rising SL, creating spits or barrier islands

b. Common in subtrops & trops, dom by TSM & MGs

14

Page 15: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Bar built estuary

http://www.athenapub.com/lagterm1.htmLaguna de Terminos, Campeche, Mexico 15

Page 16: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

4. Tectonic

a. coastal indentations formed by faulting or subsidence

b Wh i h l i l ??b. What is the classic example??

16

Page 17: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Tectonic estuary

San Francisco Bay,San Francisco Bay, California

http://terraweb.wr.usgs.gov/web-cgi/webvista.cgi?the_Region=SFBay&title=&imgType=1993&Map=1&dev=01&dev 0

17

Page 18: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

5. Deltaic (land deposition)

a. produced by river processes

b. characterized by silty sediments from terrestrial runoff (Day et al. 1989)

c. 3 types: fluvial, tide-dominated, & wave dominated

18

Page 19: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

19

Page 20: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Fluvial deltaic estuary

Mississippi River delta, LA 20

Page 21: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Fluvial deltaic estuary

Atchafalaya delta

21

Page 22: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Mississippi OuflowMississippi Ouflow22

Page 23: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Tid d i t dTide-dominated deltaic estuary

23

Page 24: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Wave-dominated deltaic estuaryWave dominated deltaic estuary

Sao Francisco delta, Brazil,

24

Page 25: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Wave-dominated deltaicWave-dominated deltaic estuary

Chilean Coast

http://faculty.gg.uwyo.edu/heller/Sed%20Strat%p y gg y20Class/Sedstrat6/slideshow_6_12.htm

25

Page 26: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

D. Estuarine Mixing Classification

1. Salt wedge (stratified): minimal mixing bet FW & SW

a moves up & down seasonally Q: Classic ex?a. moves up & down seasonally, Q: Classic ex?

2. Partially-mixed: more vertical mixing & resuspension via winds & tides

3. Well-mixed (Vertically homogeneous/fully-mixed): strong mixing forces break down stratificationstrong mixing forces break down stratification

26

Page 27: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

27

Page 28: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

III. WTL Dvpt & Succession

A. Auto vs. Allo

1. Autogenic: linear succession from shallow lake to climax forest

2. Allogenic: plant community ∆ing in resp to ∆ing env. no climax, nonlinear

3. WTLs are ecotones bet. aquatic & terr envs., w/ allogenic forcing from both dirs

28

Page 29: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Early wetland ysuccession models:Presumed linearPresumed linear trajectory among plant communities i E l din England (Chapman 1960)

29

Page 30: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Gulf Coast wetland succession models: linearity & climax (Penfound & Hathaway 1938) 30

Page 31: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

More recent wetland successional models

Successional sequence from stratigraphic & paleoecological data in British peatlands (Walker 1970).

Thicker lines = more common transitions.

31

Page 32: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

IV. Models of Wetland Development

A. Functional Guild

1 describes comm in terms of functional groups1. describes comm. in terms of functional groups defined by specific traits

a enables prediction of g ilds based on ario sa. enables prediction of guilds based on various env. conds. ~ assembly rules

32

Page 33: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Functional Guild

33

Page 34: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

B. Env. Sieve

1. pres & abun of spp ƒ(life history & adaption to env. conds.)

a. env. conds = sieve, as env. ∆s, so does sieve, & spp. presentsieve, & spp. present

b.

34

Page 35: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Environmental Sieve

35

Page 36: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

C. Centrifugal Org.

1. describes plant comms. along gradients of env. constraints

a. gradients radiate outward from single core habitat to periphery where spp. adapted to p p y pp pconstraint(s) outcompete core spp.

36

Page 37: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Centrifugal Organization

37

Page 38: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

V. WTL as hybrids bet young & mature systems

A. Young Systems

1. high prim prod. (as in most immature systems)g p p od (as ost atu e syste s)

2. open mineral cycling

3. short life cycles

38

Page 39: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

B. Mature Systems

1. High detrital processing (nutrient demand satisfied by recycling even in open TSMs, MG)

2. Spatial heterogeneity

3. Complex life cycles

39

Page 40: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Mature: Spatial Heterogeneity

Aerial view of Everglades tree islands & Cladium (sawgrass) 40

Page 41: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Mature: Spatial Heterogeneity

Ground view of tree islands and slough in the Everglades 41

Page 42: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Mature: Complex Food Webs

42

Page 43: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

VI. Pulse Stability Concept

A. Ecosys pulse even after reaching carrying cap (Odum et al. 95)

1. paradigm of repeating oscillation poised on edge of chaos

2. TSMs, MGs resist short-term env. ∆s via spp. div, nutr. storage, recyclingnutr. storage, recycling

B. Physical energy pulses ↑ circ of inputs & waste removal ↑ prodremoval, ↑ prod

C. WTLs org. to receive pulses from & impose pulses

43

on environment

Page 44: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

Pulsed Stability

44

Page 45: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

VII. Ecosystem Engineers

A. Organisms can have strong autogenic effect on WTLs

1. Plant Example: Mangroves: roots trap debris, sediments

2. Wildlife Examples: Beaver, Muskrat: dam, burrow → spp comp, hydrolBeaver, Muskrat: dam, burrow → spp comp, hydrolCanada Geese, Nutria: herbivory, eat outs → prod, structureManatee Dugong: herbivory → prod flow pathsManatee, Dugong: herbivory → prod, flow paths Alligators: gator holes → hydrology, spp comp.

45

Page 46: Wetland & Estuarine Formation & Development Wetland & Estuarine Formation & Development

46