Weak Lensing Tomography Sarah Bridle University College London.

download Weak Lensing Tomography Sarah Bridle University College London.

If you can't read please download the document

Transcript of Weak Lensing Tomography Sarah Bridle University College London.

  • Slide 1
  • Weak Lensing Tomography Sarah Bridle University College London
  • Slide 2
  • 3d vs 2d (tomography) Non-Gaussian -> higher order statistics Low redshift -> dark energy versus
  • Slide 3
  • Weak Lensing Tomography 1.In principle (perfect zs) Hu 1999 astro-ph/9904153 2.Photometric redshifts Csabai et al. astro-ph/0211080 3.Effect of photometric redshift uncertainties Ma, Hu & Huterer astro-ph/0506614 4.Intrinsic alignments 5.Shear calibration
  • Slide 4
  • 1. In principle (perfect zs) Qualitative overview Lensing efficiency and power spectrum Dependence on cosmology Power spectrum uncertainties Cosmological parameter constraints
  • Slide 5
  • 1. In principle (perfect zs) Core reference Hu 1999 astro-ph/9904153 See also Refregier et al astro-ph/0304419 Takada & Jain astro-ph/0310125
  • Slide 6
  • Cosmic shear two point tomography
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • (Hu 1999)
  • Slide 11
  • Slide 12
  • Lensing efficiency (Hu 1999) Equivalently: g i (z l ) = z l n i (z s ) D l D ls / D s dz s i.e. g is just the weighted D l D ls / D s
  • Slide 13
  • Can you sketch g 1 (z) and g 2 (z)? (Hu 1999) g i (z) = z s n i (z s ) D l D ls / D s dz s
  • Slide 14
  • Lensing efficiency for source plane?
  • Slide 15
  • Slide 16
  • (Hu 1999)
  • Slide 17
  • Sensitivity in each z bin
  • Slide 18
  • NOT
  • Slide 19
  • (Hu 1999) Why is g for bin 2 higher? A. More structure along line of sight B. Distances are larger g i (z d ) = z s 1 n i (z s ) D d D ds / D s dz s
  • Slide 20
  • Slide 21
  • * *
  • Slide 22
  • Lensing power spectrum (Hu 1999)
  • Slide 23
  • Lensing power spectrum Equivalently: P ii (l) = g i (z l ) 2 P(l/D l,z) dD l /D l 2 i.e. matter power spectrum at each z, weighted by square of lensing efficiency (Hu 1999)
  • Slide 24
  • Slide 25
  • Measurement uncertainties 1/2 = rms shear (intrinsic + photon noise) n i = number of galaxies per steradian in bin i (Hu 1999) Cosmic Variance Observational noise
  • Slide 26
  • (Hu 1999)
  • Slide 27
  • Sensitivity in each z bin
  • Slide 28
  • NOT
  • Slide 29
  • (Hu 1999)
  • Slide 30
  • Dependence on cosmology Refregier et al SNAP3 ?? A. m = 0.35 w=-1 B. m = 0.30 w=-0.7
  • Slide 31
  • Approximate dependence Increase 8 A. P B. P Increase z s A. P B. P Increase m A. P B. P Increase DE ( K =0) A. P B. P Increase w A. P B. P Huterer et al
  • Slide 32
  • Effect of increasing w on P Distance to z A. Decreases B. Increases
  • Slide 33
  • Perlmutter et al.1998 Fainter Further away Decelerating Accelerating m =1, no DE m =1, DE =0) == ( m = 0.3, DE = 0.7, w DE =0)
  • Slide 34
  • Perlmutter et al.1998 EdS OR w=0 w=-1 Fainter, further Brighter, closer
  • Slide 35
  • Effect of increasing w on P Distance to z A. Decreases B. Increases When decrease distance, lensing effect decreases Dark energy dominates A. Earlier B. Later
  • Slide 36
  • Slide 37
  • Slide 38
  • Effect of increasing w on P Distance to z A. Decreases B. Increases When decrease distance, lensing decreases Dark energy dominates A. Earlier B. Later Growth of structure A. Suppressed B. Increased Lensing A. Increases B. Decreases Net effects: Partial cancellation decreased sensitivity Distance wins
  • Slide 39
  • Approximate dependence Increase 8 A. P B. P Increase z s A. P B. P Increase m A. P B. P Increase DE ( K =0) A. P B. P Increase w A. P B. P Huterer et al
  • Slide 40
  • Approximate dependence Increase 8 A. P B. P Increase z s A. P B. P Increase m A. P B. P Increase DE ( K =0) A. P B. P Increase w A. P B. P Huterer et al Note modulus
  • Slide 41
  • Which is more important? Distance or growth? Simpson & Bridle
  • Slide 42
  • Dependence on cosmology Refregier et al SNAP3 ?? A. m = 0.35 w=-1 B. m = 0.30 w=-0.7
  • Slide 43
  • (Hu 1999)
  • Slide 44
  • See Heavens astro-ph/0304151 for full 3D treatment (~infinite # bins)
  • Slide 45
  • (Hu 1999)
  • Slide 46
  • Parameter estimation for z~2 (Hu 1999)
  • Slide 47
  • Predict the direction of degeneracy in w versus m plane
  • Slide 48
  • Refregier et al SNAP3
  • Slide 49
  • (Hu 1999)
  • Slide 50
  • Takada & Jain
  • Slide 51
  • (Hu 1999)
  • Slide 52
  • Covariance matrix P 12 is correlated with P 11 and P 22 (ignoring trispectrum contributions) Takada & Jain
  • Slide 53
  • Slide 54
  • How many redshift bins to use? Ma, Hu & Huterer 5 is enough Modified from
  • Slide 55
  • Higher order statistics
  • Slide 56
  • Takada & Jain
  • Slide 57
  • Slide 58
  • Geometric information Jain & Taylor; Kitching et al. Slide stolen from Tom Kitching www.astro.dur.ac.uk/Cosmology/SISCO/edin_talks/Kitching.PPT
  • Slide 59
  • Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt
  • Slide 60
  • Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt
  • Slide 61
  • Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt
  • Slide 62
  • Slide stolen from presentation by Andy Taylor www.shef.ac.uk/physics/idm2004/talks/monday/originals/taylor_andy.ppt
  • Slide 63
  • Some additional tomographic methods Cross-correlation cosmography Bernstein & Jain astro-ph/0309332 Galaxy-lensing cross correlation Hu & Jain astro-ph/0312395 Reconstruction of distance and growth Song; Knox & Song