Wcdma Ws11

download Wcdma Ws11

of 36

Transcript of Wcdma Ws11

  • 7/30/2019 Wcdma Ws11

    1/36

    W-CDMA for UMTS Principles

    Introduction

    CDMA Background/ History

    Key Parameters

    Code Division Multiple Access (CDMA)

    Why CDMA ?

    CDMA Principles / Spreading Codes Multi-path Radio Channel and Rake Receiver

    Problems to Solve

    Macro Diversity and Soft Handover

    Near-Far Problem and Power Control

    UMTS General Requirements

    FDD vs. TDD Spectrum Allocation

  • 7/30/2019 Wcdma Ws11

    2/36

    UMTS Networks 2Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    References

    H. Holma, A. Toskala (Ed.), WCDMA for UMTS, 5th edition, Wiley, 2010.

    T. Benkner, C. Stepping, UMTS Universal Mobile Telecommunications System,

    J. Schlembach Fachverlag, 2002.A.J. Viterbi, CDMA, Principles of Spread Spectrum Communication, Addison-

    Wesley, 1995.

    R.L. Peterson, R.E. Ziemer, D.E. Borth, Introduction to Spread Spectrum

    Communications, Prencice-Hall, 1995.

    T. Ojanper, R. Prasad, Wideband CDMA for Third Generation Mobile

    Communication, Artech House, 1998.

    R. Prasad, W. Mohr, W. Konhuser, Third Generation Mobile Communications

    Systems, Artech House, March 2000.

  • 7/30/2019 Wcdma Ws11

    3/36

    UMTS Networks 3Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    CDMA History

    Pioneer Era (Spread Spectrum)

    40s and 50s: Spread Spectrum technique for military anti-jam applications

    1949: Claude Shannon and Robert Pierce develop basic ideas of CDMA

    1970s: Several developments for military systems (e.g. GPS)

    Narrow-band CDMA Era

    1993: IS-95 standard (mainly driven by Qualcomm)

    19921995: RACE project CODIT (UMTS Code Division Testbed, PKI, Ericsson, Telia, etc.)

    Wide-band CDMA Era

    19951999: ACTS project FRAMES: FMA Mode 1 (TD/CDMA), FMA Mode 2 (W-CDMA)

    1995: cdma2000 1x/ 3x (USA)

    1998: UMTS (Rel.-99): FDD and TDD mode

    1999: Harmonization: W-CDMA, TD-CDMA and multi-carrier CDMA (chip rate: 3.84 Mchip/sec)

    1999: Narrowband TDD mode (TD-SCDMA), chip rate: 1.28 Mchip/sec

    High-Speed CDMA Era

    since 2000: HSDPA (Rel.-5/ 2000), E-DCH (Rel.-6/ 2002), HSPA+ (Rel.-7/ 2005)

    cdma2000 1x EV-DO/DV

  • 7/30/2019 Wcdma Ws11

    4/36

  • 7/30/2019 Wcdma Ws11

    5/36

    UMTS Networks 5Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    CDMA Key Characteristics

    Based upon spread spectrum technique developed for military anti-jam

    applications

    Wide bandwidth needed to support high bit rates and to combat fading in

    multi-path radio channels

    Many users share the same RF carrier

    Each user is assigned a unique random code different to and approximately

    orthogonal to other codes

    Interference limited systems; quality degrades as number of users on achannel (carrier) increases

    Spreading codes keep channels apart such that the same carrier can be used

    in the next cell (frequency re-use is 1)

  • 7/30/2019 Wcdma Ws11

    6/36

    UMTS Networks 6Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    CDMA Multiple Access

    CDMA (Code Division Multiple Access)

    all terminals send on the same frequency probably at the same time andcan use the whole bandwidth of the transmission channel

    each sender has a unique random number (spreading sequence), thesender XORs the signal with this random number

    the receiver can tune into this signal if it knows the pseudo randomnumber, tuning is done via a correlation function

    Advantages: all terminals can use the same frequency, less planning needed

    huge code space (e.g. 232) compared to frequency space

    interference (e.g. white noise) is not coded

    forward error correction and encryption can be easily integrated

    Disadvantages: higher complexity of a receiver (receiver cannot just listen into the medium

    and start receiving if there is a signal)

    all signals should have the same strength at a receiver (power control)

  • 7/30/2019 Wcdma Ws11

    7/36

    UMTS Networks 7Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Spread Spectrum Technology

    Problem of radio transmission: frequency dependent fading can wipe out narrowband signals for duration of the interference

    Solution: spread the narrow band signal into a broad band signal using a specialcode

    protection against narrow band interference

    Side effects:

    coexistence of several signals without dynamic coordination

    tap-proof

    Alternatives:

    Direct Sequence(UMTS)

    Frequency Hopping (slow FH: GSM, fast FH: Bluetooth)

    detection atreceiver

    interferencespreadsignal

    signal (despreaded)

    spread

    interference

    f f

    power power

  • 7/30/2019 Wcdma Ws11

    8/36

    UMTS Networks 8Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Spreading and Frequency Selective Fading

    FDMA: Relatively small bandwidth on

    each channel Guard bands to avoid interference

    between the users

    Channels maybe (temporary)unavailable due to channelselective fading

    CDMA: relatively large bandwidth ofthe spread signal

    Frequency selective fading causesonly some reduction in the level ofthe received signal

    Users are separated by thespreading sequence

    22

    22

    2

    frequency

    channelquality

    1

    spreadsignals

    frequency

    channelquality

    1 2

    3

    4

    5 6

    small bandwidth guard band

  • 7/30/2019 Wcdma Ws11

    9/36

    UMTS Networks 9Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    DSSS (Direct Sequence Spread Spectrum) I

    XOR of the signal with pseudo-random

    number (code sequence) Many chips per bit (e.g., 128)

    result in higher bandwidth of thesignal

    Spreading factor SF: ratio betweenchip rate RC and data rate Rb

    RC = Rb SF

    tb = tC SF

    Processing Gain

    GS = 10 log10(SF)

    user data

    code

    sequence

    resultingsignal

    0 1

    0 1 1 0 1 0 1 01 0 0 1 11

    XOR

    0 1 1 0 0 1 0 11 0 1 0 01

    =

    tb

    tc

    tb: bit duration

    tc: chip duration

    (data rate)

    (chip rate)

    (chip rate)

  • 7/30/2019 Wcdma Ws11

    10/36

    UMTS Networks 10Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    DSSS (Direct Sequence Spread Spectrum) II

    X

    user data

    codesequence

    modulator

    radiocarrier

    spread

    spectrumsignal

    transmitsignal

    transmitter

    demodulator

    receivedsignal

    radio

    carrier

    X

    code

    sequence

    basebandsignal

    receiver

    integrator

    products

    decision

    data

    sums

    correlator

  • 7/30/2019 Wcdma Ws11

    11/36

    UMTS Networks 11Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    CDMA Principle (Downlink)

    Code 0

    Code 1

    Code 2

    data 0

    data 1

    data 2

    Code 0

    Code 1

    Code 2

    data 0

    data 1

    data 2

    sender (base station) receiver (terminal)

    Transmission over

    air interface

  • 7/30/2019 Wcdma Ws11

    12/36

    UMTS Networks 12Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    CDMA Principle (Uplink)

    Code 0

    Code 1

    Code 2

    data 0

    data 1

    data 2

    Code 0

    Code 1

    Code 2

    data 0

    data 1

    data 2

    sender (terminal) receiver (base station)

    transmission over

    air interface

  • 7/30/2019 Wcdma Ws11

    13/36

    UMTS Networks 13Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    UMTS Spreading

    Constant chip-rate of 3.84 Mchip/s (FDD)

    Variable data rates are realized by different spreading factors of the

    orthogonal channelization codes Higher data rates: less chips per bit (and vice-versa)

    Senders are separated by unique, quasi-orthogonal scrambling codes

    Simple code management: each station can reuse the same orthogonalchannelization codes

    No need for precise synchronization as the scrambling codes remainquasi-orthogonal

    data1 data2 data3

    scramblingcode1

    chan.code3

    chan.code2

    chan.code1

    data4 data5

    chan.code4

    chan.code1

    sender1 sender2

    scramblingcode2

  • 7/30/2019 Wcdma Ws11

    14/36

    UMTS Networks 14Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Functionality of Channelization and Scrambling Codes

    Channelization Code Scrambling Code

    Usage UL: Separation of physical data(DPDCH) and control channels(DPCCH) from same terminal

    DL: Separation of DL connectionsto different users within one cell

    UL: Separation of terminals

    DL: Separation of sectors/cells

    Length 4 256 chips (1.0 66.7 us) UL+DL: 10ms = 38400 chipsNumber of codes Number of codes under 1

    scrambling code = spreadingfactor (SF)

    UL: several millions

    DL: 256

    Code Family Orthogonal Variable SpreadingFactor

    Long 10 ms code: Gold code

    Spreading Yes, increases transmissionbandwidth

    No, does not affect transmissionbandwidth

  • 7/30/2019 Wcdma Ws11

    15/36

    UMTS Networks 15Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    OVSF-Coding Tree

    1

    1,1

    1,-1

    1,1,1,1

    1,1,-1,-1

    X

    X,X

    X,-X1,-1,1,-1

    1,-1,-1,1

    1,-1,-1,1,1,-1,-1,1

    1,-1,-1,1,-1,1,1,-1

    1,-1,1,-1,1,-1,1,-1

    1,-1,1,-1,-1,1,-1,1

    1,1,-1,-1,1,1,-1,-1

    1,1,-1,-1,-1,-1,1,1

    1,1,1,1,1,1,1,1

    1,1,1,1,-1,-1,-1,-1

    SF=1 SF=2 SF=4 SF=8

    SF=n SF=2n

    ...

    ...

    ...

    ...

    In UMTS, spreading factors (SF) from 4 512 (DL) / 4 256 (UL) are used:

    4 x SF4, 8 x SF8 256 x SF256, 512 x SF512

  • 7/30/2019 Wcdma Ws11

    16/36

    UMTS Networks 16Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Downlink Dedicated Channel Symbol and Bit Rates

    Spreadingfactor Channelsymbol rate(kbps)

    Channel bitrate (kbps) DPDCHchannel bitrate range

    (kbps)

    Maximum userdata rate with1/2-rate coding

    (approx.)

    512 7.5 15 3-6 1-3 kbps

    256 15 30 12-24 6-12 kbps

    ...

    16 240 480 432 215 kbps

    8 480 960 912 456 kbps

    4 960 1920 1872 936 kbps

    4, with 3parallelcodes

    2880 5760 5616 2.3 Mbps

  • 7/30/2019 Wcdma Ws11

    17/36

    UMTS Networks 17Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    CDMA in Theory

    Sender A

    sends Ad = 1, code sequence Ac = 1010011 (assign: 0= 1, 1= +1)

    sending signal As = Ad Ac = (+1, 1, +1, 1, 1, +1, +1) Sender B

    sends Bd = 0, code sequence Bc = 0110101

    sending signal Bs = Bd Bc = (+1, 1, 1, +1, 1, +1, 1)

    Both signals superimpose in space

    interference neglected (noise etc.)

    As + Bs = (+2, 2, 0, 0, 2, +2, 0)

    Receiver wants to receive signal from sender A

    apply sequence AC chipwise (inner product)

    Ar = (+2, 2, 0, 0, 2, +2, 0) Ac = 2 + 2 + 0 + 0 + 2 + 2 + 0 = 8

    result greater than 0, therefore, original bit was 1

    receiving B

    Be = (+2, 2, 0, 0, 2, +2, 0) Bc = 2 2 + 0 + 0 2 2 + 0 = 8, i.e. 0

    wrong sequence CC = 1100110

    Cr = (+2, 2, 0, 0, 2, +2, 0) Cc = 0, decision impossible

  • 7/30/2019 Wcdma Ws11

    18/36

    UMTS Networks 18Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    CDMA on signal level I

    data A

    key A

    signal A

    data key

    keysequence A

    Real systems use much longer keys resulting in a larger distancebetween single code words in code space

    1 0 1

    10 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1

    01 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0

    Ad

    Ak

    As

  • 7/30/2019 Wcdma Ws11

    19/36

    UMTS Networks 19Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    CDMA on signal level II

    signal A

    data B

    key B

    key

    sequence B

    signal B

    As + Bs

    data key

    1 0 0

    00 0 1 1 0 1 0 1 0 0 0 0 1 0 1 1 1

    11 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1

    Bd

    Bk

    Bs

    As

    1

    0

    -1

  • 7/30/2019 Wcdma Ws11

    20/36

    UMTS Networks 20Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    CDMA on signal level III

    Ak

    (As + Bs)* Ak

    integrator

    outputcomparator

    output

    As + Bs

    data A

    1 0 1

    1 0 1 Ad

    1

    0

    -1

    1

    -1

    1

    0

    -1

  • 7/30/2019 Wcdma Ws11

    21/36

    UMTS Networks 21Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    CDMA on signal level IV

    integrator

    outputcomparator

    output

    Bk

    (As + Bs)* Bk

    As + Bs

    data B

    1 0 0

    1 0 0 Bd

    1

    0

    -1

    1

    -11

    0

    -1

  • 7/30/2019 Wcdma Ws11

    22/36

    UMTS Networks 22Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    comparator

    output

    CDMA on signal level V

    wrongkey K

    integratoroutput

    (As + Bs)

    * K

    As + Bs

    (0) (0) ?

    Assumptions orthogonality of keys neglectance of noise no differences in signal level => precise power control

    1

    0

    -1

    1

    -1

    1

    0-1

  • 7/30/2019 Wcdma Ws11

    23/36

    UMTS Networks 23Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Properties of Spreading Sequences

    Cross correlation function (CCF)

    Auto correlationfunction (ACF)

    Code sequence #1

    Code sequence #2

    Required properties of spreading

    (properties of the transmitted signals):

    High ACF peak

    Low ACF sidelobe

    inter-symbol interference (ISI)

    Low CCF

    multi-user interference (MUI)

  • 7/30/2019 Wcdma Ws11

    24/36

    UMTS Networks 24Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Multi-path Transmission

    Multi-path components can be resolved due to ACF of codes

    Spreader

    Spreading

    Sequence c(t)

    Despreader

    (Correlator)

    Spreading

    Sequence c(t-Td)

    Receiversynchronizes toeach multi-pathcomponent forde-spreading

  • 7/30/2019 Wcdma Ws11

    25/36

    UMTS Networks 25Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    RAKE Receiver

    Correlate and track each multi-path component separately

    Optimal coherent combining

    RAKE receiver with K fingers

    trackers: independent tracking

    of dominant paths

    searchers: scan a time window to

    search (the pilot channel) for

    dominant multi-path components

    time resolution in UMTS approx.

    200 ns

  • 7/30/2019 Wcdma Ws11

    26/36

    UMTS Networks 26Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    RAKE Receiver Practical Realization

  • 7/30/2019 Wcdma Ws11

    27/36

    UMTS Networks 27Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Macro-Diversity & Soft Handover

    Optimal coherent combiningin the RAKE receiver (at MS)

    NodeB 1NodeB 2

    UE

  • 7/30/2019 Wcdma Ws11

    28/36

    UMTS Networks 28Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Multi-user CDMA

    Conventional CDMA Receiver (Base Station):

    Despreader

    (Correlator)

    Spreading

    Sequence c2(t-Td2)

    coherent (amplitude and phase) RF

    demodulation at base station

    separate despreading and demodulation of

    each signal at base station

    one Rake receiver with K fingers per user

    unsynchronized transmission between the

    mobiles

    Spreading

    Sequence c1(t-Td1)

    Spreading

    Sequence cn(t-Tdn)

  • 7/30/2019 Wcdma Ws11

    29/36

    UMTS Networks 29Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Near-Far Problem: Spreading sequences are not orthogonal

    (multi-user interference) Near mobile dominate Signal to interference ratio is lower for far

    mobiles and performance degrades

    The problem can be resolved throughdynamic power control to equalize allreceived power levels

    AND/OR

    By means of joint multi-user detection

    Near-Far Problem Power Control

    NodeB

    UE 1

    UE 2

  • 7/30/2019 Wcdma Ws11

    30/36

    UMTS Networks 30Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Interference Cancellation

    Multi-user Interference Cancellation (Joint Detection):

    Matched Filter toSequence c1(t)

    Detection mechanism takesinto account interference

    from other users as all signalsare known in the receiver(known interference can becanceled)

    Matched Filter toSequence c2(t)

    Matched Filter toSequence cn(t)

    MF1

    MF2

    MFn

    Multi-userDetector

    (JointDetection

    InterferenceCancellation)

  • 7/30/2019 Wcdma Ws11

    31/36

    UMTS Networks 31Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Interference Cancellation Realization

    Subtractive interference cancellation

  • 7/30/2019 Wcdma Ws11

    32/36

    UMTS Networks 32Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    FDD vs. TDD Mode

    UMTS supports FDD and TDD

    FDD mode: Multiple access scheme: DS-CDMA (Direct Sequence-CDMA)

    Symmetric capacity of up- and down-link

    Better suited for low bit rate transmission in larger cells(no timing advance, no synchronization from MS required)

    TDD mode: Multiple access scheme: TD-CDMA (JD-CDMA)

    Asymmetric capacity allocation for up- and down-link

    Strict synchronization required for MS (timing advance)

    Relaxed power control and near-far resistance by the use of intra-cellmulti-user interference cancellation (spreading factor 1 - 16)

  • 7/30/2019 Wcdma Ws11

    33/36

    UMTS Networks 33Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    FDD vs. TDD Mode (contd.)

    TDD-Mode

    FDD-Mode(one direction)

  • 7/30/2019 Wcdma Ws11

    34/36

    UMTS Networks 34Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    TDD Mode Switching

    1 Frame (10ms) of 15 Slots

    multiple switching points, symmetric DL/UL allocation

    multiple switching points, asymmetric DL/UL allocation

    single switching point, symmetric DL/UL allocation

    single switching point, asymmetric DL / UL allocation

  • 7/30/2019 Wcdma Ws11

    35/36

    UMTS Networks 35Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    Global Spectrum Allocations for IMT-2000

    ITU2010 20251980

    MSS MSS*

    1930

    IMT-2000MSSMSS*

    IMT-2000

    2160 2170 2200 MHz

    *Region2

    1885 2110

    PHS

    20101980 2025

    Japan

    2110 22002170

    IMT-2000MSSMSSIMT-2000

    18951885 1918.1 MHz

    1980 2110 22002170

    IMT-2000MSS

    19001880

    DECT

    2010

    MSSIMT-2000

    2025 MHz

    Europe

    2110 220021652150

    Reserve MSSBroadcast Auxilary

    1910 1930 1990 2025

    MSS

    1850

    PCS*PCS

    A B CD E F

    PCS

    A B CD E F

    MHz

    USA

    20101980 2025

    China

    2110 22002170

    MSSMSS

    1900 1920 MHz1865 1880 1945 1960

    CDMA FDD-WLL

    FDD-WLLCDMA

    TDD-WLL

    MSS: Mobile Satellite Services

  • 7/30/2019 Wcdma Ws11

    36/36

    UMTS Networks 36Andreas Mitschele-Thiel, Jens Mueckenheim Nov. 2011

    UMTS Spectrum

    22

    00MHz

    20

    00MHz

    21

    00MHz

    19

    00MHz

    Unpaired Band: 20 + 15MHz (1900-1920 and 2010-2025MHz) for TDD

    Paired Band: 2 x 60MHz (1920-1980 and 2110-2170MHz) for FDD

    Up-link Down-link

    Satellite Band: 2 x 30MHz (1980-2010 and 2170-2200MHz)

    1 2 3 11 12. . .

    1920 MHz 1980 MHz

    1 2 3 11 12. . .

    2110 MHz 2170 MHz

    5 MHz

    Uplink Downlink

    Details: