WCDMA HSDPA Principals and Resources

32
WCDMA RAN functionalities and parameters

description

HSDPA principle

Transcript of WCDMA HSDPA Principals and Resources

Page 1: WCDMA HSDPA Principals and Resources

WCDMA RANfunctionalities and

parameters

Page 2: WCDMA HSDPA Principals and Resources

1. WCDMA Idle Mode Behaviour

2. WCDMA Radio Connection Handling

3. WCDMA Power Control

4. WCDMA Capacity Management

5. WCDMA Handover

6. WCDMA Channel Switching

7. WCDMA HSDPA

7. WCDMA HSDPA

8. WCDMA HSUPA

Page 3: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

Agenda7. WCDMA HSDPA

› Basic Principles

› Channels Structure

› HSDPA Resources Allocation

› RBS Power: R99 & HSDPA

› Power Control Concepts

› HSDPA Available Power

› HSDPA Power Usage

› Spreading Factor and Maximum Rate

› HSDPA Code Allocation

› HSDPA Code Sharing

› HSDPA Main Algorithms

› HSDPA Protocol

› HSDPA Flow Control

› HSDPA Scheduler

› Queue Selection

› Transport Format Selection

› Channel Quality Indicator

› Hybrid ARQ

Page 4: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSDPA Basic Principles

Shared Channel TransmissionDynamically shared in time & code domain

Higher-order Modulation16QAM in complement to QPSK for higher peak bit rates

2 ms Short Transmission Time Interval (2 ms)

Reduced round trip delay

Fast Hybrid ARQ with Soft CombiningReduced round trip delay

Fast Radio Channel Dependent SchedulingScheduling of users on 2 ms time basis

Fast Link AdaptationData rate adapted to radio conditions on 2 ms time basis

Power UtilizationUses transmitter remaining power from R99 channels

Dedicated channels (power controlled)

Common channels

Power usage with dedicated channels t

Unused power

Power

HS-DSCH with dynamic power allocation t

Dedicated channels (power controlled)

Common channels

HS-DSCH (rate controlled)

To

tal

cell

po

wer

Power

t

Dedicated channels (power controlled)

Common channels

HS-DSCH (rate controlled)

To

tal

cell

po

wer

Dedicated channels (power controlled)

Common channels

HS-DSCH (rate controlled)

To

tal

cell

po

wer

To

tal

cell

po

wer

Power

To

tal

cell

po

wer

To

tal

cell

po

wer

3GPP Release 99 3GPP Release 5

Page 5: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSDPA Channel Structure

RNC RNCIur

Iub Iub

Iu Iu

HS-DSCH

HS-SCCHHS-DPCCH

Iub

– Control the power11

– Decide which mobile and how much to transmit to it (Scheduling)2

2

– RRM policy3

3

› HSDPA introduces 3 new Physical channels:- HS-PDSCH (High Speed Physical Downlink Shared

Channel): The transport channel HS-DSCH is mapped on one or several HS-PDSCHs which are simultaneously received by the UE.

- HS-SCCH (High-Speed Shared Control Channel): carries control information from the MAC-hs in the RBS to the scheduled UE. (UE identity, hybrid-ARQ-info, and HS-DSCH TFRC selection parameters.

- HS-DPCCH (High-Speed Dedicated Physical Control Channel): UE uses this UL channel to request retransmissions on the HS-DSCH and to report the measured downlink channel quality to the RBS (CQI).

Associated Dedicated Channels

DPCH

DPCCH, DPDCH

Page 6: WCDMA HSDPA Principals and Resources

HSDPA Resources Allocation

Shared with R99 traffic

Page 7: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

Dedicated channels (power controlled)

Common channels

Power usage with dedicated channels t

Unused power

Power

HS-DSCH with dynamic power allocation t

Dedicated channels (power controlled)

Common channels

HS-DSCH (rate controlled)

To

tal

ce

ll p

ow

er

Power

t

Dedicated channels (power controlled)

Common channels

HS-DSCH (rate controlled)

To

tal

ce

ll p

ow

er

Dedicated channels (power controlled)

Common channels

HS-DSCH (rate controlled)

To

tal

ce

ll p

ow

erT

ota

l c

ell

po

wer

Power

To

tal

ce

ll p

ow

erT

ota

l c

ell

po

wer

3GPP Release 99 3GPP Release 5

› The RBS power available for HSDPA is determined dynamically, depending on the R99 power utilization:

– P HS = P max - P non-HS - hsPowerMargin [dB]

P non-HS is the total transmitted carrier power of all codes not used for HS-PDSCH, HS-SCCH, E-HICH, E-RGCH and E-AGCH transmission, i.e. the total power of all dedicated and common channels (measured by RBS every TTI)

hsPowerMargin is used to give some headroom in total carrier power for different purposes e.g. to avoid the Mean Power limiter effects or power instability problem.

RBS power for R99 & HSPA

maximumTransmissionPower

hsPowerMargin

Baseline Value

2 (0.2 dB)

Page 8: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

R99 Power control Concept

› The main idea of the UMTS/R99 is to guarantee a level of QoS (rate, BLER etc) despite the condition of the channel.

› To do this, the power for a specific mobile is adjusted in order to react to the channel condition and match the requirements.

› The coding, the modulation and the interleaving is decided independently by the radio quality.

RequiredBit Rate

RequiredBLER, SIRCoding

Channel variation

Adapted Power

Page 9: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSDPA Power Control Concept

› The main idea of the HSDPA is to use the resources remained by the DCH usage and by these as much as possible from the current state of the radio channel

› To do this, the power for a specific mobile is given and the coding, the modulation etc is decided in order to obtain the maximum performance for the specific radio condition (per TTI)

CalculatedRemainingPower

Channel variation

Adapted CodingModulationDCH traffic variation

Throughput

Page 10: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSDPA AVAILABLE power

› The main idea is that the channel can use all the power not used by other DCH.

Common Channels

Pmax

hsPowerMargin

Power

HS-ChannelNote that there is a threshold for DCH Adm. control

Note that this include both HS-PDSCH and HS-SCCHNote that there are even the A-DCH Dedicated Channels

Page 11: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSDPA power USAGE

› Once obtained the power available for the HS channels, first the power for HS-SCCH is calculated.– There are two possibilites to set HS-SCCH Power setting:

1. HS-SCCH power is fixed. The parameter hsScchMaxCodePower is configured relative to the CPICH power, primaryCpichPower (like other common channels)

- It is important to set a value for this parameter by considering the trade-off between giving more power to HS-DSCH (payload) and making HS-SCCH robust enough to be able guarantee a high success rate of decoding this channel.

2. HSDPA Code Multiplexing is used (optional feature) and power control is used for the HS-SCCH

- Field trials have shown that HSDPA throughput performance is better when increasing the maximum allowed code power for HS-SCCH by 1dB from default setting. This is done by setting the parameter hsScchMaxCodePower equal to -10 (-1 dB)

Note: Power control of the HS-SCCH is not specified in 3GPP.

› Finally, the total power available for the HS-PDSCH is estimated as:– P_HS-PDSCH = P_HS – P_HS-SCCH [dB],

Page 12: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

› In WCDMA, information is spread over approximately 5 MHz. This bandwidth is able to carry 3.84 Mchips/s. Thus there is a direct relationship between Spreading Factor and maximum bit rate.

Spreading Factor and Max. Rate

HSDPAEUL

De

crease S

F

Incr

ea

se U

ser

Ra

te

Incr

ea

se P

ow

er

Usa

ge

UL & DL User Rates (QPSK)

Page 13: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

Hsdpa code allocation

WCDMA Intro

SF=16

SF=8

SF=4

SF=2

SF=1Channelization Codes statically allocated for HS-DSCH transmission

(numHsPdschCodes)

R99 traffic

Dynamic Code Allocation (dynamicHsPdschCodeAdditionOn)

maxNumHsPdschCodes

R99 traffic growth

Dynamic Code Allocation› R99 traffic has priority over HSDPA on the SF16 codes not statically

allocated for HSDPA› Then there is a the trade-off between allocating dedicated resources

(SF 16 codes) for HSDPA in order to allow a higher cell peak throughput and R99 blocking probability.

Page 14: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSDPA Code Sharing

User #1 User #2 User #3 User #4 time

TTI=2ms

HSPA Code Multiplexing

(flexibleSchedulerOn; numHsScchCodes)

HSDPA RBS Scheduler

SF=16

SF=8

SF=4

SF=2

SF=1

Codes Allocated for HSDPA

› Codes Allocated for HSDPA will be dynamically shared between HSDPA Cell users on a 2 ms. basis getting a better code resource utilization than for R99

Page 15: WCDMA HSDPA Principals and Resources

HSDPA Main Algorithms

Page 16: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

› Downlink user plane data is mapped to a RB to be transmitted on the HS-DSCH. Then RB is then processed by the RLC and MAC-d layer 2 protocols in the RNC

› The resulting MAC-d PDUs are transmitted over Iub to the RBS using the HS-DSCH frame protocol

› MAC-d PDUs are buffered in Priority Queues (PQ)s in the RBS while waiting to be transmitted over the air interface

› The HSDPA Scheduler function selects, in each TTI, the users to which the HS-DSCH is transmitted

› The user data to transmit on the HS-DSCH is put into one of several HARQ processes in the MAC-hs HARQ protocol

› The amount of data to transmit is determined by the TFRC selection algorithm.

› Following processing at layer 1 the data is transmitted to the UE over the air interface.

HSDPA Protocol Stacks

HSDPA Flow Control handles fairness among flows, when TN is a bottleneck

When air-interface (Uu) becomes bottleneck, the HSDPA Scheduler handles fairness, using different scheduling policies

but HSDPA Flow Control needs to adapt the HS bit rate in order to keep the PQs appropriately filled

Page 17: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

RLC SDU

8*40=320 bits

RLC SDU

RLC_h

MAC-hs PayloadMAC_hs h

RLC PDU

L2 - RLC

L2 – MAC_d

RNC

RBS

MAC_d PDU

MAC_d PDU = MAC_hs SDU

n*320 bit Blocks

L2 – MAC_hs

21 bits

L1

Transport Block (MAC-hs PDU, HARQ data block)

CRCTransport Block

mapped onto HS-PDSCH’s

MACd_h MAC_s SDU

MAC_s SDU = RLC + MAC header 16 bits

16 bits

PayloadTCP/IP Header

1460 bytes40 bytes

HSDPA Protocol transfer

Page 18: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSDPA Flow Control Overview

GGSN/SGSN

RBS

UE

TCP (ARQ)

TCP server

TCP application

SRNC

Iub

Transport Network

Network

Iub Flow Control Priority Queues FC

Scheduler

MAC-hs HARQ

Iub Flow Control RLC / HS MAC-d MAC-d PQ Flows

Uu

Iu-PS

Transport Network

PDRs (dispatschers)

SDU buffers

Iub Flow Control Data Frames Capacity Allocation User Buffer Size

RLC (AM) / MAC-d (ARQ)

MAC-hs Hybrid ARQ 2 ms TTI

MAC-hs HARQ

HS MAC-d /RLC

RNC Parameter→flowControl: Specifies if Flow Control is activated for this SPI value

RBS Parameter→schHsFlowControlOnOff: Flow control status for each SPI value

Page 19: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSDPA FC Main Algorithms

› There is a transfer function which gives pqtCoeff as a function of PQT, specifying when to boost, how much (pqtCoeff>100%) plus when and how much to reduce the CA bitrate (pqtCoeff<100%).

› The pqtCoeff transfer function boosts with max 180% at PQT=0, which gradually goes down to no boosting at PQT = 80 ms. An air-interface congestion is detected (pqtCoeff <100%) when PQT is higher than 120 ms, where the bitrate reduction gradually increases from 0 to 50%. The bitrate reduction is 50% when PQT is 320 ms or longer.

Air-interface congestionAir-interface congestion

› The per-flow Flow Control solution has similarities with how TCP works, having a Slow Start procedure which seeks the maximum bit rate over TN and a Congestion Avoidance state where the bit rate is maintained to be as high as possible while keeping good fairness. However, TCP flow control is window based and HSDPA flow control is Rate based.

› In addition there is an Inactive state which is used before the HS flow starts to send a lot of data. CAs are sent more often in the beginning of a connection, when being in state Inactive. The reason is inter-operation and cell-change performance reasons, that is to minimize transmission gaps between SRNC and RBS.

› Two types of Iub congestions are detected in the RBS: Hard Congestion and Soft Congestion. Hard Congestion causes a larger bit rate reduction (50%) than Soft Congestion (10%). Congestion detection is based on detecting four different congestion indications:

› Soft dynamic delay Congestion Detection (SCD)› Hard Dynamic Delay congestion Detection (DDD) › Destroyed Frame congestion Detection (DFD) › Frame Loss congestion Detection (FLD

Page 20: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSDPA Scheduler in RBSQueue Validation

Resource Estimation

Queue Selection

Transport Format Selection

Remaining Resources Check

L1 Processing

Allocated Power and Code

Num Codes,

Modulation

Power

CQI Report, UL QualityData in BufferMin TTI Interval

Impossible to select another UE

Possible to select another UE

Max HS-SCCH PowerAvail Power

Avail Codes

The available resource (code and power) are sequentially assigned to the selected user(s):

-at the beginning of scheduling procedure, all available codes and power resources are offered to the first selected user.

- next user can take only the remaining resources after transport format selection of first user (if there are still remaining resources)

Estimate the amount of power and codes available for HSDPA traffic

Check if it is possible to transmit data to a priority queue

Select which user the system shall transmit in the sub-frame

How Many Users?

How much power and Code?

Which UE to transmit?

What to transmit?

HS-SCCH

Power Control

Code Allocation

CQI Adjustment

Flow Control

peakUuRate

Page 21: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

› For each TTI, there are seven different scheduling factors available to the queue selection algorithm:– f (SchW): There is a scheduling weight factor for each scheduling priority class (from SPI).

The factor for each scheduling priority class is set by schWeight

– f (CQI): Reflects system throughput perspective by prioritizing the user in good radio condition. It considers the transport block size offered to the user by the system, disregarding the buffer fill level.

– f (delay): Control the fairness of scheduling form time resource allocation perspective taking into account the number of sub-frames the PQ is not selected by the scheduler (having data in queue).

– f (Max Delay): The Maximum delay factor reflects the maximum allowed delay in the buffer for a scheduling priority class. The maximum allowed delay is controlled by parameter schMaxDelay for each scheduling priority class.

– f (average rate): Control the fairness of scheduling by giving each user the same offered rate (transport block size offered to the user by the system (regardless buffer fill level)

– f (retransmission): Reflects retransmission delay perspective by prioritizing the user sent NACK

– f (air rate): Control the fairness of scheduling by giving each user the same rate over the air interface. It considers the actual transport block size (number of bits) transmitted. The average air data rate can be calculated using acknowledged data or transmitted data, this is configured by the parameter airRateTypeSelector

› In the queue selection algorithm, these seven factors are weighted and combined into a single value to indicate the priority of the PQ.

› The PQ with the highest priority is allocated the HS-DSCH resource in the TTI.

› How the factors are combined depends on the chosen queue selection algorithm

Validate QueuesWhich queue can

send

Estimate ResourcesAvailable power & code

Select QueueExecute algorithm

more resources ?

yes

no

Transport Format Selection

HSDPA Queue Selection FACTORS

Page 22: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSDPA Queue Selection algorithms

› For non-GBR service PQs it is possible to select between six different algorithms, if the optional feature Flexible Scheduler is enabled (flexibleSchedulerOn), using the queueSelectAlgorithm parameter:

› Maximum CQI (quality based)- S= f (SchW ) * f (CQI)* f (retransmission)

› Proportional fair (low/medium/high fairness)

- S= f (SchW ) * f (CQI) * f (average rate) * f (retransmission)

› Round-Robin (time based)- S= f (SchW ) * f (delay) * f (retransmission)

› Equal Rate (data transmitted)- S= f (SchW ) * f (air rate) * f (retransmission)

› For GBR service PQs the maximum delay algorithm is used. This algorithm prioritizes each PQ based on the waiting time of the oldest MAC-d PDU in the buffer

Validate QueuesWhich queue can

send

Estimate ResourcesAvailable power & code

Select QueueExecute algorithm

more resources ?

yes

no

Transport Format Selection

Page 23: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

Transport Format Selection› The purpose of the Transport Format Selection algorithm is to choose the

most suitable HS-DSCH transport format for a selected UE.› Depending on maximum number of HS-PDSCH codes and 16QAM

availability (Cell and UE), the RBS uses tables where quality requirements (RxQual) for all possible supported transport formats are specified

› RxQual: represents the estimated received signal quality in the UE. This variable is calculated using HS-PDSCH transmission power and ChQual

› ChQual: represents a measure of the channel quality on the air interface for the specific UE and is calculated using CQI adjusted and CPICH power

Example: Max HS-DPSCH codes=5, 16QAM , RLC-PDU Size= 336 bits

Validate QueuesWhich queue can

send

Estimate ResourcesAvailable power & code

Select QueueExecute algorithm

more resources ?

yes

no

Transport Format Selection

K= No of Mac-d PDUs

Max MAC-d user data rate

(27x320 bits)/2 ms.= 4.32 Mbps

Transport Format Indication› The UE can determine the Transport Block Size

selected by the RBS for transmission by combining the following information signaled on the HS-SCCH:

› Number of HS-PDSCH codes assigned to the UE on that TTI

› Modulation Scheme (QPSK or 16QAM) used for transmission

› Transport Format Resource Indicator (TFRI)

Page 24: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

CQI – Channel Quality Indicator

dBChQualPevableRxQualAchi

dBPCQIChQual

latestTXPDSCH

TXCPICHadjusted

__

_ )(

UELower layer

UEMAChs

SINR forP-CPICH

Node-BMAC-hs

True CQI

CQIadjusted

TBS, HS Codes and Mod. Scheme

assumedHSP _

TFRCselected

Look-uptable

Look-uptable

Terminal

Ack./Nack.

PHSDPA_TX is affected by:

• Non-HS power utilizations• Number of HS users

P-CPICH S/N is affected by:• Path loss• Interference (e.g., traffic)• Receiver Technique

Node-BLower layer

BS

CQI report estimates the number of bits that can be transmitted to the UE using a certain assumed HS-PDSCH power with a block error rate of 10%, and provides the RBS with a measure of the UE's perceived channel quality and the UE receiver performance.

1

1. UE assumes power of HS-PDSCH: PHS_assumed = PCPICH_RX + hsMeasurementPowerOffset + Δ 2. UE finds the CQI to meet 10% BLER according to assumed power in (1) and current Channel Quality

2

3

3. UE transmits CQI to RBS periodically by cqiFeedbackCycle

4

4. RBS gets Channel Quality by reported CQI from UE

5

5. RxQual Achievable is calculated based on known HS power allocation for the next frame

6

6. RBS decides the transport size, number of codes, modulation schemes from HS-DSCH Scheduler

• hsMeasurementPowerOffset (also called gamma):

– Sent to the UE and RBS via RRC and NBAP.

– Used to offset the CQI in order to utilize the whole CQI range.

• cqiAdjustmentOn

– Turns the CQI adjustment of the UE reported CQI on or off per cell.

– With cqiAdjustmentOn set to TRUE, the RBS processes the ACKs and NACKs received from the UE to determine if the UE is overestimating or underestimating the channel quality. The algorithm strives to achieve a block error rate of 10% for the initial transmissions.

Page 25: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

› HARQ Protocol works with target BLER of 10%

P1 1,1 P2 2,1 P3 3,1 P4 4,1 P5 5,1 P6 6,1 P1 1,2 P2 7,1 P3 8,1 P4 4,2

P1 1,1 P2 2,1 P3 3,1 P4 4,1 P5 5,1 P6 6,1 P1 1,1 P2 7,1 P3 8,1 P4 4,1

P1 1,2 P4 4,2

Px y,z HARQ Process #x, data packet #y, transmission #z

Failed Transmission

ACKs not shown in the figure

Soft Combining in UE

MAC-hs round-trip time = 12 ms

Receiver

Transmission

+ +

NAC

K

NAC

K

HARQ Process

Page 26: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

Hybrid ARQ Strategies– Chase Combining (CC):

› Every retransmission is simply a replica of the coded word employed for the first transmission.

› The decoder at the receiver combines these multiple copies of the transmitted packet weighted by the received SNR prior to decoding.

› Provides time diversity and soft combining gain.› Low complexity cost and less demanding UE memory requirements

– Incremental Redundancy (IR):› Each retransmission may add new redundancy.› Provides coding gain especially for high effective coding rates.› Imposes demanding requirements on the UE memory capabilities

Page 27: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

HSPA UE Categories

HSDPA EUL

Page 28: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

› For QPSK, max 5 codes            Transport Block Size Information (TFRI) value

Payload bits

number of MAC-d PDUs

MAC-d PDU size, bits

MAC-d PDU + MAC-hs header, bits

Transport block size, bits

Padding bits

QPSK 1 code

QPSK 2 codes

QPSK 3 codes

QPSK 4 codes

QPSK 5 codes

1x320 1 336 357 365 8 19        

2x320 2 336 693 699 6 47 8      

3x320 3 336 1029 1036 7   30 7    

4x320 4 336 1365 1380 15   46 23 7  

5x320 5 336 1701 1711 10     35 19 6

6x320 6 336 2037 2046 9   45 29 16

7x320 7 336 2373 2404 31   54 38 25

8x320 8 336 2709 2726 17     61 45 32

9x320 9 336 3045 3090 45       52  

9x320 9 336 3045 3145 100         40

10x320 10 336 3381 3440 59       58 45

11x320 11 336 3717 3830 113         51

12x320 12 336 4053 4115 62         55

13x320 13 336 4389 4420 31         59

Transport Block size

Page 29: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

WCDMA Transmitter QPSK (DL)Single Transport Block of dynamic size from MAC-hs (Pre-coded data

(bits))

Pulse Shaping

Filter

Pulse Shaping

FilterRF Out

Pulse

Shaping Filter

Pulse Shaping

Filter

I/Q Modulator

I/Q Modulator

I

Q

Symbol rate 240ksymb/s Chip rate

3.84Mchip/sModulation

Symbols

I

Q

Data rate

480kbit/s

CRC Coding, Turbo Coding 1/3, Interleaving, Rate Matching

CRC Coding, Turbo Coding 1/3, Interleaving, Rate Matching

Data Channel

1

Channelization Code 1- SF16

I

Q

Modulation Mapping 1:2

Modulation Mapping 1:2

I

Q

scrambling Code 1

Q

I

CRC Coding, Turbo Coding 1/3, Interleaving, Rate Matching

CRC Coding, Turbo Coding 1/3, Interleaving, Rate Matching

Data Channel

1

Channelization Code n - SF16

I

Q

Modulation Mapping 1:2

Modulation Mapping 1:2

I

Q

scrambling Code 1

Q

I

Even symbols to I-branchOdd symbols to Q-branch

Max 15 Channelization Codes (320 bit RLC PDU)Max UserRate per data channel 437.33 kbit/s 437.33 kbit/s X 15 = 6.56 Mbit/s

Max 15 Channelization Codes (640 bit RLC PDU)Max UserRate per data channel 448 kbit/s 448 kbit/s x 15 = 6.72 Mbit/s

Page 30: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

Single Transport Block of dynamic size from MAC-hs (Pre-coded data

(bits))

Pulse Shaping

Filter

Pulse Shaping

FilterRF Out

Pulse

Shaping Filter

Pulse Shaping

Filter

I/Q Modulator

I/Q Modulator

I

Q

Symbol rate 240ksymb/s Chip rate

3.84Mchip/sModulation

Symbols

I

Q

Data rate

960kbit/s

CRC Coding, Turbo Coding 1/3, Interleaving, Rate Matching

CRC Coding, Turbo Coding 1/3, Interleaving, Rate Matching

Data Channel

1

Channelization Code 1- SF16

I

Q

Modulation Mapping 1:4

Modulation Mapping 1:4

I

Q

scrambling Code 1

Q

I

CRC Coding, Turbo Coding 1/3, Interleaving, Rate Matching

CRC Coding, Turbo Coding 1/3, Interleaving, Rate Matching

Data Channel

1

Channelization Code n - SF16

I

Q

Modulation Mapping 1:4

Modulation Mapping 1:4

I

Q

scrambling Code 1

Q

I

Max 15 Channelization Codes (320 bit RLC PDU)Max UserRate per data channel 885.33 kbit/s 885.33 kbit/s X 15 = 13.28 Mbit/s

Max 15 Channelization Codes (640 bit RLC PDU)Max UserRate per data channel 896 kbit/s 896 kbit/s x 15 = 13.44 Mbit/s

i1q1i2q2 I branch Q branch

0000 0.4472 0.4472

0001 0.4472 1.3416

0010 1.3416 0.4472

0011 1.3416 1.3416

0100 0.4472 -0.4472

0101 0.4472 -1.3416

0110 1.3416 -0.4472

0111 1.3416 -1.3416

1000 -0.4472 0.4472

1001 -0.4472 1.3416

1010 -1.3416 0.4472

1011 -1.3416 1.3416

1100 -0.4472 -0.4472

1101 -0.4472 -1.3416

1110 -1.3416 -0.4472

1111 -1.3416 -1.3416

WCDMA Transmitter 16QAM (DL)

Page 31: WCDMA HSDPA Principals and Resources

Slide title 32 pt

Text 24 pt

Bullets level 2-520 pt

›!"# $%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~¡¢£¤¥¦§¨©ª«¬®¯°±²³´¶·¸¹º»¼½ÀÁÂÃÄÅÆÇÈËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿĀāĂăąĆćĊċČĎďĐđĒĖėĘęĚěĞğĠġĢģĪīĮįİıĶķĹĺĻļĽľŁłŃńŅņŇňŌŐőŒœŔŕŖŗŘřŚśŞşŠšŢţŤťŪūŮůŰűŲųŴŵŶŷŸŹźŻżŽžƒȘșˆˇ˘˙˚˛˜˝ẀẁẃẄẅỲỳ–—‘’‚“”„†‡•…‰‹›⁄€™−≤≥fifl

Do not add objects or text in

the footer area

Architecture of MAC and Physical Layer for HS-DSCH › There is one MAC-hs entity in the WCDMA RAN

for each cell that supports HS-DSCH transmission

› MAC-hs receive configuration parameters from the RRC layer via the MAC-Control SAP.

› The SRNC establishes one MAC-d entity for each served user.

› The MAC-d entity may perform multiplexing of several logical channels and execute the transport channel switching function

› Transport channel switching is controlled by RRC and requires RRC on a DCCH

Page 32: WCDMA HSDPA Principals and Resources