Waves II (Sound)

18
[SHIVOK SP211] November 1, 2015 Page 1 CH 17 WavesII (Sound) I. Sound Waves A. Wavefronts are surfaces over which the oscillations due to the sound wave have the same value; such surfaces are represented by whole or partial circles in a twodimensional drawing for a point source. B. Rays are directed lines perpendicular to the wavefronts that indicate the direction of travel of the wavefronts. C. Drawing

Transcript of Waves II (Sound)

 [SHIVOK SP211] November 1, 2015 

 

 Page1

CH 17 

Waves‐II(Sound)

I. SoundWaves

A. Wavefrontsaresurfacesoverwhichtheoscillationsduetothesoundwavehavethesamevalue;suchsurfacesarerepresentedbywholeorpartialcirclesinatwo‐dimensionaldrawingforapointsource.

B. Raysaredirectedlinesperpendiculartothewavefrontsthatindicatethedirectionoftravelofthewavefronts.

C. Drawing

 

 [SHIVOK SP211] November 1, 2015 

 

 Page2

II. SpeedofSound

A. Assoundwavepassesthroughair,potentialenergyisassociatedwithperiodiccompressionsandexpansionsofsmallvolumeelementsoftheair.BulkModulus,B,determinestheextenttowhichanelementofamediumchangesinvolumewhenthepressureonitchanges.Bisdefinedas:

 

B. HereV/Visthefractionalchangeinvolumeproducedbyachangeinpressurep.

But,remember

C. …soifBreplacesandreplaces, 

1. ThisisthespeedofsoundinamediumwithbulkmodulusBanddensity.

 

 [SHIVOK SP211] November 1, 2015 

 

 Page3

D. SpeedofSound;Derivationofresult(nottestable)

 

 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

 Page4

III. TravelingSoundWaves(nottestable)

 

IV. Interference(nottestable,buthelpfulinPhysicsII)

 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

 Page5

V. IntensityandSoundLevel

A. TheintensityIofasoundwaveatasurfaceistheaveragerateperunitareaatwhichenergyistransferredbythewavethroughorontothesurface.

B. Therefore,I=P/AwherePisthetimerateofenergytransfer(thepower)ofthesoundwaveandAistheareaofthesurfaceinterceptingthesound.

C. TheintensityIisrelatedtothedisplacementamplitudesmofthe

soundwaveby

 

1. Proof(nottestable) 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

 Page6

D. VariationwithDistance 

 

 

VI. IntensityandSoundLevel:TheDecibelScale

A.  

 

1. HeredBistheabbreviationfordecibel,theunitofsoundlevel.

2. I0isastandardreferenceintensity(10

‐12W/m

2),chosennearthe

lowerlimitofthehumanrangeofhearing.

3. ForI=I0,gives=10log1=0,(ourstandardreferencelevel

correspondstozerodecibels). 

 [SHIVOK SP211] November 1, 2015 

 

 Page7

B. FamiliarExample

VII. ExampleProblems:

A. Whatisthebulkmodulusofoxygenif32.0gofoxygenoccupies22.4Landthespeedofsoundintheoxygenis317m/s?

1. Solution: 

 

 

 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

 Page8

B. Supposethatthesoundlevelofaconversationisinitiallyatanangry70dBandthendropstoasoothing50dB.Assumingthatthefrequencyofthesoundis500Hz,determinethe(a)initialand(b)finalsoundintensities(inμW/m2)andthe(c)initialand(d)finalsoundwaveamplitudes(innm).Assumethespeedofsoundis347m/sandtheairdensityis1.21kg/m3.

1. Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

 Page9

C. Asourceemitssoundwavesisotropically.Theintensityofthewaves2.50mfromthesourceis1.91×10‐4W/m2.Assumingthattheenergyofthewavesisconserved,findthepowerofthesource. 

Isotropic Isotropy is uniformity in all orientations; it is derived from the Greek iso (equal) 

and tropos (direction). 

1. Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page10

VIII. SourcesofMusicalSound

A. Musicalsoundscanbesetupbyoscillatingstrings(guitar,piano,violin),membranes(kettledrum,snaredrum),aircolumns(flute,oboe,pipeorgan,andthedigeridooofFig.17‐12),woodenblocksorsteelbars(marimba,xylophone),andmanyotheroscillatingbodies.Mostcommoninstrumentsinvolvemorethanasingleoscillatingpart.

 

B. Pipeopenatbothends

 

 [SHIVOK SP211] November 1, 2015 

 

  Page11

C. Pipeopenatoneendonly

 

IX. Beats

A. Whentwosoundwaveswhosefrequenciesareclose,butnotthesame,aresuperimposed,astrikingvariationintheintensityoftheresultantsoundwaveisheard.Thisisthebeatphenomenon.Thewaveringofintensityoccursatafrequencywhichisthedifferencebetweenthetwocombiningfrequencies.

 

 [SHIVOK SP211] November 1, 2015 

 

  Page12

B. Beatphenomenon.

 

 

 

 

 

 

 

X. DopplerEffect.

A. Whenthemotionofdetectororsourceistowardtheother,thesignonitsspeedmustgiveanupwardshiftinfrequency.Whenthemotionofdetectororsourceisawayfromtheother,thesignonitsspeedmustgiveadownwardshiftinfrequency.

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page13

B. CalculatingreceivedFrequency

 

1. Heretheemittedfrequencyisf,thedetectedfrequencyf’,visthespeedofsoundthroughtheair,v

Disthedetector’sspeedrelativetotheair,

andvSisthesource’sspeedrelativetotheair.

 

C. Intimet,thewavefrontsmovetotherightadistancevt.ThenumberofwavelengthsinthatdistancevtisthenumberofwavelengthsinterceptedbyDintimet,andthatnumberisvt/.TherateatwhichDinterceptswavelengths,whichisthefrequencyfdetectedbyD,is

 

1. Inthissituation,withDstationary,thereisnoDopplereffect—thefrequencydetectedbyDisthefrequencyemittedbyS.

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page14

D. DetectorMoving,SourceStationary

1. IfDmovesinthedirectionoppositethewavefrontvelocity,intimet,thewavefrontsmovetotherightadistancevt,butnowDmovestotheleftadistancev

Dt.

2. Thus,inthistimet,thedistancemovedbythewavefrontsrelativetoDisvt+v

Dt.Thenumberofwavelengthsinthisrelativedistancevt+v

Dtis(vt

+vDt)/.

3. TherateatwhichDinterceptswavelengthsinthissituationisthefrequencyf’,givenby

 

4. Similarly,wecanfindthefrequencydetectedbyDifDmovesawayfromthesource.Inthissituation,thewavefrontsmoveadistancevt‐v

Dt

relativetoDintimet,andf’isgivenby

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page15

E. SourceMoving,DetectorStationary

1. DetectorDisstationarywithrespecttothebodyofair,andsourceSmovetowardDatspeedv

S.

2. IfT(=1/f)isthetimebetweentheemissionofanypairofsuccessivewavefrontsW

1andW

2,duringT,wavefrontW

1movesadistancevTandthe

sourcemovesadistancevST.

3. AttheendofT,wavefrontW2isemitted.

4. InthedirectioninwhichSmoves,thedistancebetweenW1andW

2,

whichisthewavelengthofthewavesmovinginthatdirection,is(vT–vST).

5. IfDdetectsthosewaves,itdetectsfrequencyfgivenby

 

6. InthedirectionoppositethattakenbyS,thewavelengthofthewavesisagainthedistancebetweensuccessivewavesbutnowthatdistanceis(vT–vST).Ddetectsfrequencyfgivenby

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page16

F. DopplerEffectTable

 

XI. SupersonicSpeeds,ShockWaves

 

 

A.

B.  

 

 [SHIVOK SP211] November 1, 2015 

 

  Page17

XII. SampleProblems:

A. OrganpipeA,withbothendsopen,hasafundamentalfrequencyof300Hz.ThethirdharmonicoforganpipeB,withoneendopen,hasthesamefrequencyasthesecondharmonicofpipeA.Howlongare(a)pipeAand(b)pipeB?(Takethespeedofsoundtobe343m/s.)

1. Solution:

B. TheAstringofaviolinisalittletootightlystretched.Beatsat4.00persecondareheardwhenthestringissoundedtogetherwithatuningforkthatisoscillatingaccuratelyatconcertA(440Hz).Whatistheperiodoftheviolinstringoscillation?

1. Solution: 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page18

C. Anambulancewithasirenemittingawhineat1600Hzovertakesandpassesacyclistpedalingabikeat2.44m/s.Afterbeingpassed,thecyclisthearsafrequencyof1590Hz.Howfastistheambulancemoving?(Takethespeedofsoundinairtobe343m/s.)

1. Solution: 

 

 

 

 

 

D. Ajetplanepassesoveryouataheightof5000mandaspeedofMach1.50.(a)FindtheMachconeangle.(b)Howlongafterthejetpassesdirectlyoverheaddoestheshockwavereachyou?Use331m/sforthespeedofsound.

1. Solution: