Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020....

94
Wavelets and Gelfand-Shilov spaces Jasson Vindas [email protected] Ghent University Logic and Analysis Seminar Ghent, March 11, 2020 J. Vindas Wavelets and Gelfand-Shilov spaces

Transcript of Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020....

Page 1: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Wavelets and Gelfand-Shilov spaces

Jasson [email protected]

Ghent University

Logic and Analysis SeminarGhent, March 11, 2020

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 2: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

In this talk we discuss approximation properties of MRA andwavelets in the so-called Gelfand-Shilov spaces.

I will talk about:

1 Some classes of ‘highly regular’ MRA and wavelets.2 Their connection with Gevrey and Gelfand-Shilov spaces.3 Approximation properties of these highly regular MRA and

wavelets.4 Some mapping properties of the wavelet transform.

The talk is based on collaborative works with Dušan Rakic,Stevan Pilipovic, and Nenad Teofanov.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 3: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

In this talk we discuss approximation properties of MRA andwavelets in the so-called Gelfand-Shilov spaces.

I will talk about:

1 Some classes of ‘highly regular’ MRA and wavelets.2 Their connection with Gevrey and Gelfand-Shilov spaces.3 Approximation properties of these highly regular MRA and

wavelets.4 Some mapping properties of the wavelet transform.

The talk is based on collaborative works with Dušan Rakic,Stevan Pilipovic, and Nenad Teofanov.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 4: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

In this talk we discuss approximation properties of MRA andwavelets in the so-called Gelfand-Shilov spaces.

I will talk about:

1 Some classes of ‘highly regular’ MRA and wavelets.2 Their connection with Gevrey and Gelfand-Shilov spaces.3 Approximation properties of these highly regular MRA and

wavelets.4 Some mapping properties of the wavelet transform.

The talk is based on collaborative works with Dušan Rakic,Stevan Pilipovic, and Nenad Teofanov.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 5: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Orthonormal wavelets

A function ψ ∈ L2(R) is called an orthonormal wavelet if

ψn,m(x) = 2m/2ψ(2mx − n), n,m ∈ Z,

is an orthonormal basis of L2(R). Given any f ∈ L2(R) we havethe wavelet series expansion

f =∑

n,m∈Zcn,mψn,m,

wherecn,m =

∫ ∞−∞

f (x)ψn,m(x)dx .

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 6: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Orthonormal wavelets

A function ψ ∈ L2(R) is called an orthonormal wavelet if

ψn,m(x) = 2m/2ψ(2mx − n), n,m ∈ Z,

is an orthonormal basis of L2(R). Given any f ∈ L2(R) we havethe wavelet series expansion

f =∑

n,m∈Zcn,mψn,m,

wherecn,m =

∫ ∞−∞

f (x)ψn,m(x)dx .

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 7: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Orthonormal wavelets

A function ψ ∈ L2(R) is called an orthonormal wavelet if

ψn,m(x) = 2m/2ψ(2mx − n), n,m ∈ Z,

is an orthonormal basis of L2(R). Given any f ∈ L2(R) we havethe wavelet series expansion

f =∑

n,m∈Zcn,mψn,m,

wherecn,m =

∫ ∞−∞

f (x)ψn,m(x)dx .

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 8: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Multiresolution Analysis

One effective way to construct wavelets is via the next concept.

DefinitionA multiresolution analysis (MRA) is an increasing sequence{Vm}m∈Z of closed subspaces of L2(Rd) such that:

(i)⋂

m∈Z Vm = {0} and⋃

m∈Z Vm is dense in L2(Rd);

(ii) f (x) ∈ Vm ⇔ f (2x) ∈ Vm+1, m ∈ Z;(iii) f (x) ∈ V0 ⇔ f (x − n) ∈ V0, n ∈ Zd ;

(iv) there exists φ ∈ L2(Rd) such that {φ(x − n)}n∈Zd is anorthonormal basis of V0.

The function φ from (iv) is called a scaling function for the MRA.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 9: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Multiresolution Analysis

One effective way to construct wavelets is via the next concept.

DefinitionA multiresolution analysis (MRA) is an increasing sequence{Vm}m∈Z of closed subspaces of L2(Rd) such that:

(i)⋂

m∈Z Vm = {0} and⋃

m∈Z Vm is dense in L2(Rd);

(ii) f (x) ∈ Vm ⇔ f (2x) ∈ Vm+1, m ∈ Z;(iii) f (x) ∈ V0 ⇔ f (x − n) ∈ V0, n ∈ Zd ;

(iv) there exists φ ∈ L2(Rd) such that {φ(x − n)}n∈Zd is anorthonormal basis of V0.

The function φ from (iv) is called a scaling function for the MRA.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 10: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Multiresolution Analysis

One effective way to construct wavelets is via the next concept.

DefinitionA multiresolution analysis (MRA) is an increasing sequence{Vm}m∈Z of closed subspaces of L2(Rd) such that:

(i)⋂

m∈Z Vm = {0} and⋃

m∈Z Vm is dense in L2(Rd);

(ii) f (x) ∈ Vm ⇔ f (2x) ∈ Vm+1, m ∈ Z;(iii) f (x) ∈ V0 ⇔ f (x − n) ∈ V0, n ∈ Zd ;

(iv) there exists φ ∈ L2(Rd) such that {φ(x − n)}n∈Zd is anorthonormal basis of V0.

The function φ from (iv) is called a scaling function for the MRA.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 11: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Multiresolution Analysis

One effective way to construct wavelets is via the next concept.

DefinitionA multiresolution analysis (MRA) is an increasing sequence{Vm}m∈Z of closed subspaces of L2(Rd) such that:

(i)⋂

m∈Z Vm = {0} and⋃

m∈Z Vm is dense in L2(Rd);

(ii) f (x) ∈ Vm ⇔ f (2x) ∈ Vm+1, m ∈ Z;(iii) f (x) ∈ V0 ⇔ f (x − n) ∈ V0, n ∈ Zd ;

(iv) there exists φ ∈ L2(Rd) such that {φ(x − n)}n∈Zd is anorthonormal basis of V0.

The function φ from (iv) is called a scaling function for the MRA.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 12: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Multiresolution Analysis

One effective way to construct wavelets is via the next concept.

DefinitionA multiresolution analysis (MRA) is an increasing sequence{Vm}m∈Z of closed subspaces of L2(Rd) such that:

(i)⋂

m∈Z Vm = {0} and⋃

m∈Z Vm is dense in L2(Rd);

(ii) f (x) ∈ Vm ⇔ f (2x) ∈ Vm+1, m ∈ Z;(iii) f (x) ∈ V0 ⇔ f (x − n) ∈ V0, n ∈ Zd ;

(iv) there exists φ ∈ L2(Rd) such that {φ(x − n)}n∈Zd is anorthonormal basis of V0.

The function φ from (iv) is called a scaling function for the MRA.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 13: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Multiresolution Analysis

One effective way to construct wavelets is via the next concept.

DefinitionA multiresolution analysis (MRA) is an increasing sequence{Vm}m∈Z of closed subspaces of L2(Rd) such that:

(i)⋂

m∈Z Vm = {0} and⋃

m∈Z Vm is dense in L2(Rd);

(ii) f (x) ∈ Vm ⇔ f (2x) ∈ Vm+1, m ∈ Z;(iii) f (x) ∈ V0 ⇔ f (x − n) ∈ V0, n ∈ Zd ;

(iv) there exists φ ∈ L2(Rd) such that {φ(x − n)}n∈Zd is anorthonormal basis of V0.

The function φ from (iv) is called a scaling function for the MRA.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 14: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Construction of wavelets from an MRALet {Vm}m∈Z be an MRA with scaling function φ.

Write V1 = V0 ⊕W0.

Vm+1 = Vm ⊕Wm with Wm = {f : f (2−mx) ∈W0}.Vm = Wm−1 ⊕Wm−2 ⊕ . . . .L2(R) =

⊕m∈Z Wm.

Conclusion: We get an orthonormal wavelet if we find ψ ∈W0 suchthat {ψ(x − n)}n∈Zd is an orthonormal basis of W0.

φ(x/2) ∈ V−1 has expansion in terms of {φ(x − n)}n∈N. Fouriertransforming we find a 2π-periodic function m0 with

φ(2ξ) = m0(ξ)φ(ξ).

Characterization: {ψ(x − n)}n∈Z is an orthonormal basis of W0 iffthere is a 2π-periodic function ν ∈ L2[−π, π] such that

ψ(2ξ) = eiξν(2ξ)m0(ξ + π)φ(ξ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 15: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Construction of wavelets from an MRALet {Vm}m∈Z be an MRA with scaling function φ.

Write V1 = V0 ⊕W0.

Vm+1 = Vm ⊕Wm with Wm = {f : f (2−mx) ∈W0}.Vm = Wm−1 ⊕Wm−2 ⊕ . . . .L2(R) =

⊕m∈Z Wm.

Conclusion: We get an orthonormal wavelet if we find ψ ∈W0 suchthat {ψ(x − n)}n∈Zd is an orthonormal basis of W0.

φ(x/2) ∈ V−1 has expansion in terms of {φ(x − n)}n∈N. Fouriertransforming we find a 2π-periodic function m0 with

φ(2ξ) = m0(ξ)φ(ξ).

Characterization: {ψ(x − n)}n∈Z is an orthonormal basis of W0 iffthere is a 2π-periodic function ν ∈ L2[−π, π] such that

ψ(2ξ) = eiξν(2ξ)m0(ξ + π)φ(ξ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 16: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Construction of wavelets from an MRALet {Vm}m∈Z be an MRA with scaling function φ.

Write V1 = V0 ⊕W0.

Vm+1 = Vm ⊕Wm with Wm = {f : f (2−mx) ∈W0}.Vm = Wm−1 ⊕Wm−2 ⊕ . . . .L2(R) =

⊕m∈Z Wm.

Conclusion: We get an orthonormal wavelet if we find ψ ∈W0 suchthat {ψ(x − n)}n∈Zd is an orthonormal basis of W0.

φ(x/2) ∈ V−1 has expansion in terms of {φ(x − n)}n∈N. Fouriertransforming we find a 2π-periodic function m0 with

φ(2ξ) = m0(ξ)φ(ξ).

Characterization: {ψ(x − n)}n∈Z is an orthonormal basis of W0 iffthere is a 2π-periodic function ν ∈ L2[−π, π] such that

ψ(2ξ) = eiξν(2ξ)m0(ξ + π)φ(ξ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 17: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Construction of wavelets from an MRALet {Vm}m∈Z be an MRA with scaling function φ.

Write V1 = V0 ⊕W0.

Vm+1 = Vm ⊕Wm with Wm = {f : f (2−mx) ∈W0}.Vm = Wm−1 ⊕Wm−2 ⊕ . . . .L2(R) =

⊕m∈Z Wm.

Conclusion: We get an orthonormal wavelet if we find ψ ∈W0 suchthat {ψ(x − n)}n∈Zd is an orthonormal basis of W0.

φ(x/2) ∈ V−1 has expansion in terms of {φ(x − n)}n∈N. Fouriertransforming we find a 2π-periodic function m0 with

φ(2ξ) = m0(ξ)φ(ξ).

Characterization: {ψ(x − n)}n∈Z is an orthonormal basis of W0 iffthere is a 2π-periodic function ν ∈ L2[−π, π] such that

ψ(2ξ) = eiξν(2ξ)m0(ξ + π)φ(ξ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 18: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Construction of wavelets from an MRALet {Vm}m∈Z be an MRA with scaling function φ.

Write V1 = V0 ⊕W0.

Vm+1 = Vm ⊕Wm with Wm = {f : f (2−mx) ∈W0}.Vm = Wm−1 ⊕Wm−2 ⊕ . . . .L2(R) =

⊕m∈Z Wm.

Conclusion: We get an orthonormal wavelet if we find ψ ∈W0 suchthat {ψ(x − n)}n∈Zd is an orthonormal basis of W0.

φ(x/2) ∈ V−1 has expansion in terms of {φ(x − n)}n∈N. Fouriertransforming we find a 2π-periodic function m0 with

φ(2ξ) = m0(ξ)φ(ξ).

Characterization: {ψ(x − n)}n∈Z is an orthonormal basis of W0 iffthere is a 2π-periodic function ν ∈ L2[−π, π] such that

ψ(2ξ) = eiξν(2ξ)m0(ξ + π)φ(ξ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 19: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Construction of wavelets from an MRALet {Vm}m∈Z be an MRA with scaling function φ.

Write V1 = V0 ⊕W0.

Vm+1 = Vm ⊕Wm with Wm = {f : f (2−mx) ∈W0}.Vm = Wm−1 ⊕Wm−2 ⊕ . . . .L2(R) =

⊕m∈Z Wm.

Conclusion: We get an orthonormal wavelet if we find ψ ∈W0 suchthat {ψ(x − n)}n∈Zd is an orthonormal basis of W0.

φ(x/2) ∈ V−1 has expansion in terms of {φ(x − n)}n∈N. Fouriertransforming we find a 2π-periodic function m0 with

φ(2ξ) = m0(ξ)φ(ξ).

Characterization: {ψ(x − n)}n∈Z is an orthonormal basis of W0 iffthere is a 2π-periodic function ν ∈ L2[−π, π] such that

ψ(2ξ) = eiξν(2ξ)m0(ξ + π)φ(ξ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 20: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Construction of wavelets from an MRALet {Vm}m∈Z be an MRA with scaling function φ.

Write V1 = V0 ⊕W0.

Vm+1 = Vm ⊕Wm with Wm = {f : f (2−mx) ∈W0}.Vm = Wm−1 ⊕Wm−2 ⊕ . . . .L2(R) =

⊕m∈Z Wm.

Conclusion: We get an orthonormal wavelet if we find ψ ∈W0 suchthat {ψ(x − n)}n∈Zd is an orthonormal basis of W0.

φ(x/2) ∈ V−1 has expansion in terms of {φ(x − n)}n∈N. Fouriertransforming we find a 2π-periodic function m0 with

φ(2ξ) = m0(ξ)φ(ξ).

Characterization: {ψ(x − n)}n∈Z is an orthonormal basis of W0 iffthere is a 2π-periodic function ν ∈ L2[−π, π] such that

ψ(2ξ) = eiξν(2ξ)m0(ξ + π)φ(ξ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 21: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Construction of wavelets from an MRALet {Vm}m∈Z be an MRA with scaling function φ.

Write V1 = V0 ⊕W0.

Vm+1 = Vm ⊕Wm with Wm = {f : f (2−mx) ∈W0}.Vm = Wm−1 ⊕Wm−2 ⊕ . . . .L2(R) =

⊕m∈Z Wm.

Conclusion: We get an orthonormal wavelet if we find ψ ∈W0 suchthat {ψ(x − n)}n∈Zd is an orthonormal basis of W0.

φ(x/2) ∈ V−1 has expansion in terms of {φ(x − n)}n∈N. Fouriertransforming we find a 2π-periodic function m0 with

φ(2ξ) = m0(ξ)φ(ξ).

Characterization: {ψ(x − n)}n∈Z is an orthonormal basis of W0 iffthere is a 2π-periodic function ν ∈ L2[−π, π] such that

ψ(2ξ) = eiξν(2ξ)m0(ξ + π)φ(ξ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 22: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Construction of wavelets from an MRALet {Vm}m∈Z be an MRA with scaling function φ.

Write V1 = V0 ⊕W0.

Vm+1 = Vm ⊕Wm with Wm = {f : f (2−mx) ∈W0}.Vm = Wm−1 ⊕Wm−2 ⊕ . . . .L2(R) =

⊕m∈Z Wm.

Conclusion: We get an orthonormal wavelet if we find ψ ∈W0 suchthat {ψ(x − n)}n∈Zd is an orthonormal basis of W0.

φ(x/2) ∈ V−1 has expansion in terms of {φ(x − n)}n∈N. Fouriertransforming we find a 2π-periodic function m0 with

φ(2ξ) = m0(ξ)φ(ξ).

Characterization: {ψ(x − n)}n∈Z is an orthonormal basis of W0 iffthere is a 2π-periodic function ν ∈ L2[−π, π] such that

ψ(2ξ) = eiξν(2ξ)m0(ξ + π)φ(ξ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 23: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Regularity of wavelets: smoothness vs decay

MRA and wavelets are effective to approximate functions,and, in turn, to describe a large number of function anddistribution spaces.This effectiveness: related to regularity properties ofscaling function and wavelet.By regularity we mean: smoothness and decay.There is however a trade-off between smoothness anddecay.

Here a well-known example of this interplay leading to conflicts:

There is no orthonormal wavelet ψ sharing simultaneouslythese two properties:

1 ψ(x)� e−c|x | for some c > 0.2 ψ ∈ C∞(R), with all derivatives being bounded.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 24: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Regularity of wavelets: smoothness vs decay

MRA and wavelets are effective to approximate functions,and, in turn, to describe a large number of function anddistribution spaces.This effectiveness: related to regularity properties ofscaling function and wavelet.By regularity we mean: smoothness and decay.There is however a trade-off between smoothness anddecay.

Here a well-known example of this interplay leading to conflicts:

There is no orthonormal wavelet ψ sharing simultaneouslythese two properties:

1 ψ(x)� e−c|x | for some c > 0.2 ψ ∈ C∞(R), with all derivatives being bounded.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 25: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Regularity of wavelets: smoothness vs decay

MRA and wavelets are effective to approximate functions,and, in turn, to describe a large number of function anddistribution spaces.This effectiveness: related to regularity properties ofscaling function and wavelet.By regularity we mean: smoothness and decay.There is however a trade-off between smoothness anddecay.

Here a well-known example of this interplay leading to conflicts:

There is no orthonormal wavelet ψ sharing simultaneouslythese two properties:

1 ψ(x)� e−c|x | for some c > 0.2 ψ ∈ C∞(R), with all derivatives being bounded.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 26: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Regularity of wavelets: smoothness vs decay

MRA and wavelets are effective to approximate functions,and, in turn, to describe a large number of function anddistribution spaces.This effectiveness: related to regularity properties ofscaling function and wavelet.By regularity we mean: smoothness and decay.There is however a trade-off between smoothness anddecay.

Here a well-known example of this interplay leading to conflicts:

There is no orthonormal wavelet ψ sharing simultaneouslythese two properties:

1 ψ(x)� e−c|x | for some c > 0.2 ψ ∈ C∞(R), with all derivatives being bounded.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 27: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Regularity of wavelets: smoothness vs decay

MRA and wavelets are effective to approximate functions,and, in turn, to describe a large number of function anddistribution spaces.This effectiveness: related to regularity properties ofscaling function and wavelet.By regularity we mean: smoothness and decay.There is however a trade-off between smoothness anddecay.

Here a well-known example of this interplay leading to conflicts:

There is no orthonormal wavelet ψ sharing simultaneouslythese two properties:

1 ψ(x)� e−c|x | for some c > 0.2 ψ ∈ C∞(R), with all derivatives being bounded.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 28: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

What we cannot get!

Let us fix ψ ∈ L1(R) with the second property from the laststatement, that is,

ψ(n) ∈ L∞(R), n = 0,1,2, . . . . (1)

We consider the decay (for a positive weight function ω ):

ψ(x)� e−ω(|x |), (2)

Under certain standard regularity assumptions ω, one shows:

If there is an orthonormal wavelet ψ satisfying (1) and (2) then∫ ∞1

ω(x)x2 <∞. (3)

Conclusion: No wavelets with (1) and (2) such that (3) diverges

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 29: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

What we cannot get!

Let us fix ψ ∈ L1(R) with the second property from the laststatement, that is,

ψ(n) ∈ L∞(R), n = 0,1,2, . . . . (1)

We consider the decay (for a positive weight function ω ):

ψ(x)� e−ω(|x |), (2)

Under certain standard regularity assumptions ω, one shows:

If there is an orthonormal wavelet ψ satisfying (1) and (2) then∫ ∞1

ω(x)x2 <∞. (3)

Conclusion: No wavelets with (1) and (2) such that (3) diverges

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 30: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

What we cannot get!

Let us fix ψ ∈ L1(R) with the second property from the laststatement, that is,

ψ(n) ∈ L∞(R), n = 0,1,2, . . . . (1)

We consider the decay (for a positive weight function ω ):

ψ(x)� e−ω(|x |), (2)

Under certain standard regularity assumptions ω, one shows:

If there is an orthonormal wavelet ψ satisfying (1) and (2) then∫ ∞1

ω(x)x2 <∞. (3)

Conclusion: No wavelets with (1) and (2) such that (3) diverges

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 31: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

What we cannot get!

Let us fix ψ ∈ L1(R) with the second property from the laststatement, that is,

ψ(n) ∈ L∞(R), n = 0,1,2, . . . . (1)

We consider the decay (for a positive weight function ω ):

ψ(x)� e−ω(|x |), (2)

Under certain standard regularity assumptions ω, one shows:

If there is an orthonormal wavelet ψ satisfying (1) and (2) then∫ ∞1

ω(x)x2 <∞. (3)

Conclusion: No wavelets with (1) and (2) such that (3) diverges

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 32: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

What we can try to do!

Due to the constrains we have discussed so far, we might try tofind smooth ψ (with bounded derivatives) with decay

ψ(x)� e−ω(x), where∫ ∞

1

ω(x)x2 <∞.

First try

ω(x) = n log x , so that ψ(x)� |x |−n.

This works! Actually, Meyer did better in 1985 and found anorthonormal wavelet ψ ∈ S(R). For future reference:

Properties of orthonormal wavelets ψ ∈ S(R)1 ψ is an MRA wavelet.2∫∞−∞ xnψ(x)dx = 0, n = 0,1, . . .

We write S0(R) for the subspace of S(R) consisting of functionswhose all moments vanish.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 33: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

What we can try to do!

Due to the constrains we have discussed so far, we might try tofind smooth ψ (with bounded derivatives) with decay

ψ(x)� e−ω(x), where∫ ∞

1

ω(x)x2 <∞.

First try

ω(x) = n log x , so that ψ(x)� |x |−n.

This works! Actually, Meyer did better in 1985 and found anorthonormal wavelet ψ ∈ S(R). For future reference:

Properties of orthonormal wavelets ψ ∈ S(R)1 ψ is an MRA wavelet.2∫∞−∞ xnψ(x)dx = 0, n = 0,1, . . .

We write S0(R) for the subspace of S(R) consisting of functionswhose all moments vanish.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 34: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

What we can try to do!

Due to the constrains we have discussed so far, we might try tofind smooth ψ (with bounded derivatives) with decay

ψ(x)� e−ω(x), where∫ ∞

1

ω(x)x2 <∞.

First try

ω(x) = n log x , so that ψ(x)� |x |−n.

This works! Actually, Meyer did better in 1985 and found anorthonormal wavelet ψ ∈ S(R). For future reference:

Properties of orthonormal wavelets ψ ∈ S(R)1 ψ is an MRA wavelet.2∫∞−∞ xnψ(x)dx = 0, n = 0,1, . . .

We write S0(R) for the subspace of S(R) consisting of functionswhose all moments vanish.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 35: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

What we can try to do!

Due to the constrains we have discussed so far, we might try tofind smooth ψ (with bounded derivatives) with decay

ψ(x)� e−ω(x), where∫ ∞

1

ω(x)x2 <∞.

First try

ω(x) = n log x , so that ψ(x)� |x |−n.

This works! Actually, Meyer did better in 1985 and found anorthonormal wavelet ψ ∈ S(R). For future reference:

Properties of orthonormal wavelets ψ ∈ S(R)1 ψ is an MRA wavelet.2∫∞−∞ xnψ(x)dx = 0, n = 0,1, . . .

We write S0(R) for the subspace of S(R) consisting of functionswhose all moments vanish.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 36: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

What we can try to do!

Due to the constrains we have discussed so far, we might try tofind smooth ψ (with bounded derivatives) with decay

ψ(x)� e−ω(x), where∫ ∞

1

ω(x)x2 <∞.

First try

ω(x) = n log x , so that ψ(x)� |x |−n.

This works! Actually, Meyer did better in 1985 and found anorthonormal wavelet ψ ∈ S(R). For future reference:

Properties of orthonormal wavelets ψ ∈ S(R)1 ψ is an MRA wavelet.2∫∞−∞ xnψ(x)dx = 0, n = 0,1, . . .

We write S0(R) for the subspace of S(R) consisting of functionswhose all moments vanish.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 37: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

What we can try to do!

Due to the constrains we have discussed so far, we might try tofind smooth ψ (with bounded derivatives) with decay

ψ(x)� e−ω(x), where∫ ∞

1

ω(x)x2 <∞.

First try

ω(x) = n log x , so that ψ(x)� |x |−n.

This works! Actually, Meyer did better in 1985 and found anorthonormal wavelet ψ ∈ S(R). For future reference:

Properties of orthonormal wavelets ψ ∈ S(R)1 ψ is an MRA wavelet.2∫∞−∞ xnψ(x)dx = 0, n = 0,1, . . .

We write S0(R) for the subspace of S(R) consisting of functionswhose all moments vanish.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 38: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Better decay: the Dziubanski-Hernández wavelets

We now try ψ(x)� e−c|x |1/t. To match the integral constrain:∫ ∞

1|x |−(2−1/t) <∞, i.e., t > 1.

To make progress, note Meyer’s wavelets ψ ∈ S(R) satisfy:It is of Lemarié-Meyer type: ψ has compact support.Since ψ is band-limited, ψ ∈ S(R) iff ψ ∈ C∞(R).The latter achieved by taking smooth ‘bell functions’.

A real Paley-Wiener type theorem, t > 1

A band-limited function g satisfies g(x)� e−c|x |1/tiff g belongs

to the Gevrey class Gt(R).

Theorem (Dziubanski-Hernández)Given t > 1 and c > 0, there is a band-limited orthonormalwavelet with

ψ(x)� e−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 39: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Better decay: the Dziubanski-Hernández wavelets

We now try ψ(x)� e−c|x |1/t. To match the integral constrain:∫ ∞

1|x |−(2−1/t) <∞, i.e., t > 1.

To make progress, note Meyer’s wavelets ψ ∈ S(R) satisfy:It is of Lemarié-Meyer type: ψ has compact support.Since ψ is band-limited, ψ ∈ S(R) iff ψ ∈ C∞(R).The latter achieved by taking smooth ‘bell functions’.

A real Paley-Wiener type theorem, t > 1

A band-limited function g satisfies g(x)� e−c|x |1/tiff g belongs

to the Gevrey class Gt(R).

Theorem (Dziubanski-Hernández)Given t > 1 and c > 0, there is a band-limited orthonormalwavelet with

ψ(x)� e−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 40: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Better decay: the Dziubanski-Hernández wavelets

We now try ψ(x)� e−c|x |1/t. To match the integral constrain:∫ ∞

1|x |−(2−1/t) <∞, i.e., t > 1.

To make progress, note Meyer’s wavelets ψ ∈ S(R) satisfy:It is of Lemarié-Meyer type: ψ has compact support.Since ψ is band-limited, ψ ∈ S(R) iff ψ ∈ C∞(R).The latter achieved by taking smooth ‘bell functions’.

A real Paley-Wiener type theorem, t > 1

A band-limited function g satisfies g(x)� e−c|x |1/tiff g belongs

to the Gevrey class Gt(R).

Theorem (Dziubanski-Hernández)Given t > 1 and c > 0, there is a band-limited orthonormalwavelet with

ψ(x)� e−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 41: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Better decay: the Dziubanski-Hernández wavelets

We now try ψ(x)� e−c|x |1/t. To match the integral constrain:∫ ∞

1|x |−(2−1/t) <∞, i.e., t > 1.

To make progress, note Meyer’s wavelets ψ ∈ S(R) satisfy:It is of Lemarié-Meyer type: ψ has compact support.Since ψ is band-limited, ψ ∈ S(R) iff ψ ∈ C∞(R).The latter achieved by taking smooth ‘bell functions’.

A real Paley-Wiener type theorem, t > 1

A band-limited function g satisfies g(x)� e−c|x |1/tiff g belongs

to the Gevrey class Gt(R).

Theorem (Dziubanski-Hernández)Given t > 1 and c > 0, there is a band-limited orthonormalwavelet with

ψ(x)� e−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 42: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Better decay: the Dziubanski-Hernández wavelets

We now try ψ(x)� e−c|x |1/t. To match the integral constrain:∫ ∞

1|x |−(2−1/t) <∞, i.e., t > 1.

To make progress, note Meyer’s wavelets ψ ∈ S(R) satisfy:It is of Lemarié-Meyer type: ψ has compact support.Since ψ is band-limited, ψ ∈ S(R) iff ψ ∈ C∞(R).The latter achieved by taking smooth ‘bell functions’.

A real Paley-Wiener type theorem, t > 1

A band-limited function g satisfies g(x)� e−c|x |1/tiff g belongs

to the Gevrey class Gt(R).

Theorem (Dziubanski-Hernández)Given t > 1 and c > 0, there is a band-limited orthonormalwavelet with

ψ(x)� e−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 43: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Better decay: the Dziubanski-Hernández wavelets

We now try ψ(x)� e−c|x |1/t. To match the integral constrain:∫ ∞

1|x |−(2−1/t) <∞, i.e., t > 1.

To make progress, note Meyer’s wavelets ψ ∈ S(R) satisfy:It is of Lemarié-Meyer type: ψ has compact support.Since ψ is band-limited, ψ ∈ S(R) iff ψ ∈ C∞(R).The latter achieved by taking smooth ‘bell functions’.

A real Paley-Wiener type theorem, t > 1

A band-limited function g satisfies g(x)� e−c|x |1/tiff g belongs

to the Gevrey class Gt(R).

Theorem (Dziubanski-Hernández)Given t > 1 and c > 0, there is a band-limited orthonormalwavelet with

ψ(x)� e−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 44: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Better decay: the Dziubanski-Hernández wavelets

We now try ψ(x)� e−c|x |1/t. To match the integral constrain:∫ ∞

1|x |−(2−1/t) <∞, i.e., t > 1.

To make progress, note Meyer’s wavelets ψ ∈ S(R) satisfy:It is of Lemarié-Meyer type: ψ has compact support.Since ψ is band-limited, ψ ∈ S(R) iff ψ ∈ C∞(R).The latter achieved by taking smooth ‘bell functions’.

A real Paley-Wiener type theorem, t > 1

A band-limited function g satisfies g(x)� e−c|x |1/tiff g belongs

to the Gevrey class Gt(R).

Theorem (Dziubanski-Hernández)Given t > 1 and c > 0, there is a band-limited orthonormalwavelet with

ψ(x)� e−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 45: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gevrey classes

The Gevrey functions generalize real analytic functions.A function f is real analytic in I iff for each compactsubinterval there are A and C such that

supx∈[a,b]

|f (n)(x)| ≤ CAnn!, n ∈ N.

Definition

f ∈ Gt(I) if supx∈[a,b]

|f (n)(x)| ≤ CAn(n!)t on each [a,b] ⊂ I.

Gevrey classes naturally arise in the analysis of PDE.If t < 1, Gt(R) consists of entire functions.If t > 1, an example of f ∈ Gt(R) is (α = 1/(t − 1))

f (x) = e−(x+1)−α−(1−x)−α if |x | ≤ 1 and otherwise f (x) = 0.

Conclusion: Gt(R) contains non-trivial compactly supportedfunctions if t > 1, we write Gt

c(R) = Gt(R) ∩ C∞c (R).J. Vindas Wavelets and Gelfand-Shilov spaces

Page 46: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gevrey classes

The Gevrey functions generalize real analytic functions.A function f is real analytic in I iff for each compactsubinterval there are A and C such that

supx∈[a,b]

|f (n)(x)| ≤ CAnn!, n ∈ N.

Definition

f ∈ Gt(I) if supx∈[a,b]

|f (n)(x)| ≤ CAn(n!)t on each [a,b] ⊂ I.

Gevrey classes naturally arise in the analysis of PDE.If t < 1, Gt(R) consists of entire functions.If t > 1, an example of f ∈ Gt(R) is (α = 1/(t − 1))

f (x) = e−(x+1)−α−(1−x)−α if |x | ≤ 1 and otherwise f (x) = 0.

Conclusion: Gt(R) contains non-trivial compactly supportedfunctions if t > 1, we write Gt

c(R) = Gt(R) ∩ C∞c (R).J. Vindas Wavelets and Gelfand-Shilov spaces

Page 47: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gevrey classes

The Gevrey functions generalize real analytic functions.A function f is real analytic in I iff for each compactsubinterval there are A and C such that

supx∈[a,b]

|f (n)(x)| ≤ CAnn!, n ∈ N.

Definition

f ∈ Gt(I) if supx∈[a,b]

|f (n)(x)| ≤ CAn(n!)t on each [a,b] ⊂ I.

Gevrey classes naturally arise in the analysis of PDE.If t < 1, Gt(R) consists of entire functions.If t > 1, an example of f ∈ Gt(R) is (α = 1/(t − 1))

f (x) = e−(x+1)−α−(1−x)−α if |x | ≤ 1 and otherwise f (x) = 0.

Conclusion: Gt(R) contains non-trivial compactly supportedfunctions if t > 1, we write Gt

c(R) = Gt(R) ∩ C∞c (R).J. Vindas Wavelets and Gelfand-Shilov spaces

Page 48: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gevrey classes

The Gevrey functions generalize real analytic functions.A function f is real analytic in I iff for each compactsubinterval there are A and C such that

supx∈[a,b]

|f (n)(x)| ≤ CAnn!, n ∈ N.

Definition

f ∈ Gt(I) if supx∈[a,b]

|f (n)(x)| ≤ CAn(n!)t on each [a,b] ⊂ I.

Gevrey classes naturally arise in the analysis of PDE.If t < 1, Gt(R) consists of entire functions.If t > 1, an example of f ∈ Gt(R) is (α = 1/(t − 1))

f (x) = e−(x+1)−α−(1−x)−α if |x | ≤ 1 and otherwise f (x) = 0.

Conclusion: Gt(R) contains non-trivial compactly supportedfunctions if t > 1, we write Gt

c(R) = Gt(R) ∩ C∞c (R).J. Vindas Wavelets and Gelfand-Shilov spaces

Page 49: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gevrey classes

The Gevrey functions generalize real analytic functions.A function f is real analytic in I iff for each compactsubinterval there are A and C such that

supx∈[a,b]

|f (n)(x)| ≤ CAnn!, n ∈ N.

Definition

f ∈ Gt(I) if supx∈[a,b]

|f (n)(x)| ≤ CAn(n!)t on each [a,b] ⊂ I.

Gevrey classes naturally arise in the analysis of PDE.If t < 1, Gt(R) consists of entire functions.If t > 1, an example of f ∈ Gt(R) is (α = 1/(t − 1))

f (x) = e−(x+1)−α−(1−x)−α if |x | ≤ 1 and otherwise f (x) = 0.

Conclusion: Gt(R) contains non-trivial compactly supportedfunctions if t > 1, we write Gt

c(R) = Gt(R) ∩ C∞c (R).J. Vindas Wavelets and Gelfand-Shilov spaces

Page 50: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gevrey classes

The Gevrey functions generalize real analytic functions.A function f is real analytic in I iff for each compactsubinterval there are A and C such that

supx∈[a,b]

|f (n)(x)| ≤ CAnn!, n ∈ N.

Definition

f ∈ Gt(I) if supx∈[a,b]

|f (n)(x)| ≤ CAn(n!)t on each [a,b] ⊂ I.

Gevrey classes naturally arise in the analysis of PDE.If t < 1, Gt(R) consists of entire functions.If t > 1, an example of f ∈ Gt(R) is (α = 1/(t − 1))

f (x) = e−(x+1)−α−(1−x)−α if |x | ≤ 1 and otherwise f (x) = 0.

Conclusion: Gt(R) contains non-trivial compactly supportedfunctions if t > 1, we write Gt

c(R) = Gt(R) ∩ C∞c (R).J. Vindas Wavelets and Gelfand-Shilov spaces

Page 51: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gevrey classes

The Gevrey functions generalize real analytic functions.A function f is real analytic in I iff for each compactsubinterval there are A and C such that

supx∈[a,b]

|f (n)(x)| ≤ CAnn!, n ∈ N.

Definition

f ∈ Gt(I) if supx∈[a,b]

|f (n)(x)| ≤ CAn(n!)t on each [a,b] ⊂ I.

Gevrey classes naturally arise in the analysis of PDE.If t < 1, Gt(R) consists of entire functions.If t > 1, an example of f ∈ Gt(R) is (α = 1/(t − 1))

f (x) = e−(x+1)−α−(1−x)−α if |x | ≤ 1 and otherwise f (x) = 0.

Conclusion: Gt(R) contains non-trivial compactly supportedfunctions if t > 1, we write Gt

c(R) = Gt(R) ∩ C∞c (R).J. Vindas Wavelets and Gelfand-Shilov spaces

Page 52: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The Denjoy-Carleman theoremDefine the class E{Mn}[a,b] of smooth functions such that

supx∈[a,b]

|f (n)(x)| ≤ CAnMn (for some C,A).

One may assume mn = Mn+1/Mn increases (Cartan-Gorny theorem).

Hadamard’s problem, 1912

Characterize {Mn}n∈N such that E{Mn}[a,b] contains non-trivialcompactly supported functions in (a,b) (= non-quasianalyticity).

Denjoy-Carleman theorem

Suppose mn = Mn+1/Mn is increasing. Then, E{Mn}[a,b] is

non-quasianalytic iff∞∑

n=0

1/mn <∞.

Under ‘standard assumptions’, one adapts the Dziubanski-Hernándezconstruction to find a band-limited orthogonal wavelet with decayψ(x)� e−M(|x|), where M(x) = supn∈N log+(x

n/Mn)

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 53: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The Denjoy-Carleman theoremDefine the class E{Mn}[a,b] of smooth functions such that

supx∈[a,b]

|f (n)(x)| ≤ CAnMn (for some C,A).

One may assume mn = Mn+1/Mn increases (Cartan-Gorny theorem).

Hadamard’s problem, 1912

Characterize {Mn}n∈N such that E{Mn}[a,b] contains non-trivialcompactly supported functions in (a,b) (= non-quasianalyticity).

Denjoy-Carleman theorem

Suppose mn = Mn+1/Mn is increasing. Then, E{Mn}[a,b] is

non-quasianalytic iff∞∑

n=0

1/mn <∞.

Under ‘standard assumptions’, one adapts the Dziubanski-Hernándezconstruction to find a band-limited orthogonal wavelet with decayψ(x)� e−M(|x|), where M(x) = supn∈N log+(x

n/Mn)

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 54: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The Denjoy-Carleman theoremDefine the class E{Mn}[a,b] of smooth functions such that

supx∈[a,b]

|f (n)(x)| ≤ CAnMn (for some C,A).

One may assume mn = Mn+1/Mn increases (Cartan-Gorny theorem).

Hadamard’s problem, 1912

Characterize {Mn}n∈N such that E{Mn}[a,b] contains non-trivialcompactly supported functions in (a,b) (= non-quasianalyticity).

Denjoy-Carleman theorem

Suppose mn = Mn+1/Mn is increasing. Then, E{Mn}[a,b] is

non-quasianalytic iff∞∑

n=0

1/mn <∞.

Under ‘standard assumptions’, one adapts the Dziubanski-Hernándezconstruction to find a band-limited orthogonal wavelet with decayψ(x)� e−M(|x|), where M(x) = supn∈N log+(x

n/Mn)

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 55: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The Denjoy-Carleman theoremDefine the class E{Mn}[a,b] of smooth functions such that

supx∈[a,b]

|f (n)(x)| ≤ CAnMn (for some C,A).

One may assume mn = Mn+1/Mn increases (Cartan-Gorny theorem).

Hadamard’s problem, 1912

Characterize {Mn}n∈N such that E{Mn}[a,b] contains non-trivialcompactly supported functions in (a,b) (= non-quasianalyticity).

Denjoy-Carleman theorem

Suppose mn = Mn+1/Mn is increasing. Then, E{Mn}[a,b] is

non-quasianalytic iff∞∑

n=0

1/mn <∞.

Under ‘standard assumptions’, one adapts the Dziubanski-Hernándezconstruction to find a band-limited orthogonal wavelet with decayψ(x)� e−M(|x|), where M(x) = supn∈N log+(x

n/Mn)

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 56: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The Denjoy-Carleman theoremDefine the class E{Mn}[a,b] of smooth functions such that

supx∈[a,b]

|f (n)(x)| ≤ CAnMn (for some C,A).

One may assume mn = Mn+1/Mn increases (Cartan-Gorny theorem).

Hadamard’s problem, 1912

Characterize {Mn}n∈N such that E{Mn}[a,b] contains non-trivialcompactly supported functions in (a,b) (= non-quasianalyticity).

Denjoy-Carleman theorem

Suppose mn = Mn+1/Mn is increasing. Then, E{Mn}[a,b] is

non-quasianalytic iff∞∑

n=0

1/mn <∞.

Under ‘standard assumptions’, one adapts the Dziubanski-Hernándezconstruction to find a band-limited orthogonal wavelet with decayψ(x)� e−M(|x|), where M(x) = supn∈N log+(x

n/Mn)

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 57: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gelfand-Shilov spaces

The Dziubanski-Hernández wavelets belong to F(Gtc(R)), where

F stands for the Fourier transform.

Elements of F(Gtc(R)) are determined by global estimates

|xmf (n)(x)| � Bn+m(m!)t x ∈ R.

DefinitionLet t , s ≥ 0. The space Ss

t (R) consists of all Schwartz functionssuch that, for some B,

|xmf (n)(x)| � Bn+m(n!)s(m!)t .

Introduced by Gelfand-Shilov in connection with PDEs.Ss

t (R) ⊂ Gs(R), so s measures Gevrey regularity.The parameter t measures decay (t > 0): f ∈ Ss

t (R) iff

|f (n)(x)| � Bn(n!)se−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 58: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gelfand-Shilov spaces

The Dziubanski-Hernández wavelets belong to F(Gtc(R)), where

F stands for the Fourier transform.

Elements of F(Gtc(R)) are determined by global estimates

|xmf (n)(x)| � Bn+m(m!)t x ∈ R.

DefinitionLet t , s ≥ 0. The space Ss

t (R) consists of all Schwartz functionssuch that, for some B,

|xmf (n)(x)| � Bn+m(n!)s(m!)t .

Introduced by Gelfand-Shilov in connection with PDEs.Ss

t (R) ⊂ Gs(R), so s measures Gevrey regularity.The parameter t measures decay (t > 0): f ∈ Ss

t (R) iff

|f (n)(x)| � Bn(n!)se−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 59: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gelfand-Shilov spaces

The Dziubanski-Hernández wavelets belong to F(Gtc(R)), where

F stands for the Fourier transform.

Elements of F(Gtc(R)) are determined by global estimates

|xmf (n)(x)| � Bn+m(m!)t x ∈ R.

DefinitionLet t , s ≥ 0. The space Ss

t (R) consists of all Schwartz functionssuch that, for some B,

|xmf (n)(x)| � Bn+m(n!)s(m!)t .

Introduced by Gelfand-Shilov in connection with PDEs.Ss

t (R) ⊂ Gs(R), so s measures Gevrey regularity.The parameter t measures decay (t > 0): f ∈ Ss

t (R) iff

|f (n)(x)| � Bn(n!)se−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 60: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gelfand-Shilov spaces

The Dziubanski-Hernández wavelets belong to F(Gtc(R)), where

F stands for the Fourier transform.

Elements of F(Gtc(R)) are determined by global estimates

|xmf (n)(x)| � Bn+m(m!)t x ∈ R.

DefinitionLet t , s ≥ 0. The space Ss

t (R) consists of all Schwartz functionssuch that, for some B,

|xmf (n)(x)| � Bn+m(n!)s(m!)t .

Introduced by Gelfand-Shilov in connection with PDEs.Ss

t (R) ⊂ Gs(R), so s measures Gevrey regularity.The parameter t measures decay (t > 0): f ∈ Ss

t (R) iff

|f (n)(x)| � Bn(n!)se−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 61: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gelfand-Shilov spaces

The Dziubanski-Hernández wavelets belong to F(Gtc(R)), where

F stands for the Fourier transform.

Elements of F(Gtc(R)) are determined by global estimates

|xmf (n)(x)| � Bn+m(m!)t x ∈ R.

DefinitionLet t , s ≥ 0. The space Ss

t (R) consists of all Schwartz functionssuch that, for some B,

|xmf (n)(x)| � Bn+m(n!)s(m!)t .

Introduced by Gelfand-Shilov in connection with PDEs.Ss

t (R) ⊂ Gs(R), so s measures Gevrey regularity.The parameter t measures decay (t > 0): f ∈ Ss

t (R) iff

|f (n)(x)| � Bn(n!)se−c|x |1/t.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 62: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Some properties of Gelfand-Shilov spaces

The the family Sst (R) is increasing with respect to s and t .

F : Sst (R)→ S t

s(R) is an isomorphism.

Fourier transform characterization: f ∈ Sst (R) iff

|f (x)| � e−c|x|1/tand |f (ξ)| � e−c|ξ|1/s

.

The space Sst (R) is non trivial iff:either s + t > 1, or s + t = 1 and s, t > 0.

S0t (R) = F(Gt

c(R)) and thus Ss0(R) = Gs

c(R).If t > 0, S1

t (R) consists of functions f that can be extendedanalytically to some horizontal strip around R where it satisfies

|f (x + iy)| � e−c|x|1/tfor |y | < h

If s, t > 0 and s < 1, then f ∈ Sst (R) iff f is entire and satisfies

|f (x + iy)| � exp(−c|x |1/t + c|y |1

s−1 ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 63: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Some properties of Gelfand-Shilov spaces

The the family Sst (R) is increasing with respect to s and t .

F : Sst (R)→ S t

s(R) is an isomorphism.

Fourier transform characterization: f ∈ Sst (R) iff

|f (x)| � e−c|x|1/tand |f (ξ)| � e−c|ξ|1/s

.

The space Sst (R) is non trivial iff:either s + t > 1, or s + t = 1 and s, t > 0.

S0t (R) = F(Gt

c(R)) and thus Ss0(R) = Gs

c(R).If t > 0, S1

t (R) consists of functions f that can be extendedanalytically to some horizontal strip around R where it satisfies

|f (x + iy)| � e−c|x|1/tfor |y | < h

If s, t > 0 and s < 1, then f ∈ Sst (R) iff f is entire and satisfies

|f (x + iy)| � exp(−c|x |1/t + c|y |1

s−1 ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 64: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Some properties of Gelfand-Shilov spaces

The the family Sst (R) is increasing with respect to s and t .

F : Sst (R)→ S t

s(R) is an isomorphism.

Fourier transform characterization: f ∈ Sst (R) iff

|f (x)| � e−c|x|1/tand |f (ξ)| � e−c|ξ|1/s

.

The space Sst (R) is non trivial iff:either s + t > 1, or s + t = 1 and s, t > 0.

S0t (R) = F(Gt

c(R)) and thus Ss0(R) = Gs

c(R).If t > 0, S1

t (R) consists of functions f that can be extendedanalytically to some horizontal strip around R where it satisfies

|f (x + iy)| � e−c|x|1/tfor |y | < h

If s, t > 0 and s < 1, then f ∈ Sst (R) iff f is entire and satisfies

|f (x + iy)| � exp(−c|x |1/t + c|y |1

s−1 ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 65: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Some properties of Gelfand-Shilov spaces

The the family Sst (R) is increasing with respect to s and t .

F : Sst (R)→ S t

s(R) is an isomorphism.

Fourier transform characterization: f ∈ Sst (R) iff

|f (x)| � e−c|x|1/tand |f (ξ)| � e−c|ξ|1/s

.

The space Sst (R) is non trivial iff:either s + t > 1, or s + t = 1 and s, t > 0.

S0t (R) = F(Gt

c(R)) and thus Ss0(R) = Gs

c(R).If t > 0, S1

t (R) consists of functions f that can be extendedanalytically to some horizontal strip around R where it satisfies

|f (x + iy)| � e−c|x|1/tfor |y | < h

If s, t > 0 and s < 1, then f ∈ Sst (R) iff f is entire and satisfies

|f (x + iy)| � exp(−c|x |1/t + c|y |1

s−1 ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 66: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Some properties of Gelfand-Shilov spaces

The the family Sst (R) is increasing with respect to s and t .

F : Sst (R)→ S t

s(R) is an isomorphism.

Fourier transform characterization: f ∈ Sst (R) iff

|f (x)| � e−c|x|1/tand |f (ξ)| � e−c|ξ|1/s

.

The space Sst (R) is non trivial iff:either s + t > 1, or s + t = 1 and s, t > 0.

S0t (R) = F(Gt

c(R)) and thus Ss0(R) = Gs

c(R).If t > 0, S1

t (R) consists of functions f that can be extendedanalytically to some horizontal strip around R where it satisfies

|f (x + iy)| � e−c|x|1/tfor |y | < h

If s, t > 0 and s < 1, then f ∈ Sst (R) iff f is entire and satisfies

|f (x + iy)| � exp(−c|x |1/t + c|y |1

s−1 ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 67: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Some properties of Gelfand-Shilov spaces

The the family Sst (R) is increasing with respect to s and t .

F : Sst (R)→ S t

s(R) is an isomorphism.

Fourier transform characterization: f ∈ Sst (R) iff

|f (x)| � e−c|x|1/tand |f (ξ)| � e−c|ξ|1/s

.

The space Sst (R) is non trivial iff:either s + t > 1, or s + t = 1 and s, t > 0.

S0t (R) = F(Gt

c(R)) and thus Ss0(R) = Gs

c(R).If t > 0, S1

t (R) consists of functions f that can be extendedanalytically to some horizontal strip around R where it satisfies

|f (x + iy)| � e−c|x|1/tfor |y | < h

If s, t > 0 and s < 1, then f ∈ Sst (R) iff f is entire and satisfies

|f (x + iy)| � exp(−c|x |1/t + c|y |1

s−1 ).

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 68: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gelfand-Shilov regular MRA and wavelets

If ψ is a Dziubanski-Hernández wavelet with ψ(x)� e−c|x |1/ρ2 ,then ψ ∈ Sρ1

ρ2 (R) for all ρ1 ≥ 0. They are examples of

DefinitionLet ρ1 ≥ 0 and ρ2 > 1. An orthonormal wavelet ψ is(ρ1, ρ2)-regular if ψ ∈ Sρ1

ρ2 (R).

DefinitionLet ρ1 ≥ 0 and ρ2 > 1. An MRA is called (ρ1, ρ2)-regular if itpossesses a scaling function φ ∈ Sρ1

ρ2 (R).

RemarkIt should be by now clear that ρ2 ≤ 1 is not admissible here.

Open question

Every (ρ1, ρ2)-regular is an MRA wavelet. Does it arise from a(ρ1, ρ2)-regular MRA?

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 69: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gelfand-Shilov regular MRA and wavelets

If ψ is a Dziubanski-Hernández wavelet with ψ(x)� e−c|x |1/ρ2 ,then ψ ∈ Sρ1

ρ2 (R) for all ρ1 ≥ 0. They are examples of

DefinitionLet ρ1 ≥ 0 and ρ2 > 1. An orthonormal wavelet ψ is(ρ1, ρ2)-regular if ψ ∈ Sρ1

ρ2 (R).

DefinitionLet ρ1 ≥ 0 and ρ2 > 1. An MRA is called (ρ1, ρ2)-regular if itpossesses a scaling function φ ∈ Sρ1

ρ2 (R).

RemarkIt should be by now clear that ρ2 ≤ 1 is not admissible here.

Open question

Every (ρ1, ρ2)-regular is an MRA wavelet. Does it arise from a(ρ1, ρ2)-regular MRA?

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 70: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gelfand-Shilov regular MRA and wavelets

If ψ is a Dziubanski-Hernández wavelet with ψ(x)� e−c|x |1/ρ2 ,then ψ ∈ Sρ1

ρ2 (R) for all ρ1 ≥ 0. They are examples of

DefinitionLet ρ1 ≥ 0 and ρ2 > 1. An orthonormal wavelet ψ is(ρ1, ρ2)-regular if ψ ∈ Sρ1

ρ2 (R).

DefinitionLet ρ1 ≥ 0 and ρ2 > 1. An MRA is called (ρ1, ρ2)-regular if itpossesses a scaling function φ ∈ Sρ1

ρ2 (R).

RemarkIt should be by now clear that ρ2 ≤ 1 is not admissible here.

Open question

Every (ρ1, ρ2)-regular is an MRA wavelet. Does it arise from a(ρ1, ρ2)-regular MRA?

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 71: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gelfand-Shilov regular MRA and wavelets

If ψ is a Dziubanski-Hernández wavelet with ψ(x)� e−c|x |1/ρ2 ,then ψ ∈ Sρ1

ρ2 (R) for all ρ1 ≥ 0. They are examples of

DefinitionLet ρ1 ≥ 0 and ρ2 > 1. An orthonormal wavelet ψ is(ρ1, ρ2)-regular if ψ ∈ Sρ1

ρ2 (R).

DefinitionLet ρ1 ≥ 0 and ρ2 > 1. An MRA is called (ρ1, ρ2)-regular if itpossesses a scaling function φ ∈ Sρ1

ρ2 (R).

RemarkIt should be by now clear that ρ2 ≤ 1 is not admissible here.

Open question

Every (ρ1, ρ2)-regular is an MRA wavelet. Does it arise from a(ρ1, ρ2)-regular MRA?

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 72: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Gelfand-Shilov regular MRA and wavelets

If ψ is a Dziubanski-Hernández wavelet with ψ(x)� e−c|x |1/ρ2 ,then ψ ∈ Sρ1

ρ2 (R) for all ρ1 ≥ 0. They are examples of

DefinitionLet ρ1 ≥ 0 and ρ2 > 1. An orthonormal wavelet ψ is(ρ1, ρ2)-regular if ψ ∈ Sρ1

ρ2 (R).

DefinitionLet ρ1 ≥ 0 and ρ2 > 1. An MRA is called (ρ1, ρ2)-regular if itpossesses a scaling function φ ∈ Sρ1

ρ2 (R).

RemarkIt should be by now clear that ρ2 ≤ 1 is not admissible here.

Open question

Every (ρ1, ρ2)-regular is an MRA wavelet. Does it arise from a(ρ1, ρ2)-regular MRA?

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 73: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of multiresolution expansions

Theorem

Let {Vm}m∈Z be a (ρ1, ρ2)-regular MRA with orthogonalprojections

Em : L2(R)→ Vm

and set σ = ρ1 + ρ2 − 1. Let s ≥ σ and t ≥ ρ2. Then,

limm→∞

Emf = f in Sst (R),

for each f ∈ Ss−σt (R).

There is a loss of regularity measured by σ > 0. We wonder

1 Is σ optimal? We conjecture so ...2 Are there special classes of MRA that avoid the loss of

regularity?J. Vindas Wavelets and Gelfand-Shilov spaces

Page 74: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of multiresolution expansions

Theorem

Let {Vm}m∈Z be a (ρ1, ρ2)-regular MRA with orthogonalprojections

Em : L2(R)→ Vm

and set σ = ρ1 + ρ2 − 1. Let s ≥ σ and t ≥ ρ2. Then,

limm→∞

Emf = f in Sst (R),

for each f ∈ Ss−σt (R).

There is a loss of regularity measured by σ > 0. We wonder

1 Is σ optimal? We conjecture so ...2 Are there special classes of MRA that avoid the loss of

regularity?J. Vindas Wavelets and Gelfand-Shilov spaces

Page 75: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of multiresolution expansions

Theorem

Let {Vm}m∈Z be a (ρ1, ρ2)-regular MRA with orthogonalprojections

Em : L2(R)→ Vm

and set σ = ρ1 + ρ2 − 1. Let s ≥ σ and t ≥ ρ2. Then,

limm→∞

Emf = f in Sst (R),

for each f ∈ Ss−σt (R).

There is a loss of regularity measured by σ > 0. We wonder

1 Is σ optimal? We conjecture so ...2 Are there special classes of MRA that avoid the loss of

regularity?J. Vindas Wavelets and Gelfand-Shilov spaces

Page 76: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of multiresolution expansions

Theorem

Let {Vm}m∈Z be a (ρ1, ρ2)-regular MRA with orthogonalprojections

Em : L2(R)→ Vm

and set σ = ρ1 + ρ2 − 1. Let s ≥ σ and t ≥ ρ2. Then,

limm→∞

Emf = f in Sst (R),

for each f ∈ Ss−σt (R).

There is a loss of regularity measured by σ > 0. We wonder

1 Is σ optimal? We conjecture so ...2 Are there special classes of MRA that avoid the loss of

regularity?J. Vindas Wavelets and Gelfand-Shilov spaces

Page 77: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of multiresolution expansions

Theorem

Let {Vm}m∈Z be a (ρ1, ρ2)-regular MRA with orthogonalprojections

Em : L2(R)→ Vm

and set σ = ρ1 + ρ2 − 1. Let s ≥ σ and t ≥ ρ2. Then,

limm→∞

Emf = f in Sst (R),

for each f ∈ Ss−σt (R).

There is a loss of regularity measured by σ > 0. We wonder

1 Is σ optimal? We conjecture so ...2 Are there special classes of MRA that avoid the loss of

regularity?J. Vindas Wavelets and Gelfand-Shilov spaces

Page 78: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of multiresolution expansions

Theorem

Let {Vm}m∈Z be a (ρ1, ρ2)-regular MRA with orthogonalprojections

Em : L2(R)→ Vm

and set σ = ρ1 + ρ2 − 1. Let s ≥ σ and t ≥ ρ2. Then,

limm→∞

Emf = f in Sst (R),

for each f ∈ Ss−σt (R).

There is a loss of regularity measured by σ > 0. We wonder

1 Is σ optimal? We conjecture so ...2 Are there special classes of MRA that avoid the loss of

regularity?J. Vindas Wavelets and Gelfand-Shilov spaces

Page 79: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of multiresolution expansions

Theorem

Let {Vm}m∈Z be a (ρ1, ρ2)-regular MRA with orthogonalprojections

Em : L2(R)→ Vm

and set σ = ρ1 + ρ2 − 1. Let s ≥ σ and t ≥ ρ2. Then,

limm→∞

Emf = f in Sst (R),

for each f ∈ Ss−σt (R).

There is a loss of regularity measured by σ > 0. We wonder

1 Is σ optimal? We conjecture so ...2 Are there special classes of MRA that avoid the loss of

regularity?J. Vindas Wavelets and Gelfand-Shilov spaces

Page 80: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of wavelet expansions

Write (Sst )0(R) = {f ∈ Ss

t (R) :∫∞−∞ xnf (x)dx = 0, n = 0,1, . . . }.

A (ρ1, ρ2)-regular wavelet automatically satisfies ψ ∈ (Sρ1ρ2 )0(R).

TheoremLet ψ ∈ (Sρ1

ρ2 )0(R) be a (ρ1, ρ2)-regular orthonormal wavelet.Set σ = ρ1 + ρ2 − 1 and consider s > σ and t > σ + 1.

If f ∈ (Ss−σt−σ )0(R), then

f =∑n,m

〈f , ψn,m〉 ψn,m converges in the space (Sst )0(R).

Again we have lost regularity and the same questions asbefore make sense ...Our arguments here rely on mapping properties of wavelettransforms.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 81: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of wavelet expansions

Write (Sst )0(R) = {f ∈ Ss

t (R) :∫∞−∞ xnf (x)dx = 0, n = 0,1, . . . }.

A (ρ1, ρ2)-regular wavelet automatically satisfies ψ ∈ (Sρ1ρ2 )0(R).

TheoremLet ψ ∈ (Sρ1

ρ2 )0(R) be a (ρ1, ρ2)-regular orthonormal wavelet.Set σ = ρ1 + ρ2 − 1 and consider s > σ and t > σ + 1.

If f ∈ (Ss−σt−σ )0(R), then

f =∑n,m

〈f , ψn,m〉 ψn,m converges in the space (Sst )0(R).

Again we have lost regularity and the same questions asbefore make sense ...Our arguments here rely on mapping properties of wavelettransforms.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 82: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of wavelet expansions

Write (Sst )0(R) = {f ∈ Ss

t (R) :∫∞−∞ xnf (x)dx = 0, n = 0,1, . . . }.

A (ρ1, ρ2)-regular wavelet automatically satisfies ψ ∈ (Sρ1ρ2 )0(R).

TheoremLet ψ ∈ (Sρ1

ρ2 )0(R) be a (ρ1, ρ2)-regular orthonormal wavelet.Set σ = ρ1 + ρ2 − 1 and consider s > σ and t > σ + 1.

If f ∈ (Ss−σt−σ )0(R), then

f =∑n,m

〈f , ψn,m〉 ψn,m converges in the space (Sst )0(R).

Again we have lost regularity and the same questions asbefore make sense ...Our arguments here rely on mapping properties of wavelettransforms.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 83: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of wavelet expansions

Write (Sst )0(R) = {f ∈ Ss

t (R) :∫∞−∞ xnf (x)dx = 0, n = 0,1, . . . }.

A (ρ1, ρ2)-regular wavelet automatically satisfies ψ ∈ (Sρ1ρ2 )0(R).

TheoremLet ψ ∈ (Sρ1

ρ2 )0(R) be a (ρ1, ρ2)-regular orthonormal wavelet.Set σ = ρ1 + ρ2 − 1 and consider s > σ and t > σ + 1.

If f ∈ (Ss−σt−σ )0(R), then

f =∑n,m

〈f , ψn,m〉 ψn,m converges in the space (Sst )0(R).

Again we have lost regularity and the same questions asbefore make sense ...Our arguments here rely on mapping properties of wavelettransforms.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 84: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Convergence of wavelet expansions

Write (Sst )0(R) = {f ∈ Ss

t (R) :∫∞−∞ xnf (x)dx = 0, n = 0,1, . . . }.

A (ρ1, ρ2)-regular wavelet automatically satisfies ψ ∈ (Sρ1ρ2 )0(R).

TheoremLet ψ ∈ (Sρ1

ρ2 )0(R) be a (ρ1, ρ2)-regular orthonormal wavelet.Set σ = ρ1 + ρ2 − 1 and consider s > σ and t > σ + 1.

If f ∈ (Ss−σt−σ )0(R), then

f =∑n,m

〈f , ψn,m〉 ψn,m converges in the space (Sst )0(R).

Again we have lost regularity and the same questions asbefore make sense ...Our arguments here rely on mapping properties of wavelettransforms.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 85: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The wavelet transform: distribution case

We consider the wavelet transform

Wψf (b,a) =1a

∫ ∞−∞

f (x)ψ(

x − ba

)dx .

Denote H = {(b,a) : a > 0}. The wavelet synthesis operator is

MψF (x) =∫∫

HF (b,a)ψ

(x − b

a

)dbda

a2 .

The space of highly localized functions on H is

S(H) = {F ∈ C∞(H) : F (b,a)� (1+|b|)−n(a+1/a)−n, ∀n > 0}.

For a wavelet ψ ∈ S0(R), one gets continuity of

Wψ : S0(R)→ S(H) and Mψ : S(H)→ S0(R),

which yields a wavelet transform theory for distributions.J. Vindas Wavelets and Gelfand-Shilov spaces

Page 86: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The wavelet transform: distribution case

We consider the wavelet transform

Wψf (b,a) =1a

∫ ∞−∞

f (x)ψ(

x − ba

)dx .

Denote H = {(b,a) : a > 0}. The wavelet synthesis operator is

MψF (x) =∫∫

HF (b,a)ψ

(x − b

a

)dbda

a2 .

The space of highly localized functions on H is

S(H) = {F ∈ C∞(H) : F (b,a)� (1+|b|)−n(a+1/a)−n, ∀n > 0}.

For a wavelet ψ ∈ S0(R), one gets continuity of

Wψ : S0(R)→ S(H) and Mψ : S(H)→ S0(R),

which yields a wavelet transform theory for distributions.J. Vindas Wavelets and Gelfand-Shilov spaces

Page 87: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The wavelet transform: distribution case

We consider the wavelet transform

Wψf (b,a) =1a

∫ ∞−∞

f (x)ψ(

x − ba

)dx .

Denote H = {(b,a) : a > 0}. The wavelet synthesis operator is

MψF (x) =∫∫

HF (b,a)ψ

(x − b

a

)dbda

a2 .

The space of highly localized functions on H is

S(H) = {F ∈ C∞(H) : F (b,a)� (1+|b|)−n(a+1/a)−n, ∀n > 0}.

For a wavelet ψ ∈ S0(R), one gets continuity of

Wψ : S0(R)→ S(H) and Mψ : S(H)→ S0(R),

which yields a wavelet transform theory for distributions.J. Vindas Wavelets and Gelfand-Shilov spaces

Page 88: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The wavelet transform: distribution case

We consider the wavelet transform

Wψf (b,a) =1a

∫ ∞−∞

f (x)ψ(

x − ba

)dx .

Denote H = {(b,a) : a > 0}. The wavelet synthesis operator is

MψF (x) =∫∫

HF (b,a)ψ

(x − b

a

)dbda

a2 .

The space of highly localized functions on H is

S(H) = {F ∈ C∞(H) : F (b,a)� (1+|b|)−n(a+1/a)−n, ∀n > 0}.

For a wavelet ψ ∈ S0(R), one gets continuity of

Wψ : S0(R)→ S(H) and Mψ : S(H)→ S0(R),

which yields a wavelet transform theory for distributions.J. Vindas Wavelets and Gelfand-Shilov spaces

Page 89: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The wavelet transform in Gelfand-Shilov spaces

Let s, t , τ1, τ2. Define Sst ,τ1,τ2

(H) as the space of smoothfunctions satisfying estimates

∂ma ∂

nbF (b,a)�m Bn(n!)s exp

(−c(

a1/τ1 + a−1/τ2 + |b|1/t))

We have made a thorough analysis of wavelet transforms onGelfand-Shilov spaces. In their simplest forms, our results yield:

TheoremLet ψ ∈ (Sρ1

ρ2 )0(R) where ρ1 ≥ 0 and ρ2 > 1. Setσ = ρ1 + ρ2 − 1. If s > σ and t > σ + 1, the wavelet mappings

Wψ : (Ss−σt−σ )0(R)→ Ss

t ,t−ρ2,s−ρ1(H)

andMψ : Ss

t ,t−ρ2,s−ρ1(H)→ (Ss

t )0(R)

are continuous.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 90: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The wavelet transform in Gelfand-Shilov spaces

Let s, t , τ1, τ2. Define Sst ,τ1,τ2

(H) as the space of smoothfunctions satisfying estimates

∂ma ∂

nbF (b,a)�m Bn(n!)s exp

(−c(

a1/τ1 + a−1/τ2 + |b|1/t))

We have made a thorough analysis of wavelet transforms onGelfand-Shilov spaces. In their simplest forms, our results yield:

TheoremLet ψ ∈ (Sρ1

ρ2 )0(R) where ρ1 ≥ 0 and ρ2 > 1. Setσ = ρ1 + ρ2 − 1. If s > σ and t > σ + 1, the wavelet mappings

Wψ : (Ss−σt−σ )0(R)→ Ss

t ,t−ρ2,s−ρ1(H)

andMψ : Ss

t ,t−ρ2,s−ρ1(H)→ (Ss

t )0(R)

are continuous.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 91: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The wavelet transform in Gelfand-Shilov spaces

Let s, t , τ1, τ2. Define Sst ,τ1,τ2

(H) as the space of smoothfunctions satisfying estimates

∂ma ∂

nbF (b,a)�m Bn(n!)s exp

(−c(

a1/τ1 + a−1/τ2 + |b|1/t))

We have made a thorough analysis of wavelet transforms onGelfand-Shilov spaces. In their simplest forms, our results yield:

TheoremLet ψ ∈ (Sρ1

ρ2 )0(R) where ρ1 ≥ 0 and ρ2 > 1. Setσ = ρ1 + ρ2 − 1. If s > σ and t > σ + 1, the wavelet mappings

Wψ : (Ss−σt−σ )0(R)→ Ss

t ,t−ρ2,s−ρ1(H)

andMψ : Ss

t ,t−ρ2,s−ρ1(H)→ (Ss

t )0(R)

are continuous.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 92: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

The wavelet transform in Gelfand-Shilov spaces

Let s, t , τ1, τ2. Define Sst ,τ1,τ2

(H) as the space of smoothfunctions satisfying estimates

∂ma ∂

nbF (b,a)�m Bn(n!)s exp

(−c(

a1/τ1 + a−1/τ2 + |b|1/t))

We have made a thorough analysis of wavelet transforms onGelfand-Shilov spaces. In their simplest forms, our results yield:

TheoremLet ψ ∈ (Sρ1

ρ2 )0(R) where ρ1 ≥ 0 and ρ2 > 1. Setσ = ρ1 + ρ2 − 1. If s > σ and t > σ + 1, the wavelet mappings

Wψ : (Ss−σt−σ )0(R)→ Ss

t ,t−ρ2,s−ρ1(H)

andMψ : Ss

t ,t−ρ2,s−ρ1(H)→ (Ss

t )0(R)

are continuous.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 93: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Some references

For more details about the subject of this talk, see my jointarticles with D. Rakic, S. Pilipovic, and N. Teofanov:

1 The wavelet transforms in Gelfand-Shilov spaces, Collect. Math.67 (2016), 443–460.

2 Multiresolution expansions and wavelets in Gelfand-Shilovspaces, RACSAM 114 (2020), 66.

For details on the construction of wavelets of subexponentialdecay, see e.g.:

J. Dziubanski, E. Hernández, Band-limited wavelets withsubexponential decay, Canad. Math. Bull. 41 (1998), 398–403.

S. Moritoh, K. Tomoeda, A further decay estimate for theDziubanski-Hernández wavelets, Canad. Math. Bull. 53 (2010),133–139.

J. Vindas Wavelets and Gelfand-Shilov spaces

Page 94: Wavelets and Gelfand-Shilov spacescage.ugent.be/~jvindas/Talks_files/UGentMarch_2020.pdf · 2020. 3. 11. · Wavelets and Gelfand-Shilov spaces Jasson Vindas jasson.vindas@UGent.be

Some references

For more details about the subject of this talk, see my jointarticles with D. Rakic, S. Pilipovic, and N. Teofanov:

1 The wavelet transforms in Gelfand-Shilov spaces, Collect. Math.67 (2016), 443–460.

2 Multiresolution expansions and wavelets in Gelfand-Shilovspaces, RACSAM 114 (2020), 66.

For details on the construction of wavelets of subexponentialdecay, see e.g.:

J. Dziubanski, E. Hernández, Band-limited wavelets withsubexponential decay, Canad. Math. Bull. 41 (1998), 398–403.

S. Moritoh, K. Tomoeda, A further decay estimate for theDziubanski-Hernández wavelets, Canad. Math. Bull. 53 (2010),133–139.

J. Vindas Wavelets and Gelfand-Shilov spaces