Wavelet Based PDE Valuation of -...

25
1 Wavelet Based PDE Valuation of Wavelet Based PDE Valuation of Derivatives Derivatives M.A.H. Dempster Centre for Financial Research Judge Institute of Management University of Cambridge & Cambridge Systems Associates Limited Co-workers: A. Eswaran, D.G. Richards & G.W.P Thompson 7 th Annual CAP Workshop on Mathematical Finance, 1 December, 2000 Research partially sponsored by Citicorp (Schroder Salomon Smith Barney) Outline Outline 1. Introduction 2. Wavelet Transforms Scaling functions and wavelets Biorthogonal approach Fast transform algorithm 3. Wavelets and PDE’s Decomposition of differential operators PDEs in 1 space dimension PDEs in n space dimensions 4. European Option Valuation Vanilla call Cash-or-nothing call Supershare call 5. Cross-currency Swap Valuation 6. Conclusions and Further Work

Transcript of Wavelet Based PDE Valuation of -...

Page 1: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

1

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Wavelet Based PDE Valuation of Wavelet Based PDE Valuation of DerivativesDerivatives

M.A.H. Dempster

Centre for Financial Research

Judge Institute of Management University of Cambridge

&Cambridge Systems Associates Limited

Co-workers: A. Eswaran, D.G. Richards & G.W.P Thompson

7th Annual CAP Workshop on Mathematical Finance, 1 December, 2000

Research partially sponsored by Citicorp (Schroder Salomon Smith Barney)

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Outline Outline 1. Introduction

2. Wavelet TransformsScaling functions and wavelets

Biorthogonal approach

Fast transform algorithm

3. Wavelets and PDE’sDecomposition of differential operators

PDEs in 1 space dimension

PDEs in n space dimensions

4. European Option ValuationVanilla call

Cash-or-nothing call

Supershare call

5. Cross-currency Swap Valuation

6. Conclusions and Further Work

Page 2: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

2

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• What are wavelets ?

• Wavelets are nonlinear functions which can be scaled and translated to form a basis for the Hilbert space of square integrable functions

• Wavelets generalize the trigonometric functions which generate the classical Fourier basis for

• Hence there are wavelet -- and fast wavelet transforms -- which generalize the time to frequency map of the Fourier transform topick up both the space and time behavior of a function

(s )iste ∈

2 ( )L

2L

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Page 3: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

3

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

5QWTEG 4QDK2QNKMCT U YCXGNGVVWVQTKCN

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Applications of waveletsApplications of wavelets

• Digital image compression

• Signal processing

• De-noising of signals --filtering

• Numerical analysis

Page 4: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

4

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Wavelets and PDEsWavelets and PDEsA wavelet based approach to the solution of PDEs has been

studied by

• Beylkin (1993)

• Vasilyev, Yuen, Pao (1997)

• Monasse and Perrier (1998)

• Prosser and Cant (1999, 2000)

• Dahmen et al (1999)

• Cohen et al (2000)

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Advantages of using wavelets to Advantages of using wavelets to solve derivative valuation PDEssolve derivative valuation PDEs

• Wavelet PDE methods combine the advantages of both spectral (Fourier) and finite-difference methods and allow both space and time dependent coefficients

• Large classes of operators and functions are sparse or sparse to high accuracy when transformed into the wavelet domain

• Wavelets are suitable for problems with the multiple spatial scales common in financial problems

• Wavelets can be used for nonlinear terms• Wavelets accurately represent the PDE solution in regions

of sharp transitions

Page 5: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

5

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

2. Wavelet Transforms2. Wavelet TransformsScaling Functions and Wavelets

• The scaling function is the solution of a dilation equation

where is normalised i.e.

• The wavelet is defined in terms of the scaling function as

0

(x ) 2 ( 2 )kk

h x kφ φ∞

== −∑

∫∞

∞−

=1)( dxxφ

0

( ) 2 ( 2 )kk

x g x kψ φ∞

== −∑

ψ

φ

φ

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• The basis functions and are generated from and through scaling and translation as

,j kψφ

,j kφψ

( ) / 2 / 2,

2: 2 (2 ) 2

2

jj j j

j k j

x kx x kφ φ φ− − − −= − =

( ) / 2 / 2,

2: 2 (2 ) 2

2

jj j j

j k j

x kx x kψ ψ ψ− − − −= − =

Page 6: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

6

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• and are chosen so that dilations and translations of the wavelet form an orthonormal basis of i.e.

where denotes the Kronecker delta

• The two sequences of coefficients h and g are known from the signal processing literature as filters

ψ

, , , ,( ) ( ) j k j k j j k kx x dxψ ψ δ δ∞

′ ′ ′ ′−∞

=∫

δ

2 ( )L

0: k kh h ∞== 0: k kg g ∞

==

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• For any function there exists a matrix djk such that

where

2( )f L∈

,( ) ( )jk j kj k

f x d xψ+ +∈ ∈

= ∑ ∑

,( ) ( )jk j kd f x x dxψ∞

−∞

= ∫

Page 7: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

7

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• For example the Haar wavelet is defined by

• For the Haar filter the solution to the dilation equation gives the

unit box function for i.e.

for and 0 otherwise

0 1 1/ 2h h= =

( ) 1xφ =

φ

[0,1]x ∈

( )xφ

x

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• The spaces spanned by and over the location parameter k with the scale parameter j fixed are usually denoted by

• To implement wavelet analysis on a computer we must have a smallest scale and a largest scale and thus we limit the range of the scale and location parameters j and k

• The spaces Vj and Wj are termed approximation subspaces and scaling function subspaces respectively

,j kφ ,j kψ

,

,

j k j k

j k j k

V span

W span

φψ

+

+

=

=

Page 8: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

8

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• These parameter ranges are chosen according to a required grid size in numerical computation

• The orthogonal wavelet approximation to a continuous

function f is given by

where J is the number of resolution scales and kranges from 0 to the number of coefficients in the specified component

0, 0, 1, 1, 0, 0,( ) ( ) ( ) ( )k k J k J k k kk k k

f x d x d x s xψ ψ φ− −≈ + + +∑ ∑ ∑L

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• For Daubechies wavelets the length L of the filters h and g is related to exact (M-1)th degree polynomial approximation for a fixed number J of resolution scales

• This is guaranteed by requiring the wavelet to have vanishing moments i.e.

for m=0,…,M-1

( ) 0mx x dxψ∞

−∞

=∫: / 2M L=

Page 9: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

9

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

ψ

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Biorthogonal waveletsBiorthogonal waveletsCohen, Daubechies and Feauveau (1992)

• Four basic function types -- two primals and two duals

• The biorthogonal wavelet approximation is expressed in terms of the dual wavelet functions

0, 0, 1, , 0, 0,( ) ( ) ( ) ( )k k J k J k k kk k k

f x d x d x s xψ ψ φ−≈ + + +∑ ∑ ∑ %% %L

Page 10: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

10

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

φ ψ

φ% ψ%

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• Biorthogonal wavelets are not orthogonal but they satisfy the biorthogonality relationships

, , , ,

, ,

, ,

, , , ,

( ) ( )

( ) ( ) 0

( ) ( ) 0

( ) ( )

j k j k j j k k

j k j k

j k j k

j k j k j j k k

x x dx

x x dx

x x dx

x x dx

φ φ δ δ

φ ψ

ψ φ

ψ ψ δ δ

′ ′ ′ ′

′ ′ ′ ′

=

=

=

=

∫∫∫∫

%

%

%

%

Page 11: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

11

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Biorthogonal approachBiorthogonal approach• Biorthogonal wavelets are symmetrical and generalize the

orthogonal wavelet approximation

• Basis functions for biorthogonal wavelet spaces are generated from the primal scaling function and the dual scalingfunction

• Biorthogonal systems are thus derived from a paired hierarchy of approximation subspaces

φ%

1 1

1 1

j j j

j j j

V V V

V V V

− +

− +

⊂ ⊂

⊂ ⊂

L L

% % %L L

φ

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• Wavelet innovation spaces and are defined by

with

• Basis functions for the wavelet innovation spaces are generated by the primal and dual wavelets and

• Projections of a function f onto finite dimensional scaling function space VJ

or wavelet space WJ are given by

jWjW%

1

1

V V W

V V W

j j j

j j j

+

+

= ⊕

= ⊕% % %

j j j jV W V W⊥ ⊥% %

ψ ψ%

, ,

, ,

( ) ( ), ( ) ( )

( ) ( ), ( ) ( )

j

j

V j k j kk

W j k j kk

P f x f u x x

P f x f u x x

φ φ

ψ ψ

=

=

∑∑

%

%

Page 12: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

12

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Biorthogonal interpolating wavelet transforms Biorthogonal interpolating wavelet transforms Deslauriers and Dubuc (1989) Donoho (1992)

• The biorthogonal interpolating wavelet transform has basis functions of the form

ZKHUH LVWKH'LUDFGHOWDIXQFWLRQDQGxj,k is a grid point in the spatial dimension at scale level j

• An explicit form for is unknown but the corresponding wavelet coefficients can be derived using the biorthogonality conditions

• These wavelets are interpolating because the primal scaling function is equal to 1 for leading to polynomial interpolation of up to order M-1 between grid points

,

1,

, ,

( ) (2 )

( ) (2 2 1)

( ) ( )

jj k

jj k

j k j k

x x k

x x k

x x x

φ φ

ψ φ

φ δ

+

= −

= − −

= −%

ψ%

( )xφ 0 and 0 for 0x x= ≠

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Fast interpolating wavelet Fast interpolating wavelet transform algorithm transform algorithm

• The projection of a function f onto a finite dimensional scaling function space Vj is given by

, ,

,

, ,

( ) ( ), ( ) ( )

( / 2 ) ( )

: ( )

jV j k j kk

jj k

k

fj k j k

k

P f x f u x x

f k x

s x

φ φ

φ

φ

=

=

=

∑∑∑

%

Page 13: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

13

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Fast interpolating wavelet transform algorithm structure

Finest:26=64

Coarsest: 23=8

Example: J := 6 P := 3

1 1

,0 ,1 ,2 ,2 1

1,0 1,0 1,1 1,21,2 1 1,2 1

, ,

, , | , ,

J

J J

Tf f f f

J J J J

Tf f f f f f

J J J JJ J

s s s s

d d s s s s− −

− − − −− − − −

LL

L LL

1 2 21,0 2,0 2,01,2 1 2,2 1 2,2 1

1,0

, , | , , | ,

, ,

J J J

Tf f f f f f

J J JJ J J

fJ J

d d d d s s

d d

− − −− − −− − − − − −

− −

L L LL

L 1 1 11,0 1,01,2 1 1,2 1 1,2 1

1 2 3

| , , |

J J P J P

Tf f f f f

J P J PJ P J P

J J J J P

d d s s

W W W V

− − − − −− − − −− − − − − − −

− − − −

↓⊕ ⊕ ⊕ ⊕

L L LL

L

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

+PVGTRQNCVKPI+PVGTRQNCVKPIDKQTVJQIQPCNDKQTVJQIQPCN YCXGNGVVTCPUHQTOEQORNGZKV[YCXGNGVVTCPUHQTOEQORNGZKV[

• The number of operations required for the transform algorithm for Presolution levels is as 2M filter coefficients define the primal scaling function which spans the space of polynomial of degree less than M-1

• Calculation of the wavelet coefficients for a given resolution level j can be accomplished in 2(M-1)+1 floating point operations and the sub-sampling process for the scaling function coefficients requires a further 2j operations for a total of 2j+1M operations required per resolution level j

• For fixed J and P the fast interpolating wavelet transform algorithm is O(M) for exact (M-1)st order polynomial approximation

• Since the finest resolution in a spatial grid of N points is J=log2N for fixed M and P the complexity of the transform is O(N)

( )12 2 2 2 1J

i J P P

i J P

M M− +

= −

= −∑

,fj kd

Page 14: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

14

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

3. Wavelets and PDEs3. Wavelets and PDEs

Decomposition of differential operators• Define such that

• Repeated application of the approximation subspace decompositiongives

( )nJ∂

( ) ( ) : ( )J J

nn

J V Vn

df x P P f x

dx∂ =

1 1( ) ( ) : ( )

J P i J P i

nJ Jn

J V W V Wni J P i J P

df x P P P P f x

dx− −

− −

= − = −

∂ = + + ∑ ∑

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• For example the decomposition of the first derivativeoperator is given by

• Alternatively where and

and are orthogonal matrices denoting the forwardand inverse transforms with

d

dx

1 1

J P i J P i

J J

J V W V Wi J P i J P

dP P P P

dx− −

− −

= − = −

∂ = + + ∑ ∑

1 1J JW W −∂ = ∂ 1

J JJ V V

dP P

dx∂ =

W 1W −

1W W W −′= =

Page 15: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

15

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• Using the sampling nature of the dual scaling function

can be written as to take account of domain boundaries as1J∂

, ,,

1, ,

,

, ,,

2 ( ) 0, , 1

2 ) , , 2

2 ( 2 1, , 2

LJ f L

J k Jk

J f JJ J k J

k

RJ f R J J

J k Jk

ds k k M

dx

ds k k M M

dx

ds k k M

dx

αα

αα

αα

φ α φ

φ α φ

φ α φ

− = −

∂ = ( − = − − ) = − +

L

L

L

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• The entire operator can thus be determined provided the values of can be obtained

• An approach to determining filter coefficients for a

derivative of order n is given by Prosser and Cant

(1999)

• Their development provides analytic expressions for the

resulting scaling function and its derivative filter

coefficients

1J∂

(1) ( ) /kr d k dxα φ α− = −

( )nkr

φ

Page 16: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

16

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

PDEs in 1 space dimensionPDEs in 1 space dimension

• Consider a first order nonlinear hyperbolic PDE defined over an interval [ , ]l rx xΩ =

/

( )

( )

u

Ll

Rr

u uS x

t xu

x t x xtu

x t x xt

ρ∂ ∂= + ∉∂Ω∂ ∂∂ = − =∂∂ = − =∂

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• Its wavelet transformed counterpart is

where and is the standard decomposition

of defined as

• Using the multiresolution strategy to discretize the problem we represent the domain P+1 times for a number P of different resolutions of the discretization

• There are P wavelet spaces and the coarse resolution scaling function space

• In the transform domain each representation of the solution defined at some resolution P must be supplemented by boundaryconditions

1 (1) 1 /( ) J J uJ P J J Pu u S x

tρ− −

− −∂ ℘ = −∂ +℘ ∉∂Ω∂

11

J P i

JJJ P V W

i J P

P P−

−−−

= −

℘ = + ∑ (1)

J∂J-1 J-1J-P J-P

d

dx℘ ℘

(P 1)J PV − ≥

d

dx

Page 17: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

17

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• A traditional finite difference scheme replaces partial derivatives

with algebraic approximations at grid points and solves the system of algebraic equations to obtain a numerical solution of the PDE

• The method of lines transforms the PDE into a vector ODE by replacing the spatial partial derivatives with their wavelet approximations but retaining the time derivatives

• The vector ODE is solved in time using a stiff ODE solver

• A method based on the backward differentiation formula(LSODE) from Lawrence Livermore Laboratories has been implemented in C/Fortran 90 on an IBM RS6000/590

• The complexity of the method is for time discretization ( )O Nτ τ

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• The entire multiresolution wavelet machinery presented so far can be extended to several space dimensions d by taking straight forward Cartesian products of appropriate approximation and scaling subspaces -- i.e. tensor productsof appropriate wavelet bases -- to result in a fast wavlettransform of O(N) for N :=nd for spatial discretization n

• The imposition of boundary conditions for nonlinearly bounded domains is nontrivial but these are fortunately rare in PDE derivative valuation problems which usually are Cauchy problems on a strip

Page 18: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

18

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

! !• The Black Scholes PDE is

where S is stock price, is volatility and r is the risk free rate of interest

• Transform to the heat diffusion equation

using

• Then C(S,T) := max(S-X , 0) becomes for N U 2

22 2

2

10

2

C C CS rS rC

t S Sσ∂ ∂ ∂+ + − =

∂ ∂ ∂

2

2 for , 0

u ux

τ∂ ∂= − ∞ < < ∞ >∂ ∂

2 and 2 /xS Xe t T τ σ= = −

21 1( 1) ( 1)

2 2( , ) ( , )k x k

C x e Xu xτ

τ τ− − − +

=

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

European vanilla call• For a vanilla European call option the boundary conditions are

• The boundary conditions for the transformed PDE are

• The heat equation solution can be transformed back to original variables as

ZKHUHN U 2

21 1( 1) ( 1)

2 4

1 1( 1) ( 1)

2 2

( , ) 0 as

( , ) as

( ,0) max ,0

k x k

k x k x

u x x

u x e x

u x e e

τ

τ

τ+ + +

+ −

= → −∞

→ ∞

= −

:

2 211 1( 1) ( )( 1) (1 ) 282 2 1

( , ) log( / ), ( )2

k T tk kC S t X S e u S X T t

σσ

+ −+ − = −

(0, ) 0, ( , ) ~ as SC t C S t S= → ∞

Page 19: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

19

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Vanilla European CallVanilla European Call• S =10, strike =10, r = 5%, volatility = 20%, maturity=1 Year• Exact value: 1.04505

• Speedup : 1.9

Space Steps Time Steps Value Solution time (seconds)64 60 1.03515 .05128 100 1.04220 .10256 200 1.04502 .13512 200 1.04505 .301024 200 1.04505 .90

Space Steps Time Steps Value Solution time (seconds)64 60 1.03184 .02128 100 1.04184 .04256 200 1.04426 .09512 200 1.04486 .161024 200 1.04501 .302000 200 1.04505 .57

Wavelet method of lines

Crank-Nicolson Finite Difference Method

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Cash or nothing binary callCash or nothing binary call• The cash-or-nothing call option has a payoff

where H is the Heaviside function, i.e. if at expiry the stock price S > X the payoff is B

• The boundary conditions for this option in the transformeddomain are

( ) ( )S B S XΠ = Η −

21 1( 1) ( 1)

2 4

1 1 1( 1) ( 1) ( 1)

2 2 2

( , ) 0 as

( , ) as

( ,0) ,0

k x k

k x k x k x

u x x

Bu x e x

X

Bu x e H e e

X

τ

τ

τ− + +

− + −

= → −∞

→ ∞

= −

:

Page 20: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

20

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

CashCash--oror--nothing Callnothing Call• Same parameters as before, cash given B=3• Exact value 1.59297

• Speedup : 2.5

Space Steps Time Steps Value Solution time (seconds)128 100 1.49683 .10256 200 1.54904 .13512 200 1.59216 .301024 400 1.59288 1.02

Space Steps Time Steps Value Solution time (seconds)128 200 1.46296 .04256 400 1.53061 .10512 400 1.56391 .181024 400 1.58046 .312048 800 1.58872 1.35

4096 800 1.59285 2.56

Wavelet method of lines

Crank-Nicolson Finite Difference Method

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

"" ##• The supershare binary call option pays an amount 1/d if the

stock price lies between X and X+d at expiry

• The payoff of this option is

which becomes the Dirac delta function in the limit as

• The boundary conditions for this option in the transformeddomain are

( )1( ) ( ) ( )S H S X H S X d

dΠ = − − − −

( )1

( 1)2

( , ) 0 as

( , ) 0 as

( ,0) ( ) ( ) /k x

x x

u x x

u x x

u x e H Xe X H Xe X d dX

ττ

= → −∞→ ∞

= − − − −

:

0d ]

X dX +

d/1

Page 21: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

21

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Supershare Binary CallSupershare Binary Call• Same parameters as before, parameter d=3• Exact value 0.13855

• Speedup : 4.9

Space Steps Time Steps Value Solution time (seconds)128 100 .12796 .10256 200 .13310 .14512 200 .13808 .301024 400 .13848 1.04

Space Steps Time Steps Value Solution time (seconds)128 200 .12369 .04256 400 .13290 .09512 400 .13435 .161024 400 13666 .342048 800 .13787 1.35

4096 800 .13800 2.56

8000 800 .13835 5.11

Wavelet method of lines

Crank-Nicolson Finite Difference Method

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

$%$%#"!#"!

• We consider a 10 year cross-currency cancellable fixed-fixed swap with quarterly reset dates, a 2 day decision period and exchange of principal on first and last days

• Similar to the floating-floating deals discussed in Dempster & Hutton (1997) and JP Morgan/Risk(1999)

• 1-factor extended Vasicek yield curve models lead to a 3D parabolic PDE of the form

1[ ( )( ) ] 0

2

Vt V

t

∂ ′− ∇ Λ ∇ =∂

Page 22: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

22

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

• Solved for the normalized deal value 39 times in backwards time with a backwards dynamic programmingreset of the initial condition at each quarter

• %RXQGDU\FRQGLWLRQVDUHVHWDW RIWKHVWDWH

distributions and the computed deal is symmetric --value 0-- with the same initial term structures, mean reversions and forward volatility specification in both economies

• A 3D wavelet method of lines code in C/Fortran 90 and an explicit finite difference method in C have been implemented on an IBM RS6000/590

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

Cross Currency SwapCross Currency Swap• Domestic Fixed Rate=10%, Foreign Fixed Rate=10%• Exact value : 0

• Speedup : 81+

Discretization Value Solution time(seconds)

20 x 8 x 8 x 8 -0.00082 1.220 x 16 x16 x16 -0.00052 6.5420 x 32 x32 x 32 -0.00047 40.4040 x 64 x 64 x 64 -0.00034 410.10100 x 128 x 128 x 128 -0.00028 4240.30160 x 256 x 256 x 256 -0.00025 53348.10

Wavelet method of lines

Explicit Finite Difference Method

Value Solution time(seconds)

20 x 8 x 8 x 8 -0.00109 0.2820 x 16 x16 x16 -0.00101 1.7020 x 32 x32 x 32 -0.00074 16.8240 x 64 x 64 x 64 -0.00058 188.10100 x 128 x 128 x 128 -0.00046 2421.6160 x 256 x 256 x 256 -0.00038 33341.8

Page 23: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

23

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

(CEVQT+PVGTGUV4CVG5YCR8CNWCVKQP(CEVQT+PVGTGUV4CVG5YCR8CNWCVKQP

&)CWUUKCP/QFGN

6JGUJQTVTCVG KUIKXGPD[

YJGTG KUCFGVGTOKPKUVKEHWPEVKQP

CPF

$QPFRTKEGU JCXGCENQUGFHQTOKPVJKUOQFGN

1 2 1( ) ( ) ( ) ( ) ( )t s t t t t= + + +r X X X

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

d dt d

d dt d

d dt d

µ σµ σµ σ

= += += +

X X W

X X W

X X W[ ]i j ijd d dtρ=E W W

( )s t

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

+H8FGPQVGUVJGXCNWGQHVJGFGTKXCVKXGUGEWTKV[WPFGTVJGURQV

OGCUWTG KUCOCTVKPICNG

7UKPI+VQ UNGOOCVJG2&'UCVKUHKGFD[VJGXCNWGHWPEVKQPKU

6JKU2&'OWUVDGUQNXGFYKVJCRRTQRTKCVGDQWPFCT[EQPFKVKQPU

1 2 3

0

exp( ( ) ) ( , , , )t

t t tu du V t−∫ r X X X

2 2 22 2 2

1 1 2 2 3 3 1 2 32 2 21 2 3 1 2 3

2 2 2

12 1 2 13 1 3 23 2 3 1 2 31 2 1 3 2 3

1 1 1

2 2 2

( ( ) ) 0

V V V V V VX X X

X X X X X X

V V V Vs t X X X V

X X X X X X t

µ µ µ σ σ σ

ρ σ σ ρ σ σ ρ σ σ

∂ ∂ ∂ ∂ ∂ ∂+ + + + +∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ + + − + + + + =∂ ∂ ∂ ∂

Page 24: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

24

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

" "(KZGFHQTHNQCVKPI.+$14UYCR

2C[OGPV CVGPFQHGCEJRGTKQFKU

YJGTGT KUVJGHKZGFTCVG KUVJGCEETWCNHCEVQT<KUVJGPQVKQPCNRTKPEKRCN CPF KUVJG.+$14TCVG HQTRGTKQF

2C[OGPV CVVJGGPFQHGCEJRGTKQF

8CNWGQHVJGUYCR CVV6 KUVJGUWOQHVJG

GZRGEVGFRTGUGPVXCNWGUQHCNNHWVWTGRC[OGPVU

2&'UQNXGFYKVJVGTOKPCNEQPFKVKQP HQTGCEJRGTKQFIKXGPD[ QXGTVJGURCVKCNITKFRQKPVU

1 1 1( ) ( , ) ( )j j j j jV t B t t p V t−− − −= +

*1[ ( , ) ]j j j jZ t t rδ −= −p L

jδ1( , )j jt t−L

1,j jt t−

1( , )j j jt t−B p

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

$GTOWFCP5YCRVKQP

6JGEQWPVGTRCTV[ JCUVJGQRVKQPVQGPVGTVJGUYCRCVVJGDGIKPPKPIQHGXGT[RGTKQF

6JGVGTOKPCNEQPFKVKQP HQTGCEJRGTKQFKUIKXGPD[

YJGTGTGRTGUGPVUVJGUWOQHVJGEQPFKVKQPCNGZRGEVGFRTGUGPVXCNWGUQHCNNHWVWTGRC[OGPVUCHVGTVL

6JG2&'KUUQNXGFHQTGCEJRGTKQFYKVJVJG

VGTOKPCNEQPFKVKQPIKXGPCDQXG

( ) max , ( )j jV t V t− = ∑

Σ

Page 25: Wavelet Based PDE Valuation of - cap.columbia.educap.columbia.edu/files/seasieor/cn2229@columbia.edu/wavcap_1.pdf · Applications of wavelets • Digital image compression • Signal

25

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

$GTOWFCP5YCRVKQP$GTOWFCP5YCRVKQP• 1 Year, 2 Periods• Fixed Rate=5%, Initial Flat Term Structure=5%• MC value : 0.09111

• Speedup :

Discretization Value Solution time(seconds)

40 x 16 x 16 x 1640 x 32 x 32 x 3280 x 64 x 64 x 64150 x 128 x 128 x 128280 x 256 x 256 x 128

Wavelet method of lines

Dufort Frankel Explicit Finite Difference MethodDiscretization Value Solution time

(seconds)40 x 16 x 16 x 16 .12005 .0440 x 32 x 32 x 32 .10677 .6580 x 64 x 64 x 64 .09814 20.27150 x 128 x 128 x 128 .09328 461300 x 256 x 256 x 128 .09156 4800

l%GPVTGHQT (KPCPEKCN4GUGCTEJ,WFIG+PUVKVWVGQH/CPCIGOGPV7PKXGTUKV[QH%CODTKFIGYYYEHTLKOUECOCEWM

&%'(&%'(• O(N) wavelet based PDE methods generalize O(N log2 N) spectral

methods without their drawbacks

• Wavelets are ideally suited for complex derivative valuations which involve several space scales e.g. due to payoff curvature ordiscontinuities

• Wavelets result in greater accuracy at a given discretization level with

substantial speedups -- using prototype code -- over optimized finite

difference codes in dimensions up to 3

• We are currently implementing a thresholded 3D wavelet code which

should improve both speedup and memory use by an order of magnitude

through sparse wavelet representation

• Then on to 2 and 3 factor cross currency swap valuation in 5 and 7D…