Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet...

41
Wave Dragon HidroEnergia 2004 (Falkenberg) Wave Dragon. Wave Power Plant using low-head turbines by Peter Frigaard 1 , Jens Peter Kofoed 1 & Wilfried Knapp 2 1 Dept. Civil Engineering, Aalborg University 2 Technical University of Munich

Transcript of Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet...

Page 1: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Wave Dragon.Wave Power Plant using low-head turbines

by

Peter Frigaard1, Jens Peter Kofoed1 & Wilfried Knapp2

1Dept. Civil Engineering, Aalborg University2Technical University of Munich

Page 2: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

• The Technology• Partners, Financing and Objectives• The Nissum Bredning Prototype • The Turbine Configuration• The Development Schedule• Experiences after 1 year at sea

Contents

Page 3: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Wave Dragon principle

Turbine outlet

Reservoir

Waves overtopping the doubly curved ramp

The Wave Dragon is a slack-moored wave energy converter that can be deployed alone or in parks wherever a sufficient wave climate and a water

depth of more than 25 m is found.

Climate Power production24 kW/m 12 GWh/y/unit36 kW/m 20 GWh/y/unit48 kW/m 35 GWh/y/unit

Wave reflector

Page 4: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Wave Dragon partners/subcontractors• SPOK ApS, Project Management Consultancy

(DK) • Löwenmark F.R.I, Consulting Engineer (DK)• MT Højgaard A/S, Construction Enterprise (DK)• Aalborg University – Hydraulics & Coastal

Engineering Laboratory (DK)• Balslev A/S, Consulting Engineers - electrical and

automation systems (DK) • Niras as, Consulting Engineer, Wave forecasting

models (DK) • Armstrong Technology Associates Ltd., Naval

Architects (UK) (Babcock Design & Technology)• VeteranKraft AB, Consulting Engineers - hydro

turbine design (S)• Nöhrlind Ltd, Research & Business strategy

development (UK) • Technical University Munich, Hydro turbine testing

and CFD modelling (D) • Kössler Ges.m.b.H., Manufacturer of hydro

turbines (A) • ESBI Engineering Ltd. (IE)• Wave Energy Centre, Lisbon (PT)• Rozmerovy Nacrte (CS)

Page 5: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Investments, from the start and until year 2004Contribution 1000 € Löwenmark F.R.I 1.503 SPOK ApS 891 VeteranKraft AB 366 Kössler Ges.m.b.h. 101 Balslev A/S 217 Belt Electric ApS 70 Wilfried Knapp 48 Nöhrlind Ltd 68 MT Højgaard A/S 169 Armstrong Ltd 136 NIRAS AS 35 ESBI Engineering Ltd 88 EU 2.078 Danish national funding 1.929 University funded 192 Total 7.892

The RTD is supported by

• EU Energie FP5

• Danish Energy Authority

• Elkraft System (PSO)

• Obel Family Foundation

• and the partners

Page 6: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Participants, May 23, 2003

Page 7: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Wave Dragon objectivesTo develope Wave Dragon to a power plant unit in size of

4 to 11 MW with a production price of 0.04 €/kWh

Page 8: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

1:4.5 Prototype at Nissum Bredning

Page 9: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Wave Dragon basic data(1:4.5) (1:1)

Key figures, units: 0.4 kW/m 36 kW/m Weight, steel and concrete

237 t 33,000 t

Total width and length 58x33 m 300x170 m Height 3.6 m 19 m Height above sea level 0.6-1.5 m 3 –7 m Reservoir 55 m3 8,000 m3 Number of turbines 7 16 – 20 Generators PMG PMG Rated power/unit 20 kW 7 MW Annual power produc-tion/unit GWh/y

0.04 20

Water depth 6 m > 25 m

Page 10: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Nissum Bredning, DenmarkThe wave climate in scale 1:4.5 of the North Sea

1

2

Page 11: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Launching Aalborg, DKMarch 10, 2003

Page 12: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Towing end March 2003

Page 13: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Up and running May 2003

Page 14: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Installation of internet connection

Page 15: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

First ocean wave energy converterproducing power to the grid

Page 16: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

´Sub’-projects to meet objectives• Demonstrate survivability - DEA 1999 and FP5 2003

• Optimise simple hydro turbine – EU CRAFT 2000

• Optimise geometrical layout – EU CRAFT and DEA 2001

• Demonstrate regular power production - DEA 2003

• Optimise power production - FP5 2003 - 2005

• Optimise structural design - FP5 2003 - 2005

Page 17: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Survivability is essentiel

Overtopping on the scale 1:50 model in a 100 year storm, EU CRAFT project

Page 18: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Pitch, heave and surge in scale 1:50

Heave

[m] Surge

[m] Pitch

[°]

Page 19: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Scale 1:50 ramp profile

From single

to a doublycurved ramp

Page 20: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Overtopping - model

Hald & Frigaard, 2001

Martinelli & Frigaard, 1999

Page 21: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Fenders and strain gauges

Page 22: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

The production of the prototype

Page 23: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

To be studied: Influence of open compartments

Page 24: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Turbine Ø 340mm has been tested

Page 25: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

6 Kaplan turbines installed Sept. 12th 2003

Page 26: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

The new turbines ready

Page 27: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Turbine Configuration

• 6 Kaplan turbines with cylinder gatesD=0.34 meter, n1=170min-1, Q=2.75 m3

Power output = 2.6 kWatt• 1 Kaplan turbine with siphon inlet

Specifications as above • 3 Dummy turbines

Dvalve = 0.43 meter

Page 28: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

To be studied: regulation strategy

• How much air in the chambers i.e. crest height

• How much water to take out before next wave is coming

Page 29: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

SCADA system for remote control

Page 30: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Results beginning to arrive

Page 31: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

• Measuring equipment– Pressure transducers,

Accelerometers– Force transducers, Movement

transducers– Strain gauges

• Online monitoring– Performance, Web Cams– www.wavedragon.net

Wave Dragon RTD activities- Coming 2 years

• WD prototype fully equiped– Turbines 1+6+3– Grid connected generators– Floating level control system

• Two different test sites– Close to Danish Wave Power

Association's test site– Further south-east where more

wave energy is available

Page 32: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Wave Dragon time table coming years• The concept is demonstrated, power has been delivered

to the grid 3 months ahead of schedule• Wave Dragon is the world’s first offshore wave energy

converter grid connected and producing power• The RTD in the coming 2 years will give useful

information for design optimization • The planning for full size deployment has begun, as the

procedure will take minimum 2 years• The funding for planning is looked for, investors are

invited to join the team, 2 step approach• Power purchase agreements are looked for in different

countries

Page 33: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Working offshore

Page 34: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Experience

• Fouling is no problem in the turbine runnerand guide vane area.

• Much more rust than foreseen.• Few weather windows with accessibility.• Operation costs at see very high.

• Problems, yes a lot. But the concept works

Page 35: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Wave Dragon objectives(To develope Wave Dragon to a power plant unit in size of 4 to 11 MW

with a competative production price per kWh.)For sure the objective will be reached sooner or later.

Will it be 2010, 2015, 2020 or ?

Page 36: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Overtopping

Page 37: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Page 38: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Overtopping - prototype

Page 39: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Summary

• The Wave Dragon has been in operation for morethan an year.

• Overtopping has been measured at Wavedragonprototype at Nissum bredningGood agreement with laboratory experiments.

• Functionality of the Wave Dragon concept has been demonstrated.

• Many problematic issues seen working off shorewith turbines.

Page 40: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

More information, results and web pictures:

www.wavedragon.net and

www.civil.auc.dk/~i5jpk/wd/wdnb.htm

Page 41: Wave Dragon. Wave Power Plant using low-head turbines · • 1 Kaplan turbine with siphon inlet Specifications as above • 3 Dummy turbines D valve = 0.43 meter. Wave Dragon HidroEnergia

Wave Dragon HidroEnergia 2004 (Falkenberg)

Wave Dragon working