Wave-current Interaction (WEC) in the COAWST Modeling System

35
Wave-current Interaction (WEC) in the COAWST Modeling System Nirnimesh Kumar, SIO with J.C. Warner, G. Voulgaris, M. Olabarrieta *see Kumar et al., 2012 (might be in your booklet) Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications, Ocean Modelling, Volume 47, 2012, Pages 65- 95. *also see Olabarrieta et al., 2012

description

Wave-current Interaction (WEC) in the COAWST Modeling System. Nirnimesh Kumar, SIO with J.C. Warner, G. Voulgaris, M. Olabarrieta. *see Kumar et al., 2012 (might be in your booklet) - PowerPoint PPT Presentation

Transcript of Wave-current Interaction (WEC) in the COAWST Modeling System

Page 1: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Wave-current Interaction (WEC) in the COAWST Modeling System

Nirnimesh Kumar, SIOwith J.C. Warner, G. Voulgaris, M. Olabarrieta

*see Kumar et al., 2012 (might be in your booklet) Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications, Ocean Modelling, Volume 47, 2012, Pages 65-95.*also see Olabarrieta et al., 2012

Page 2: Wave-current Interaction (WEC) in the  COAWST  Modeling System
Page 3: Wave-current Interaction (WEC) in the  COAWST  Modeling System
Page 4: Wave-current Interaction (WEC) in the  COAWST  Modeling System

πœ•π‘Όπœ•π‘‘

+(𝑼 .𝛻 )𝑼+πŸπ†πŸŽ

π›»π‘βˆ’β„¬ 𝒛+ 𝑓 𝒛×𝑼=𝟎Momentum Balance

Continuity 𝛻 ⋅𝑼=𝟎Eulerian

Governing Equations

;withRadiation Stress

Vortex Force Formalism

(𝑼 β‹… 𝛻 )𝑼=𝛁|𝑼|𝟐 /𝟐+ (πœ΅Γ—π‘Ό )×𝑼

This term on phase averaging gives vortex force

Recipes for Wave-Current Interaction

Page 5: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Radiation Stress

𝑺=[𝑆 π‘₯π‘₯ 𝑆 π‘₯𝑦𝑆 𝑦π‘₯ 𝑆 𝑦𝑦 ]=𝐸 [𝑛 βˆ™ (π‘π‘œπ‘ 2πœƒ+1 )βˆ’0.5

𝑛 βˆ™π‘ π‘–π‘› 2πœƒ2

𝑛 βˆ™π‘ π‘–π‘›2 πœƒ2

𝑛 . (𝑠𝑖𝑛2πœƒ+1 )βˆ’0.5]2-D Radiation Stress Equations (Longuet-Higgins, 1962, 1964)

Excess flux of momentum due to presence of waves. Explains wave setup, wave setdown, generation of longshore currents, rip currents.

Breaker Zone

Surf Zone

set-upMWLset-down

Swash

Beach Profile

Wave Setup:Balance between quasi-static pressure and radiation stress divergence

Longshore Currents:Generated due to gradient of radiation stress in longshore direction

Page 6: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Adapted from Smith (2006, JPO)

𝑼𝑺𝒕 𝑉 (π‘₯)πœ΅Γ—π‘Ό

Cross-shore

Alon

gsho

re

Stokes drift

h-mean ambient flow

𝑽𝑭=𝑉 𝑆𝑑(πœ•π‘‰πœ• π‘₯ βˆ’ πœ•π‘ˆπœ•π‘¦ ) οΏ½Μ‚οΏ½+π‘ˆπ‘†π‘‘ (πœ•π‘‰πœ• π‘₯ βˆ’ πœ•π‘ˆ

πœ•π‘¦ ) οΏ½Μ‚οΏ½

Product of Stokes drift and mean flow vorticity (Craik and Leibovich, 1976).

Physically representative of wave refraction due to current shear

𝑼𝑺𝒕

Vortex Force (VF)

Page 7: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Wave Rollers

Page 8: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Stokes-Coriolis Force, Surface and Bottom Streaming

Cross-shore Vel. Alongshore Vel.

From Lentz et al., 2008

Wave-propagation direction

Page 9: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Wave-averaged Eqns.

πœ•π‘’π‘™

πœ•π‘‘+{πœ• (𝑒𝑙𝑒𝑙 )

πœ•π‘₯+πœ• (𝑒𝑙𝑣 𝑙 )πœ• 𝑦

+πœ• (πœ”π‘ π‘’

𝑙 )πœ•π‘  }βˆ’ 𝑓𝑣 𝑙=βˆ’π» 𝑧 ( 1

𝜌0

πœ•π‘ƒπœ• π‘₯ |

𝑧)βˆ’{πœ•π‘†π‘₯π‘₯

πœ• π‘₯+πœ•π‘†π‘₯𝑦

πœ• 𝑦 }+𝐷π‘₯

Local Acc.

Advective accn. Coriolis + Stokes-Coriolis

Pressure Gradient

Radiation Stress

Bottom Stress

Radiation Stress

Accounts for wave breaking

+{𝑣𝑆𝑑 ( πœ•π‘£πœ• π‘₯ βˆ’ πœ•π‘’πœ• 𝑦 )βˆ’πœ”π‘ 

❑𝑆𝑑 πœ•π‘’πœ•π‘  }+𝐷π‘₯+ℱ𝑀π‘₯

Local Acc.

Advective accn. Stokes-Coriolis

Pressure Gradient

Vortex Force Bottom Stress

πœ•π‘’πœ•π‘‘

+{πœ• (𝑒𝑒)πœ• π‘₯

+πœ• (𝑒𝑣 )πœ• 𝑦

+𝑒 (πœ•π‘’π‘†π‘‘

πœ• π‘₯+πœ•π‘£ 𝑆𝑑

πœ• 𝑦 )+ πœ• (πœ”π‘ π‘’)πœ• 𝑠

+π‘’πœ• (πœ”π‘ 

❑𝑆𝑑 )πœ• 𝑠 }βˆ’ π‘“π‘£βˆ’ 𝑓 𝑣𝑆𝑑=βˆ’( 1

𝜌 0

πœ•πœ‘πœ• π‘₯ |

𝑧)

Coriolis

Non-conservative forcing

Vortex Force Formalism

Accounts for wave breaking

Page 10: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Wave-averaged Eqns.

+{𝑣𝑆𝑑 ( πœ•π‘£πœ• π‘₯ βˆ’ πœ•π‘’πœ• 𝑦 )βˆ’πœ”π‘ 

❑𝑆𝑑 πœ•π‘’πœ•π‘  }+𝐷π‘₯+ℱ𝑀π‘₯

Local Acc.

Advective accn. Stokes-Coriolis

Pressure Gradient

Vortex Force Bottom Stress

πœ•π‘’πœ•π‘‘

+{πœ• (𝑒𝑒)πœ• π‘₯

+πœ• (𝑒𝑣 )πœ• 𝑦

+𝑒 (πœ•π‘’π‘†π‘‘

πœ• π‘₯+πœ•π‘£ 𝑆𝑑

πœ• 𝑦 )+ πœ• (πœ”π‘ π‘’)πœ• 𝑠

+π‘’πœ• (πœ”π‘ 

❑𝑆𝑑 )πœ• 𝑠 }βˆ’ π‘“π‘£βˆ’ 𝑓 𝑣𝑆𝑑=βˆ’( 1

𝜌 0

πœ•πœ‘πœ• π‘₯ |

𝑧)

Coriolis

Non-conservative forcing

Vortex Force Formalism

Accounts for wave breaking

Surface Streaming

Bottom Streaming

Whitecapping

Wave Rollers

Depth-limited breaking

Page 11: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Depth-limited Breaking

𝐁𝑏=(1βˆ’Ξ±π‘ŸΒΏβ‹… πœ–π‘      

𝜌 0 β‹…πœŽπ€ β‹… 𝑓 𝑏 (𝑧 )

= Dissipation due to depth-limited breaking (from empirical formulations or SWAN)

𝑓 𝑏 (𝑧 )= 𝐹𝐡

βˆ«βˆ’h

οΏ½Μ‚οΏ½

𝐹𝐡 .𝑑𝑧

𝐹𝐡  =   cosh ( 2 πœ‹π»π‘Ÿπ‘šπ‘ 

(𝑧+𝐷 ))

Surface Intensified

Page 12: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean (Warner et al., 2010)

Coupled-Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system

Methodology

ROMS SWAN

WRF

CSTMShttp://woodshole.er.usgs.gov/operations/modeling/COAWST/index.html

Page 13: Wave-current Interaction (WEC) in the  COAWST  Modeling System

cppdefs.h (COAWST/ROMS/Include)WEC_MELLOR+ Activates the Mellor (2011) method for WEC

WEC_VF(preferred method for 3D)

Activate WEC using the Vortex Force formalism (Uchiyama et al., 2010)

Wave-current Interaction (WEC)

WEC_MELLOR(Mellor, 2011)

WEC_VF(Uchiyama et al., 10)

+ Roller Model+ Streaming

+ Dissipation (depth)+ Roller Model + Wave mixing + Streaming

Implemented in Kumar et al., 2011

Implemented in Kumar et al., 2012

*Processes in italics are optional

Page 14: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Dissipation (Depth-limited wave breaking)WDISS_THORGUZA Wave dissipation based on Thornton and Guza (1983).

See Eqn. (31), pg-71

WDISS_CHURTHOR Wave dissipation based on Church and Thornton (1993). See Eqn. (32), pg-71

WDISS_WAVEMODActivate wave-dissipation from a wave model. If using SWAN wave model, use INRHOG=1 for correct units of wave dissipation

Note: (a) Use WDISS_THORGUZA/CHURTHOR if no information about wave dissipation is

present, and you can’t run the wave model to obtain depth-limited dissipation

(b)If you do not define any of these options, and still define WEC_VF, the model expects a forcing file with information about dissipation

Page 15: Wave-current Interaction (WEC) in the  COAWST  Modeling System

ROLLER MODEL (for Wave Rollers)ROLLER_SVENDSEN Wave roller based on Svendsen (1984). See Warner et al.

(2008), Eqn. 7 and Eqn. 10.

ROLLLER_MONO Wave roller for monochromatic waves from REF-DIF. See Haas and Warner, 2009.

ROLLER_RENIERS Activate wave roller based on Reniers et al. (2004). See Eqn. 34-37 (Advection-Diffusion)

Note: If defining ROLLER_RENIERS, you must specify the parameter

wec_alpha (Ξ±r in Eqn. 34, varying from 0-1) in the INPUT file. Here 0 means no percentage of wave dissipation goes into creating wave rollers, while 1 means all the wave dissipation creates wave rollers.

Page 16: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Wave breaking induced mixing

TKE_WAVEDISSZOS_HSIG

β€’ Enhanced vertical mixing from waves within framework of GLS. See Eq. 44, 46 and 47. Based on Feddersen and Trowbridge, 05

β€’ The parameter Ξ±w in Eq. 46 can be specified in the INPUT file as ZOS_HSIG_ALPHA (roughness from wave amplitude)

β€’ Parameter Cew in Eqn. 47 is specified in the INPUT file as SZ_ALPHA (roughness from wave dissipation)

Page 17: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Bottom and Surface Streaming

BOTTOM_STREAMINGBottom streaming due to waves using Uchiyama et al. (2010) methodology. See Eqn. 22-26. This method requires dissipation due to bottom friction. If not using a wave model, then uses empirical Eq. 22.

BOTTOM_STREAMING_XU_BOWEN

Bottom streaming due to waves based on methodology of Xu and Bowen, 1994. See Eq. 27.

SURFACE_STREAMING Surface streaming using Xu and Bowen, 1994. See Eq. 28.

Note: (a) BOTTOM_STREAMING_XU_BOWEN was tested in Kumar et al. (2012). It requires

very high resolution close to bottom layer. Suggested Vtransform=2 and Vstretching=3

Page 18: Wave-current Interaction (WEC) in the  COAWST  Modeling System

[0,0]

[1000,-12]

z

x

y

Hsig= 2mTp = 10sΞΈ = 10o

Shoreface Test Case (Obliquely incident waves on a planar beach)

Wave field computed using SWAN One way coupling (only WEC) Application Name: SHOREFACE Header file: COAWST/ROMS/Include/shoreface.h Input file: COAWST/ROMS/External/ocean_shoreface.in

Page 19: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Header File (COAWST/ROMS/Include)

Page 20: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Input File (COAWST/ROMS/External)

Page 21: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Input File (COAWST/ROMS/External)

Requires a wave forcing fileas one way coupling only

Page 22: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Forcing file for one way coupling Data/ROMS/Forcing/swan_shoreface_angle_forc.nc

Should contain the following variables

Wave Height Hwave

Wave Direction Dwave

Wave Length Lwave

Bottom Orbital Vel. Ub_Swan

Depth-limited breaking Dissip_break

Whitecapping induced breaking Dissip_wcap

Bottom friction induced dissip. Dissip_fric

Time Period Pwave_top/Pwave_bot

Page 23: Wave-current Interaction (WEC) in the  COAWST  Modeling System

WEC Related Output

Page 24: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Results (I of III)Significant Wave Height

Sea surface elevation

Page 25: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Results (II of III)Depth-averaged Velocities

Cross-shore Vel. Longshore Vel.

Page 26: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Results (III of III)

Cross-shore

Longshore

Vertical

Eulerian Stokes

Page 27: Wave-current Interaction (WEC) in the  COAWST  Modeling System

WEC related Diagnostics Terms(i.e., contribution to momentum balance)Terms in momentum balance Definition Output

VariableLocal Acc. u_accel/

ubar_accelHorizontal Advection u_hadv/ubar_hadv

Vertical Advection

u_vadv

Coriolis Force u_cor/ubar_cor

Stokes-Coriolis u_stcor/ubar_stcorPressure Gradient

u_prsgrd/ubar_prsgrd

Vortex Force u_hjvf/ubar_hjvf

Vortex Force u_vjvf

Page 28: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Terms in momentum balance Definition Output Var.

(see Eqn. 21)Breaking + Roller Acceleration + Streaming

u_wbrk/ubar_wbrku_wrol/ubar_wrolu_bstm/ubar_bstmu_sstm/ubar_sstm

BREAKING THE PRESSURE GRADIENT TERM

Pressure Gradient u_prsgrd/ubar_prsgrd

Eulerian Contribution ubar_zeta

Quasi-static response, Eqn. 7 ubar_zetw

Bernoulli-head contribution, Eqn. 5 ubar_zbeh

Surface pressure boundary, Eqn. 9 ubar_zqsp

Page 29: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Vertical profile of terms in momentum balance

Breaking Acc.

Hor. Advection

Hor. VF

Pressure Gradient

Vertical Mixing

Vertical Advection

Alongshore Cross-shore

Page 30: Wave-current Interaction (WEC) in the  COAWST  Modeling System

DUCK’ 94, NC-Nearshore Experiment

DUCK’ 94- Nearshore Experiment

Page 31: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Obliquely incident waves on a barred beach (DUCK’ 94 Experiment)

Experiment conducted Oct. 12, 1994 (Elgar et al., 97; Garcez-Faria et al., 98, 00) Wave field from SWAN. One way coupling.

Page 32: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Sea Surface Elevation

Depth averagedcross-shore velocity

Depth averagedlongshore velocity

Wave Height

Wave Parameters, Depth-Averaged Flows

Ξ·

u

v

Hrms

Ξ΅b

Page 33: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Vertical profile of Cross-shore & Longshore Vel.Cr

oss-

shor

e Al

ongs

hore

Eulerian

Kumar et al., 2012

Stokes Drift

Notes:

Vertical Distribution of Wave Dissipation

Page 34: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Comparison to Field Observations

Cross-shore

Alongshore

Obs from Garcez-Faria et al., 1998, 2000 Kumar et al., 2012

Page 35: Wave-current Interaction (WEC) in the  COAWST  Modeling System

Alongshore Cross-shore

Vertical profile of terms in momentum balance

Breaking Acc.

Hor. Advection

Hor. VF

Pressure Gradient

Vertical Mixing

Vertical Advection

Notes:

Over the bar (a) VF balances Breaking

(b) VM balancesAdvection