Watershed Sciences 6900 - Amazon Web...

46
Watershed Sciences 6900 FLUVIAL HYDRAULICS & ECOHYDRAULICS FORCES & FLOW CLASSIFICATION + ENERGY & MOMENTUM PRINCIPLES Joe Wheaton Slides by Wheaton et al. ( 2009-2014) are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

Transcript of Watershed Sciences 6900 - Amazon Web...

Watershed Sciences 6900FLUVIAL HYDRAULICS & ECOHYDRAULICS

FORCES & FLOW CLASSIFICATION + ENERGY & MOMENTUM PRINCIPLES

Joe Wheaton

Slides by Wheaton et al. (2009-2014) are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

TODAYโ€™S PLAN A

I. Force Classification

II. Overall Force Balance

III. Take-Homes from Summary of Force Magnitudes

IV. Reynolds Number as a Force Ratio

V. Froude Number as a Force Ratio

I. Froude Number & Hydraulic Jumps

FORCES & FLOW CLASSIFCATION

From Dingman (2009)

WEโ€™VE ALREADY DEALT WITH FORCESโ€ฆ BUT:

โ€ข Understanding the relative magnitudes of all forces in different situations gives us a basis for ignoring themโ€ฆ (i.e. simplifying assumptions)

โ€ข To keep comparison simple, consider:

Wide, rectangular channel (Y=R) with constant width (W1=W2=W) but

spatially variable depth

๐น๐ท = ๐น๐‘… ๐น = ๐‘š โˆ™ ๐‘Ž

From Dingman (2008), Chapter 7

TODAYโ€™S PLAN A

I. Force Classification

II. Overall Force Balance

III. Take-Homes from Summary of Force Magnitudes

IV. Reynolds Number as a Force Ratio

V. Froude Number as a Force Ratio

I. Froude Number & Hydraulic Jumps

FORCES & FLOW CLASSIFCATION

From Dingman (2008)

A SIMPLE FORCE CLASSIFICATION

๐น = ๐‘š โˆ™ ๐‘Ž a= ๐น

๐‘š

Forces per unit massโ€ฆ

From Dingman (2008), Chapter 7

FORCE (ACCELERATIONS) CLASSIFCATION

TODAYโ€™S PLAN A

I. Force Classification

II. Overall Force Balance

III. Take-Homes from Summary of Force Magnitudes

IV. Reynolds Number as a Force Ratio

V. Froude Number as a Force Ratio

I. Froude Number & Hydraulic Jumps

FORCES & FLOW CLASSIFCATION

What did Dingman Mean by Force Balance?

From Dingman (2008), Chapter 7

RECALLโ€ฆ 1D FORM OF NAVIER-STOKES

โ€ข Conservation of Momentumโ€ฆ in 1D:

๐‘š โˆ™ ๐‘Ž = ๐น

๐œŒ๐œ•๐‘ˆ๐‘ฅ๐œ•๐‘ก+ ๐‘ˆ๐‘ฅ๐œ•๐‘ˆ๐‘ฅ๐œ•๐‘ฅ= โˆ’๐œŒ๐‘”

๐œ•๐‘ง

๐œ•๐‘ฅโˆ’๐œ•๐‘ƒ

๐œ•๐‘ฅ+ ๐น๐‘ฃ๐‘–๐‘ ๐‘๐‘ฅ

๐‘„ = ๐‘Š โˆ™ ๐‘Œ1 โˆ™ ๐‘ˆ1 = ๐‘Š โˆ™ ๐‘Œ2 โˆ™ ๐‘ˆ2

Wide, rectangular channel (Y=R) with

constant width (W1=W2=W) but

spatially variable depth

SO IN TERMS OF a= ๐น

๐‘šCLASSIFICATION

๐œŒ๐œ•๐‘ˆ๐‘ฅ๐œ•๐‘ก+ ๐‘ˆ๐‘ฅ๐œ•๐‘ˆ๐‘ฅ๐œ•๐‘ฅ= โˆ’๐œŒ๐‘”

๐œ•๐‘ง

๐œ•๐‘ฅโˆ’๐œ•๐‘ƒ

๐œ•๐‘ฅ+ ๐น๐‘ฃ๐‘–๐‘ ๐‘๐‘ฅ

๐œ•๐‘ˆ๐‘ฅ๐œ•๐‘ก+ ๐‘ˆ๐‘ฅ๐œ•๐‘ˆ๐‘ฅ๐œ•๐‘ฅ= โˆ’๐‘”๐œ•๐‘ง

๐œ•๐‘ฅโˆ’1

๐œŒโˆ™๐œ•๐‘ƒ

๐œ•๐‘ฅ+ ๐น๐‘ฃ๐‘–๐‘ ๐‘๐‘ฅ๐œŒ

๐‘Ž๐‘ก + ๐‘Ž๐‘‹ = โˆ’๐‘Ž๐บ โˆ’ ๐‘Ž๐‘ƒ + ๐‘Ž๐‘‰

1D Momentum Equationโ€ฆ

Rearranged in terms of our

classificationโ€ฆ

Matched to Table 7.1

From Dingman (2008), Chapter 7

RECALL: DEFINITIONS OF UNIFORM & STEADY FLOW

โ€ข Uniform Flow: if the element velocity at any instant is constant along a streamline the flow is uniform (i.e. convective acceleration ๐‘‘๐‘ข ๐‘‘๐‘ฅ = 0),.

โ€ข Steady Flow: if the element velocity ๐‘ข at any

given point on a streamline does not change with time, the flow is steady (i.e. local acceleration ๐‘‘๐‘ข ๐‘‘๐‘ก = 0) .

From Dingman (2008) โ€“ Chapter 4& 6

THREE MAIN OPEN CHANNEL FLOW TYPES

1. Steady Uniform Flow

2. Steady Nonuniform Flow

3. Unsteady Nonuniform Flow

๐‘Ž๐‘ก + ๐‘Ž๐‘‹ = โˆ’๐‘Ž๐บ โˆ’ ๐‘Ž๐‘ƒ + ๐‘Ž๐‘‰๐‘Ž๐บ + ๐‘Ž๐‘ƒ โˆ’ ๐‘Ž๐‘‰ + ๐‘Ž๐‘‡ + ๐‘Ž๐‘‹ + ๐‘Ž๐‘ก = 0

๐น๐ท = ๐น๐‘…

โ€ข Downstream forces (+): ๐น๐ทโ€ข Upstream Forces (-): ๐น๐‘…

๐‘Ž๐บ โˆ’ ๐‘Ž๐‘‰ + ๐‘Ž๐‘‡ = 0 EQ 7.2

EQ 7.3

EQ 7.4

๐‘Ž๐บ + ๐‘Ž๐‘ƒ โˆ’ ๐‘Ž๐‘‰ + ๐‘Ž๐‘‡ + ๐‘Ž๐‘‹ = 0

โ€ข Steady/Unsteady (Time)โ€ข Uniform/Nonuniform (Space)

๐‘Ž๐บ + ๐‘Ž๐‘ƒ โˆ’ ๐‘Ž๐‘‰ + ๐‘Ž๐‘‡ + ๐‘Ž๐‘‹ + ๐‘Ž๐‘ก = 0

๐‘Ž๐บ + ๐‘Ž๐‘ƒ โˆ’ ๐‘Ž๐‘‰ + ๐‘Ž๐‘‡ = ๐‘Ž๐‘‹

๐‘Ž๐บ + ๐‘Ž๐‘ƒ โˆ’ ๐‘Ž๐‘‰ + ๐‘Ž๐‘‡ = ๐‘Ž๐‘‹ + ๐‘Ž๐‘ก

SO WHAT IS NAVIER STOKES?

โ€ข Unsteady or Steady?

โ€ข Uniform or Nonuniform?

๐œŒ๐œ•๐‘ˆ๐‘ฅ๐œ•๐‘ก+ ๐‘ˆ๐‘ฅ๐œ•๐‘ˆ๐‘ฅ๐œ•๐‘ฅ= โˆ’๐œŒ๐‘”

๐œ•๐‘ง

๐œ•๐‘ฅโˆ’๐œ•๐‘ƒ

๐œ•๐‘ฅ+ ๐น๐‘ฃ๐‘–๐‘ ๐‘๐‘ฅ

๐‘Ž๐บ + ๐‘Ž๐‘ƒ โˆ’ ๐‘Ž๐‘‰ + ๐‘Ž๐‘‡ = ๐‘Ž๐‘‹ + ๐‘Ž๐‘ก

๐œ•๐‘ˆ๐‘ฅ๐œ•๐‘ก+ ๐‘ˆ๐‘ฅ๐œ•๐‘ˆ๐‘ฅ๐œ•๐‘ฅ= โˆ’๐‘”๐œ•๐‘ง

๐œ•๐‘ฅโˆ’1

๐œŒโˆ™๐œ•๐‘ƒ

๐œ•๐‘ฅ+ ๐น๐‘ฃ๐‘–๐‘ ๐‘๐‘ฅ๐œŒ

๐‘Ž๐‘ก + ๐‘Ž๐‘‹ = โˆ’๐‘Ž๐บ โˆ’ ๐‘Ž๐‘ƒ + ๐‘Ž๐‘‰

โ€œThe difference between the driving & resisting forces is acceleration.โ€

๐น๐ท โ‰  ๐น๐‘…

๐น๐ท โˆ’ ๐น๐‘… = ๐‘ŽEQ 7.4

TODAYโ€™S PLAN A

I. Force Classification

II. Overall Force Balance

III. Take-Homes from Summary of Force Magnitudes

IV. Reynolds Number as a Force Ratio

V. Froude Number as a Force Ratio

I. Froude Number & Hydraulic Jumps

FORCES & FLOW CLASSIFCATION

RANGE OF FORCE VALUES

โ€ข Downstream forces (+): ๐น๐ทโ€ข Upstream Forces (-): ๐น๐‘…

โ€ข Body Forces

โ€ข Surface Forces

TODAYโ€™S PLAN A

I. Force Classification

II. Overall Force Balance

III. Take-Homes from Summary of Force Magnitudes

IV. Reynolds Number as a Force Ratio

V. Froude Number as a Force Ratio

I. Froude Number & Hydraulic Jumps

FORCES & FLOW CLASSIFCATION

From Dingman (2008)

REYNOLDS NUMBER

โ€ข Can also be shown that ๐‘…๐‘’ โˆ๐‘Ž๐‘‡

๐‘Ž๐‘‰(ratio of turbulent

forces to viscous forces):

โ€ข Soโ€ฆ is it fair to say that Reynolds number is sort of a ratio of driving forces to resisting forces?

โ€ข No! Why?

๐‘…๐‘’ โ‰ก๐œŒโˆ™๐‘Œโˆ™๐‘ˆ

๐œ‡=๐‘Œโˆ™๐‘ˆ

๐œˆRatio of โ€˜inertial forcesโ€™ to viscous forces

๐‘Ž๐‘‡๐‘Ž๐‘‰=

ฮฉ2 โˆ™ ๐œŒ โˆ™ ๐‘ˆ2

๐‘Œ3 โˆ™ ๐œ‡ โˆ™ ๐‘ˆ๐‘Œ2

=ฮฉ2 โˆ™ ๐œŒ โˆ™ ๐‘ˆ โˆ™ ๐‘Œ

3 โˆ™ ๐œ‡=ฮฉ2 โˆ™ ๐‘ˆ โˆ™ ๐‘Œ

3 โˆ™ ๐œ=ฮฉ2

3โˆ™ ๐‘…๐‘’

TODAYโ€™S PLAN A

I. Force Classification

II. Overall Force Balance

III. Take-Homes from Summary of Force Magnitudes

IV. Reynolds Number as a Force Ratio

V. Froude Number as a Force Ratio

I. Froude Number & Hydraulic Jumps

FORCES & FLOW CLASSIFCATION

From Dingman (2008)

FROUDE NUMBER AS A FORCE RATIO

TODAYโ€™S PLAN A

I. Force Classification

II. Overall Force Balance

III. Take-Homes from Summary of Force Magnitudes

IV. Reynolds Number as a Force Ratio

V. Froude Number as a Force Ratio

I. Froude Number & Hydraulic Jumps

FORCES & FLOW CLASSIFCATION

From Dingman (2008)

FROUDE NUMBER

โ€ข What are Dimensions?

๐น๐‘Ÿ โ‰ก๐‘ˆ

๐‘” โˆ™ ๐‘Œ 12

Ratio of velocity to

Celerity (๐ถ๐‘”๐‘ค = ๐‘” โˆ™ ๐‘Œ)

[LT-1]

[LT-2 L]1/2

[LT-2 L]1/2 =LT-1

WHAT DOES THIS RATIO MEAN PHYSICALLY?

โ€ข If ๐น๐‘Ÿ < 1, flow is subcritical

โ€“ Meaning that the celerity is > then the velocity; โˆด waves can propagate upstream

โ€ข If ๐น๐‘Ÿ = 1, flow is critical

โ€“ Meaning that the celerity is = velocity (rare transitional point)

โ€ข If ๐น๐‘Ÿ > 1, flow is supercritical

โ€“ Meaning that the celerity is < then the velocity; โˆด waves cannot propagate

upstream

๐น๐‘Ÿ โ‰ก๐‘ˆ

๐‘” โˆ™ ๐‘Œ 12

THE HYDRAULIC JUMP

โ€ข Transition from supercritical flow to subcritical flow is a hydraulic jump

โ€ข For a hydraulic jump to occur, there has to be a transition from subcritical to supercritical flow!

โ€ข Characterized by:

โ€“ Development of large-scale turbulence

โ€“ Surface waves

โ€“ Spray

โ€“ Energy dissipation

โ€“ Air entrainment

โ€“ River can not maintain supercritical state over too long a distanceโ€ฆ

HYDRAULIC JUMP TYPESโ€ฆ

From Dingman (2008), Chapter 10 & Chanson (2004)

WHY CAN YOU SURF IN A RIVER?

โ€ข Explain it in terms of Froude Numberโ€ฆ

โ€ข Which way is water going? (kayakers canโ€™t answer!)

TODAYโ€™S PLAN B

I. Energy Principle in 1D Flows

I. The Energy Equation (ยง 8.1.1)

II. Specific Energy (ยง 8.1.2)

ENERGY & MOMENTUM PRINCIPLES (Applied to 1D flows)

From Chanson (2004)

TODAYโ€™S PLAN

I. Energy Principle in 1D Flows

I. The Energy Equation (ยง 8.1.1)

II. Specific Energy (ยง 8.1.2)

ENERGY & MOMENTUM PRINCIPLES (Applied to 1D flows)

From Dingman (2008), Chapter 8

TOTAL ENERGY ๐’‰ (FROM ยง4.4)

โ€ข The total energy โ„Ž of an element is the sum of its potential energy โ„Ž๐‘ƒ๐ธ & its kinetic energy โ„Ž๐พ๐ธ:

โ€ข Recall that โ„Ž๐‘ƒ๐ธ is the sum of gravitational potential energy โ„Ž๐บ and pressure potential energy โ„Ž๐‘ƒ :

โ€ข โˆด total energy โ„Ž is:

From Dingman (2008), Chapter 8

โ„Ž = โ„Ž๐‘ƒ๐ธ + โ„Ž๐พ๐ธ

โ„Ž๐‘ƒ๐ธ = โ„Ž๐บ + โ„Ž๐‘ƒ

โ„Ž = โ„Ž๐บ + โ„Ž๐‘ƒ + โ„Ž๐พ๐ธ

EQ 8.1

EQ 8.2

Energy quantities are expressed as energy

[F L] divided by weight [F], which is

called head [L]

DEFINITON DIAGRAM FOR ENERGY IN 1D

โ€ข Used for derivation of the macroscopic one-dimensional energy equation

โ€ข Flow through reach is steady

From Dingman (2008), Chapter 8

TODAYโ€™S PLAN B

I. Energy Principle in 1D Flows

I. The Energy Equation (ยง 8.1.1)

II. Specific Energy (ยง 8.1.2)

ENERGY & MOMENTUM PRINCIPLES (Applied to 1D flows)

From Dingman (2008), Chapter 8

TOTAL MECHANICAL ENERGY AT A CROSS SECTION

โ€ข Based on what Ryan showed us, using the channel bottom as a reference point, at cross section ๐‘– we can

write the integrated gravitational head (AKA elevation head), ๐ป๐บ๐‘–:

โ€ข Where ๐‘๐‘– is the elevation of the channel bottom, and the integrated pressure head ๐ป๐‘ƒ๐‘– is:

โ€ข Kinetic energy head ๐ป๐พ๐ธ for a fluid element with velocity ๐‘ข is given by:

From Dingman (2008), Chapter 8

๐ป๐บ๐‘– = ๐‘๐‘– EQ 8.3

๐ป๐‘ƒ๐‘– = ๐‘Œ๐‘– โˆ™ ๐‘๐‘œ๐‘ ๐œƒ0 EQ 8.4

โ„Ž๐พ๐ธ =๐‘ข2

2 โˆ™ ๐‘”EQ 8.5

VELOCITY COEFFICIENT ๐œถ FOR ENERGY

โ€ข Because velocity varies from point to point n a cross section, we need a fudge factor ๐›ผ๐‘– to account for this

variation, so the velocity head ๐ป๐พ๐ธ๐‘– is:

โ„Ž๐พ๐ธ๐‘– =๐›ผ๐‘– โˆ™ ๐‘ˆ๐‘–

2

2 โˆ™ ๐‘”

EQ 8.6

From Dingman (2008), Chapter 8

A CONVENIENT OUTCOME OF BOX 8.2

Velocity Head ๐ป๐พ๐ธ tends to be at

least an order of magnitude smaller than pressure head ๐ป๐‘ƒ

๐›ผ โ‰ˆ 1.3 good enough typicallyโ€ฆ

From Dingman (2008), Chapter 8

TOTAL HEAD ๐‘ฏ๐’Š AT A CROSS SECTION ๐’Š

โ€ข โ€˜The total mechanical energy-per-weight, or total head ๐ป๐‘–, at cross-section ๐‘–, is the sum of the gravitational, pressure and velocity heads:

๐ป๐‘– = ๐ป๐บ๐‘– +๐ป๐‘ƒ๐‘– +๐ป๐พ๐ธ๐‘–โ„Ž = โ„Ž๐บ + โ„Ž๐‘ƒ + โ„Ž๐พ๐ธ

๐ป๐‘– = ๐‘๐‘– + ๐‘Œ๐‘– โˆ™ ๐‘๐‘œ๐‘ ๐œƒ0 +๐›ผ๐‘– โˆ™ ๐‘ˆ๐‘–

2

2 โˆ™ ๐‘”

From Dingman (2008), Chapter 8

EQ 8.6

But, this is just at one cross section ๐’Šโ€ฆ What

about for this diagram?

APPLY ๐‘ฏ๐’Š BETWEEN TWO CROSS SECTIONS

โ€ข What is the change in in cross-sectional integrated energy from an upstream section (๐‘– = ๐‘ˆ) to a downstream section (๐‘– = ๐ท)?

โ€ข Where โˆ†๐ป is the energy lost

(converted to head) per weigh of fluid, or head loss.

From Dingman (2008), Chapter 8

๐‘๐‘ˆ + ๐‘Œ๐‘ˆ โˆ™ ๐‘๐‘œ๐‘ ๐œƒ0 +๐›ผ๐‘ˆโˆ™๐‘ˆ๐‘ˆ

2

2โˆ™๐‘”=๐‘๐ท + ๐‘Œ๐ท โˆ™ ๐‘๐‘œ๐‘ ๐œƒ0 +

๐›ผ๐ทโˆ™๐‘ˆ๐ท2

2โˆ™๐‘”+ โˆ†๐ป

EQ 8.8b

๐ป๐‘– = ๐‘๐‘– + ๐‘Œ๐‘– โˆ™ ๐‘๐‘œ๐‘ ๐œƒ0 +๐›ผ๐‘– โˆ™ ๐‘ˆ๐‘–

2

2 โˆ™ ๐‘” EQ 8.6

๐ป๐บ๐‘ˆ + ๐ป๐‘ƒ๐‘ˆ + ๐ป๐พ๐ธ๐‘ˆ = ๐ป๐บ๐ท + ๐ป๐‘ƒ๐ท + ๐ป๐พ๐ธ๐ท + โˆ†๐ปEQ 8.8a

This is the ENERGY EQUATION!

THE ENERGY EQUATION APPLIES WHERE?

โ€ข Depth can vary!

โ€ข Assumed that pressure distribution was hydrostatic (i.e. streamlines no significantly curved)

โ€ข We call this steady gradually varied flow

โ€ข This is focus of Chapter 9

โ€ข Weโ€™ll use it in flume on Thursday!

๐‘๐‘ˆ + ๐‘Œ๐‘ˆ โˆ™ ๐‘๐‘œ๐‘ ๐œƒ0 +๐›ผ๐‘ˆโˆ™๐‘ˆ๐‘ˆ

2

2โˆ™๐‘”=๐‘๐ท + ๐‘Œ๐ท โˆ™ ๐‘๐‘œ๐‘ ๐œƒ0 +

๐›ผ๐ทโˆ™๐‘ˆ๐ท2

2โˆ™๐‘”+ โˆ†๐ป

EQ 8.8b

SOME IMPORTANT IMAGINARY LINES

โ€ข The line representing the total potential energy from section to section is called the piezometric head line

๐‘†๐ธ โ‰ก โˆ’๐ป๐ทโˆ’๐ป๐‘ˆ

โˆ†๐‘‹=โˆ†๐ป

โˆ†๐‘‹= EQ 8.9

โ€ข The line representing the total head from section to section is called the energy grade line

โ€ข The slope ๐‘†๐ธ of the energy grade line is the energy slope:

WOULD THE ENERGY EQUATION APPLY HERE?

โ€ข Hint, energy loss..

โ€ข Okay.. If it does apply, what would the energy grade line look like for a hydraulic jump?

TODAYโ€™S PLAN B

I. Energy Principle in 1D Flows

I. The Energy Equation (ยง 8.1.1)

II. Specific Energy (ยง 8.1.2)

ENERGY & MOMENTUM PRINCIPLES (Applied to 1D flows)

From Dingman (2008), Chapter 8

SPECIFIC ENERGY ๐‘ฏ๐‘บ๐’Š

โ€ข Similar to ๐ป๐‘–, just that datum is changed so that mechanical energy is measured with respect to the channel bottom instead of horizontal datum

โ€ข Upshot is that elevation head ๐ป๐บ๐‘– โ†’ 0 in ๐ป๐‘– = ๐ป๐บ๐‘– +๐ป๐‘ƒ๐‘– +๐ป๐พ๐ธ๐‘– , such that:

๐ป๐‘†๐‘– = ๐ป๐‘ƒ๐‘– +๐ป๐พ๐ธ๐‘–

๐ป๐‘†๐‘– = ๐‘Œ๐‘– โˆ™ ๐‘๐‘œ๐‘ ๐œƒ0 +๐›ผ๐‘– โˆ™ ๐‘ˆ๐‘–

2

2 โˆ™ ๐‘”EQ 8.10

SPECIFIC HEAD APPLICATIONโ€ฆ

โ€ข Consider a flow of discharge ๐‘„ in a channel of constant width ๐‘Š:

โ€ข Which can be substituted into our definition of specific

energy (๐ป๐‘†๐‘– = ๐‘Œ๐‘– โˆ™ ๐‘๐‘œ๐‘ ๐œƒ0 +๐›ผ๐‘–โˆ™๐‘ˆ๐‘–

2

2โˆ™๐‘”):

โ€ข If ๐‘„ and width ๐‘Š are constant, specific head ๐ป๐‘† only depends on flow depth ๐‘Œ. However, ๐ป๐‘† is a function of both ๐‘Œ and ๐‘Œ2, which means it can be solved with two different positive values of depth ๐‘Œ!

๐‘„ = ๐‘Š โˆ™ ๐‘Œ๐‘– โˆ™ ๐‘ˆ๐‘–

๐ป๐‘† = ๐‘Œ +๐›ผ๐‘– โˆ™ ๐‘„

2

2 โˆ™ ๐‘” โˆ™ ๐‘Š2 โˆ™ ๐‘Œ2 EQ 8.12

From Dingman (2008), Chapter 8

SPECIFIC HEAD DIAGRAM

๐ป๐‘† = ๐‘Œ +๐›ผ๐‘– โˆ™ ๐‘„

2

2 โˆ™ ๐‘” โˆ™ ๐‘Š2 โˆ™ ๐‘Œ2

ALTERNATE DEPTHS VS. CRITICAL DEPTH

โ€ข Fancy way of saying there are two depth ๐‘Œ solutions for every specific head ๐ป๐‘†, except at ๐ป๐‘†๐‘š๐‘–๐‘› , which is the

critical depth (i.e. ๐ป๐‘†๐‘š๐‘–๐‘› = ๐‘Œ๐ถ).

โ€ข To find ๐‘Œ๐ถ, find where derivative of ๐ป๐‘† is

equal to zero:

๐ป๐‘† = ๐‘Œ +๐›ผ๐‘– โˆ™ ๐‘„

2

2 โˆ™ ๐‘” โˆ™ ๐‘Š2 โˆ™ ๐‘Œ2

๐‘‘๐ป๐‘†๐‘‘๐‘Œ= 1 โˆ’

๐‘„2

๐‘” โˆ™ ๐‘Š2 โˆ™ ๐‘Œ3= 0

EQ 8.12

EQ 8.13

๐‘Œ๐ถ =๐‘„2

๐‘” โˆ™ ๐‘Š2

1 3

EQ 8.14

๐‘Œ๐ถ =๐‘Š โˆ™ ๐‘Œ๐ถ โˆ™ ๐‘ˆ๐ถ

2

๐‘” โˆ™ ๐‘Š2

1 3

=๐‘ˆ๐ถ2

๐‘”EQ 8.15

WHY IS IT CRITICAL DEPTH?

โ€ข If ๐‘Œ๐ถ = 1 =๐‘ˆ๐ถ2

๐‘”, notice the similarity with

the Froude Number ๐น๐‘Ÿ:

โ€ข The minimum value of ๐ป๐‘† occurs when ๐น๐‘Ÿ2 = 1 (i.e. when ๐น๐‘Ÿ = 1) or when flow is critical!

โ€ข ddd

๐‘Œ๐ถ =๐‘ˆ๐ถ2

๐‘” EQ 8.15

๐น๐‘Ÿ โ‰ก๐‘ˆ

๐‘” โˆ™ ๐‘Œ 12

HOW TO READ SPECIFIC HEAD DIAGRAM

โ€ข How to read ๐‘‘๐‘, ๐‘‘โ€ฒ, and

๐‘‘โ€ฒโ€ฒ?

โ€ข Is this a hydraulic jump?

TODAYโ€™S PLAN B

I. Energy Principle in 1D Flows

I. The Energy Equation (ยง 8.1.1)

II. Specific Energy (ยง 8.1.2)

ENERGY & MOMENTUM PRINCIPLES (Applied to 1D flows)

From Dingman (2008), Chapter 8

THIS WEEKโ€™S LAB

โ€ข We will do a complete lab assignment and calculations for a hydraulic jump produced by a sluice gate

โ€ข Youโ€™ll get to put the energy equation to use

โ€ข We will then play with different configurations of the flume to induce different hydraulics. We will play with:

โ€“ Width constrictions

โ€“ Different spillways

โ€“ Altering Q & S