Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole...

32
[ WHITE PAPER ] TOTAL SOLUTIONS FOR ENVIRONMENTAL APPLICATIONS

Transcript of Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole...

Page 1: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

[ white paper ]

total solutions for environmental applications

Page 2: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

1. total solut ions for env ironmental ap pl icat ions 3

2. carbamat es 3

2.1.IntroductionofCarbamatePesticides

2.2.MethodofAnalysis

2.3.WatersSolution

2.3.1.WatersHPLCandFluorescenceDetector

2.3.2.WatersQuadrupoleMassSpectrometerwithHPLC

2.3.3.GPCCleanupSystemandEnvirogelColumn

3. polynuclear aromat ic Hydrocarbons (paHs) 7

3.1.IntroductionofPAHs

3.2.EPAMethodsfortheAnalysisofPAHs

3.3.WatersSolution

3.3.1.WatersBreezeSystem

3.3.2.WatersAllianceSystem

3.3.3.WatersACQUITYUPLCSystem

a.withTUVdetector

b.withFluorescencedetector

4. endoc rine disru ptors (edc s) 13

4.1.IntroductionofEndocrineDisruptors

4.1.1.WhatareEndocrineDisruptors?

4.1.2.AnalysisofEmergingContaminantsinWastewater

4.1.3.AnalysisofEDCsinDrinkingWater

4.2.WatersSolution

4.2.1.PharmaceuticalCompoundsintheEnvironment;AnalysisofsurfaceandgroundwaterbyLC/MS/MS

4.2.2.PharmaceuticalCompoundsintheEnvironment;ConfirmationofresiduesbyLC/Q-Tof

4.2.3.AConfirmatoryMethodfortheDeterminationofSyntheticPyretheticinWastewater

5. formaldeHyde analysis 20

5.1.IntroductionofFormaldehyde

5.2.WatersSolution

5.2.1. HPLCAnalysis

5.2.2. WatersACQUITYMethodforFormaldehyde

6. dioxins 24

6.1.IntroductionofDioxins

6.2.USEPAMethod1613

6.3.WatersSolution

6.3.1.DioxinScreeningusingGC/MS/MS(QuattromicroGC)

6.3.2.DioxinConfirmationusingHRMS(AutoSpecPremier)

7. Wat ers sof t Ware solut ions 30

7.1.MassLynxRelatedMSProducts

7.2.EmpowerSoftware

8. Wat ers Global serv ic es 31

Page 3: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

3

1. total solut ions for env ironmental ap plicat ions

introduction

The environmental segment is a complex market consisting of a

numberofinstrumentsappliedtoalltypesofmedia.Environmental

instrumentationisprimarilyusedtodetect,monitorandmeasure

the presence of hazardous or potentially hazardous chemicals in

water,soilandair.

Themajorityof analysesperformed in this fieldarequantitative.

Screeningmethodscanbeusedtoidentifyandeliminatesamples

containing high concentrations of target analyte(s). Remaining

samples can thenbe transferred tomore selective techniques to

quantifyandconfirmlowlevelanalytes.Thereisageneraldown-

wardtrendinregulatoryreportinglevels,requiringmoresensitive

instrumentations.

Environmentalcontrolisaregulatedapplication,havinglegaland

eventually financial implications upon the results. Although the

regulationsarenotasstrictastheyareforfoodcontrol,thereis

anobligationtohaveasystemcapableofanalyticalqualitycontrol

thatissubjecttochecksbyapersonwhoisnotunderthecontrol

ofthelaboratoryandwhoisapprovedbythecompetentauthority

forthatpurpose.

in that context, the following are especially important:

n Robustnessandreliabilityofanalyticaltechnique

n Instrumentdown-time

n Frequencyofmaintenance

n Easeofmaintenance

n Rapidserviceresponsewhennecessary

n Sensitivity:asensitiveinstrumentneedsless

samplepreconcentration

n Samplethroughput

n Selectivity:aninstrumentormethodthatisabletoprovide

highresolution

n Globalcostofuse.Environmentalcontrolisahighlycompeti-

tivebusiness.Contractlaboratoriesareoftenincompetition

withuniversitiesandpubliclaboratories,whocanoperate

withminimizedpersonalandinstrumentcosts.Thesestudies

involvecostofequipment,staffingcosts(training,working

hours),costofsamplepreparationandsamplethroughput.

Thatiswhyeaseofoperation,automation,minimalsample

treatmentandanalysisspeedareimportantwhenchoosing

atechnique.

2. carbamat es

2.1. introduction of carbamate pesticides

Carbamate, thiocarbamate and urea-based pesticides are com-

monlyusedasagriculturalpesticides.

The field run-off water transports these analytes into the soil,

ground water and tributaries. Waste treatment does not remove

allpesticidesbeforetheyaredischargedintothetributaries.These

arethesourcesofourdrinkingwater.Pesticideshavedemonstrated

toxicologicaleffectsintheenvironmentandhavebeenimplicated

asendocrinedisruptors.

Thereisastrongneedforanalyticalmethodstoscreenandquantify

carbamatesinrawagriculturalcommodities,surfaceanddrinking

water,andsoil.

u.s. epa regulation on carbamates

The United States Environmental Protection Agency (U.S. EPA)

is required to monitor the quality of drinking water and raw

sourcewater,soilandwastematricesroutinely.TheEPAmethods

include 531.2 for drinking water and 8318 for soil and waste

matrices. Thesemethods requirepost columnderivatizationwith

fluorescence detection. Currently, EPA method 531.2 is used to

regulate two compounds carbofuran and oxamyl. The Maximum

Containment Level (MCL) for carbofuran and oxamyl in drinking

wateris0.04mg/Land0.2mg/L,respectively.

eu regulation on pesticides

EuropeanUnion(EU)regulationsfordrinkingwaterarespecified

intheECDirective98/83/EC.Themaximumadmissibleconcentra-

tionforpesticidesis0.1μg/Lforeachindividualcomponent,total

concentration0.5μg/L.

[ white paper ]

Page 4: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

4

[ white paper ]

2.2. method of analysis

LiquidChromatography(LC)isthepreferredseparationtechnique

for carbamates, thiocarbamates and phenylurea because most of

themarepolarandthermallylabile. InGasChromatography(GC)

analysis,thesecompoundseithershowsignsofthermaldecompo-

sitionorfailtoelutefromthecolumn.

There are three approaches to the analysis of carbamates. The first

approachisusingLCwithaUVdetector.Althoughthismethodissimple

anddirect,itcanonlydetectcompoundsthathaveUVabsorbance.In

addition,itrequiresanotheranalyticalmethodforconfirmation.

ThesecondapproachisusingLCwithfluorescencedetection,which

is a more sensitive method than UV. Compounds that are not UV

activecanbederivatizedtogivefluorescenceproperties.However,

likeUVdetection,itrequiresasecondarymethodforconfirmation.

ThethirdapproachisusingLC/MSorLC/MS/MS.Compoundsthatare

neitherUV-norfluorescence-activecannotbedetectedbyEPAmeth-

ods531.2and8318.Massspectrometryofferstheabilitytoanalyzea

largerdiversityofcompoundswithsufficientsensitivityandselectivity

thatprovidesaone-stepapproachforanalysisandconfirmation.

major considerations with different analytical methods

instrument derivation resolutionsecondary

metHod

larGer ranGe of

compoundssensitivity selectivity

HPLC and Fluorescence

detectorYes Yes Yes No Good Good

LC/MS No No No Yes Very good Very ood

LC/MS/MS No No No Yes Excellent Excellent

Waters application notes/Journals

1.“A Fully Automated LC/MS Method Development and Quantification ProtocolTargeting 52 Carbamates Thiocarbamates and Phenylureas.” AnalyticalChemistry.200375:4101-412.

2.“LC/MSQuantificationof52Carbamates:AFullyAutomatedProtocol.”WatersCorporation,2002:720000176EN.

3.“A Fully Automatic Multi-Analyte Quantification Protocol for Carbamates – AComparisonofLC/MSVSLC/MS/MS.”WatersCorporation,2007:720000672EN.

structures of carbamates

CH3 S C CH N OR

O CH3

CH3

1. Aldicarb sulfoxide

CH3 S C CH N OR

O CH3

CH3O

2. Aldicarb sulfone

(CH3 )2 C C N OR

O

SCH 3

N

3. Oxamyl

CH3 C N OR

SCH3

4. Methomyl

ORHO

CH3 CH3

5. 3-Hydroxycarbofuran

CH3 S C CH N OR

CH3

CH3

6. Alidcarb

OR

OCH3 CH3

7. Propoxur

OR

OCH3 CH3

8. Carbofuran

OR

9. Carbaryl

OH

10. 1-Naphthol

CH3S OR

CH3

CH3

11. Methiocarb

O

Where R =

C NH CH3

O

R-O-C- NH-CH3

O

CH 3 NH 2 + R-OH + H2CO3

CH3NH2

HSCH2CH2OH

C-H

C-H

O

O

N-CH3

SCH2CH2OH

Aq. alkali

+

+

Aq. alkali

N-Methylcarbamate Methylamine

O-Phthalaldehyde (OPA)

2-MercaptoethonalHighly fluorescent derivatives 339 nm ex / 445 nm em

CH3 S C CH N OR

O CH3

CH3

1. Aldicarb sulfoxide

CH3 S C CH N OR

O CH3

CH3O

2. Aldicarb sulfone

(CH3 )2 C C N OR

O

SCH 3

N

3. Oxamyl

CH3 C N OR

SCH3

4. Methomyl

ORHO

CH3 CH3

5. 3-Hydroxycarbofuran

CH3 S C CH N OR

CH3

CH3

6. Alidcarb

OR

OCH3 CH3

7. Propoxur

OR

OCH3 CH3

8. Carbofuran

OR

9. Carbaryl

OH

10. 1-Naphthol

CH3S OR

CH3

CH3

11. Methiocarb

O

Where R =

C NH CH3

O

R-O-C- NH-CH3

O

CH 3 NH 2 + R-OH + H2CO3

CH3NH2

HSCH2CH2OH

C-H

C-H

O

O

N-CH3

SCH2CH2OH

Aq. alkali

+

+

Aq. alkali

N-Methylcarbamate Methylamine

O-Phthalaldehyde (OPA)

2-MercaptoethonalHighly fluorescent derivatives 339 nm ex / 445 nm em

Step 1: Hydrolysis.

Step 2. Derivatization of methyalmine.

Compound without the –NH-R group can not be derivatized, and cannot be analyzed by the post-column fluorescence method.

CH3 S C CH N OR

O CH3

CH3

1. Aldicarb sulfoxide

CH3 S C CH N OR

O CH3

CH3O

2. Aldicarb sulfone

(CH3 )2 C C N OR

O

SCH 3

N

3. Oxamyl

CH3 C N OR

SCH3

4. Methomyl

ORHO

CH3 CH3

5. 3-Hydroxycarbofuran

CH3 S C CH N OR

CH3

CH3

6. Alidcarb

OR

OCH3 CH3

7. Propoxur

OR

OCH3 CH3

8. Carbofuran

OR

9. Carbaryl

OH

10. 1-Naphthol

CH3S OR

CH3

CH3

11. Methiocarb

O

Where R =

C NH CH3

O

R-O-C- NH-CH3

O

CH 3 NH 2 + R-OH + H2CO3

CH3NH2

HSCH2CH2OH

C-H

C-H

O

O

N-CH3

SCH2CH2OH

Aq. alkali

+

+

Aq. alkali

N-Methylcarbamate Methylamine

O-Phthalaldehyde (OPA)

2-MercaptoethonalHighly fluorescent derivatives 339 nm ex / 445 nm em

Page 5: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

5

2.3. Waters solutions

2.3.1. Waters® Hplc and fluorescence detector

chromatographic conditions:

Instrument: Alliance®systemforcarbamateanalysis

Column: Carbamateanalysis,3.9mmIDx150mm

Mobilephase:A-water,B-methanolC-acetonitrile

time %a %b %c curve

0.00 88 12 0 -

5.30 88 12 0 1

5.40 68 16 16 5

14.00 68 16 16 3

16.10 50 25 25 7

20.00 50 25 25 6

22..00 88 12 0 5

Temperature: 30°C

Flowrate: 1.5mL/min

Sample: 10ngofeachanalyteoncolumn

Injection: 400μL

Postcolumnreagent1: NaOHat0.5mL/min

Postcolumnreagent2: Orthophthaladehyde(OPA)/

2-Mercaptoethanolat0.5mL/min

Detection: Excitation:339nm,Emission:445nm

epa method 531.2 analytes

Minutes2.00 6.00 10.00 14.00 18.00 22.00

1

34

5

6

78

9

10

2

11

12

1500 E

U

Alliance HPLC system for carbamate analysis consists of a 2695 Separations Module with column heater assembly, post-column reaction module, temperature control module, two reagent man-gers, 2475 Scanning Fluorescence detector, Empower software and Waters’ carbamate analysis column.

peak analyte ppb

1 Aldicarb sulfoxide 25

2 Aldicarb sulfone 25

3 Oxamyl 25

4 Methomyl 25

5 3-Hydroxycarbofuran 25

6 Aldicarb 25

peak analyte ppb

7 Propoxur 25

8 Carbofuran 25

9 Carbaryl 25

10 1-Naphthol 25

11 Methiocarb 25

12 BDMC 25

Page 6: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

6

2.3.2. Waters Quadrupole mass spectrometer with Hplc

chromatographic conditions:

Instrument: AllianceHT2795SeparationModulewith

MassLynx™software,2996PhotoDiodeArray

detectorandMicromass®ZQ2000massdetector

Column: Symmetry®C83.5um2.1mmIDx150mm

Sample: 50pgofeachanalyteoncolumn

Mobilephase:A-10mMNH4OAcinwater,pH5.0,

B-10mMNH4OAcinacetonitrile

binary Gradient:

time %a %b curve

0.00 95.0 5.0 1

40.0 30.0 70.0 6

50.0 0.0 100.0 1

64.0 95.0 5.0 1

Temperature: 40°C

Flowrate: 0.3mL/min

Injection: 50μL

ms conditions:

Ionization: ESI+

Capillaryvoltage: 3.5kv

Sourcetemperature: 140°C

Desolvationtemperature: 350°C

Desolvationgasflow(L/Hr): 650

Conegasflow(L/Hr): 0

LMresolution: 14.5

HMresolution: 14.5

Ionenergy: 1.5

Dwelltime(s): 0.02

Interchanneldelay(s): 0.02

Interscandelay(s): 0.02

%

%

28.59

17.71

16.959.07

5.22 7.78

5.46

16.72

11.75 12.14

15.71

20.86

20.46

17.96

19.03

26.86

24.8422.5122.46

23.12

25.86

27.82

28.64

32.50

31.4730.18

37.9835.03

33.2437.16 38.35

40.94

23.1

17.9912.15

11.74

9.097.75

6.69

16.95

16.72

13.15

22.50

21.54

20.8719.05

28.59

24.80 27.8427.57

30.22

32.5231.42

38.00

35.90 38.39

28.59

25.86

28.64

.

Time

2: Diode Array240

1 ppb100

100

8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00

1: Scan ES+TIC

Figure 1. Full Scan TIC of 38 carbamates.

Waters Alliance system with the 2996 PDA detector, Micromass ZQ mass detector and MassLynx software.

Page 7: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

7

2.3.3. Gpc cleanup system and envirogel column

The Envirogel™ high-efficiency GPC cleanup columns are spe-

cificallydesignedtoremovelowvolatility,highmolecularweight

interferences,suchaslipidsandnaturalresins,fromenvironmental

samplesasspecifiedinEPAmethod3640A:

n Removeslow-volatilitycompounds

n MandatoryinCLPwork

n Semi-volatiles

n Pesticides

3. polynuclear aromat ic Hydrocarbons (paHs)

3.1. introduction of paHs

PAHsareagroupofmoleculesthataremalodorous,andmadeupof

manyringsofonlyhydrogenandcarbon.Therearetwocharacter-

isticsthatdefinethedifferenttypesofPAHmolecules:howmany

ringsithas;andhowthoseringsarearranged.

number of rings:SomeofthemorecommonPAHmoleculeshave

two,three,orfourrings.

shape of molecules:PAHmoleculeswithmorethantworingscan

have the rings arranged in different ways. The rings in the mol-

ecules can be in a straight line, bent in a curve, or compressed

together inablock.Benzo(a)pyrene,or“BaP”forshort, isoneof

mostdangerousPAHmoleculesasitiswell-knowncarcinogen.

0.00 5.00 10.00 15.00 20.00 25.00 30.00

0.00

500.00

1000.00

1500.00

2000.00

AU

Minutes

1 2 3

4

5

Columns: Envirogel 19mm x (30cm + 15cm)Mobile Phase: 100% Methylene Chloride at 5 mL/minDetection: UV at 254 nmSample Load: Compound 2 mL 5 mL

1. Corn Oil 62.5 mg/mL 25.0 mg/mL2. Phthalate 2.5 mg/mL 1.0 mg/mL3. Methoxychlor 0.5 mg/mL 0.2 mg/mL4. Perylene 0.05 mg/mL 0.02 mg/mL5. Sulfur 0.2 mg/mL 0.08 mg/mL

2 mL

5 mL

COLLECT

GPC Cleanup 2 mL vs 5 mL injection.

Naphthalene

Anthracene

Phenanthrene

Benzo(a)pyrene

Breeze GPC cleanup system.

GPC Cleanup system with Envirogel column.

Page 8: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

8

summary:

2 rings: 3 rings:

Naphtalene Phenanthrene

Acenaphtylene Anthracene

Acenaphtene Fluoranthene

Fluoren Benzo(c)fluranthene

4 rings: 5 rings:

Pyrene Benzo(a)pyrene

Benzo(a)anthracene Bibenzo(a,h)anthracene

Benzo(b)anthracene Benzo(g,h,l)perylene

Indeno(1,2,3-cd)pyrene Benzo(k)fluranthene

TherearemanywayshumanactivitiesincreasethereleaseofPAHs

intotheenvironment.Themostcommoninstancesare:

oil spills:OilcontainsPAHs.Whenoilispipedupfromtheground,

spillsmayoccurresultinginPAHsbeingmovedfromdeepwithin

thesoilandreleasedontothesurface.Oilspillsalsocomeindif-

ferent forms, such as spills from the sinking or collisions of oil

tankers,orthedumpingofusedmotoroilbyautomechanics.These

directlycontributetoPAHpollutionofwaterandoil.

car exhaust:Whencarsortrucksburngasoline,PAHmoleculesare

releasedfromthecarexhaust.Thesameappliestodieselburning

trucks.Haveyou ever beenbehind a truck at a traffic light? The

cloud of black effluent released from the exhaust pipe when the

truckmovesoffisfullofPAHmolecules.

soot & smoke: When we burn wood, charcoal, or coal, we make

ashandsoot.BlacksootcontainsmanyPAHmolecules.Bigpower

plantsthatburncoalproducelotsofsoot.Eventhoughthebarbe-

cuegrillsattheparkmakeminisculeamounts–botharesourcesof

PAHpollution.PAHsthatcomefromsmokestacksalsocontribute

toPAHpollutionoftheair,whereasPAHsfromfireplacesandgrills

willcontributetothePAHpollutionofsoil.

method of analysis

PAHs,whichresultfromtheincompletecombustionoffossilfuels

and organic matter, are among the most frequently monitored

environmentalcontaminants.Becauseoftheircarcinogenicnature,

many of these methods specify HPLC, usually with fluorescence

and/orUVdetectionastherecommendedanalyticalprocedure.

Subpartsperbillion(ppb)detectionlimitsforthetargetanalytes

arenecessary,whichmeansthatthesamplepreparationrequiresa

pre-concentrationstep(EPAMethods610&8310.).Differentcon-

figurationsbasedontheWatersBreeze™binarypumpsorAlliance

Separationmodulescombinedwitha2475Fluorescencedetector

canbeusedtorunthiskindofanalysis.

The 2996 PDA may be used as a possible alternative when UV

spectrum identification is required. Separations are run on dedi-

catedC18columns.

eu regulation on paHs

Benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene,

andindenol(1,2,3-cd)pyreneareregulatedbytheEuropeanUnion

(EU)andtheirtotalsafetyconcentrationslimitfordrinkingwater

issetat0.10μg/L.

Naphthalene

Anthracene

Phenanthrene

Benzo(a)pyrene

u.s. epa regulation on paHs

The U.S. Environmental Protection Agency (EPA), and European

administrationregulatetheconcentrationofPAHsinsoils,drink-

ing water, wastewater, food, and solid waste. Currently, the EPA

regulates Benzo(a)pyrene in drinking water, and the maximum

contaminantlevel(MCL)is0.0002mg/L.

Page 9: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

3.2. epa methods for the analysis of paHs

sample matrix sample preparation Hplc anaysis

TO-13 Ambient air Soxhlet extraction C18 column 40% -100%CH3CN linear gradient

550.1Drinking water

Table waterSuckling water

Extract with C18 solid phasecartridge elute with MeCl2

C18 column 30% -100%CH3OH linear gradient

610Waste water

Underground waterSurface water

Liquid/liquid extractioncartridge elute with MeCl2

C18 column 40% -100%CH3OH linear gradient

8310 Solid sedimentsSludge waste MeCl2 extraction C18 Column 40% -100%

CH3OH linear gradient

Waters application notes

1.Waters Breeze HPLC System, High Performance and Application Versatility,PerformancePerspective-720000373EN.

2.TheScienceofACQUITYUPLC®AppliedtoEnvironmentalAnalysesofPAHandExplosivesinWater-720001398EN.

3.3. Waters solution

3.3.1. Waters breeze system

chromatographic conditions:

Column: PAHcolumn,3.0mmx250mm,5μm

Mobilephase: Waterandacetonitrile

Flowrate: 0.5mL/min

Columntemperature: 30°C

Sample: EPA610mixture(1/10000dilution)

Injectionvolume: 5μL

12

3

4 5

6

7

8

9

1011

1213

14

15 16

UV at 254 nmBreeze system

6.00 10.00 14.00

Minutes

22.00 26.0018.00

Figure 2. EPA 610 standard mix of PAHs on Breeze HPLC system with UV detection.

peak analyte ppm

1 Napthalene 20

2 Acenaphthylene 40

3 Acenaphthene 20

4 Fluorene 4

5 Phenanthrene 2

6 Anthracene 2

7 Fluoranthene 4

8 Pyrene 2

peak analyte ppm

9 Benzo(a)anthracene 2

10 Chrysene 2

11 Benzo(b)fluoranthene 4

12 Benzo(k)fluoranthene 2

13 Benzo(a)pyrene 2

14 Dibenzo(a,h)anthracene 4

15 Benzo(g,h,l)perylene 4

16 Indeno (1,2,3-cd) pyrene 2

Page 10: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

10

3.3.2. Waters alliance system

chromatographic conditions:

Instrument: AllianceHPLCsystemwithEmpower™2software,

2996PhotoDiodeArraydetector,2475

Fluorescencedetector(connectedinseries)

Column: PAH(4.6x250mm,5μm)

Temperature: 27°C

EluentA: Water

EluentB: Acetonitrile

Gradient: 60%Bto100%B,curve9,for12mins,Holdat

100%Bfor11mins,returntoinitialconditions

Flowrate: 1.2mL/min

UVdetection:Scan200to350nm,extractedat254nm

Fluorescence:Time-programmedwavelengthchanges

Sample: EPA610mixwithsevenotheranalytes(*),

20μLinjection

Alliance HPLC system with Empower 2 software, PDA detector, separation module with sample manager, column heater, and fluorescence detector.

12

34

5

6

7

8

9 10

11

12

13

14

15

16

17

1819 20

21

22

23

UV at 254 nm

0.16

AU

4

Minutes

6.00 10.00 14.00 18.00 22.00 26.00 30.00 34.00

Figure 3. HPLC analysis of 23 PAHs with UV detection.

peak analyte ppm

1 Napthalene 20

2 Acenaphthylene 40

3 1-Methylnaphthalene* 20

4 2-Methylnaphthalene* 20

5 Acenaphthene 20

6 Fluorene 4

7 Phenanthrene 2

8 Anthracene 2

9 Fluoranthene 4

10 Pyrene 2

11 Benzo(a)anthracene 2

12 Chrysene 2

peak analyte ppm

13 Benzo(e)pyrene* 20

14 Benzo(b)fluoranthene 4

15 Perylene* 20

16 Benzo(k)fluoranthene 2

17 Benzo(a)pyrene 2

18 Dibenzo(a,h)anthracene 4

19 Benzo(g,h,I)perylene 4

20 Indeno(1,2,3-cd)pyrene 2

21 Benzo(b)chrysene* 20

22 Anthanthrene* 20

23 Coronene* 20

Regulated compound in red

*EPA 610 mix with seven other analytes

13

45

6

7

8

9 10

11

12

13

14

15

16

17

18

1920

21

22 23

3000 S

EU

SEU-Sample EnergyUnits

6.00 10.00 14.00 18.00 22.00 26.00 30.00 34.00

Figure 4. HPLC analysis of 23 PAHs with fluorescence detection.

time ex em

Initial 224 330

7.5 270 323

10.0 250 390

12.8 250 420

time ex em

14.8 270 385

16.6 280 410

17.4 385 500

17.8 280 410

time ex em

22.9 305 480

26.0 275 420

29.0 305 480

32.0 300 450

peak analyte ppm

1 Napthalene 2.0

3 1-Methylnaphthalene* 2.0

4 2-Methylnaphthalene* 2.0

5 Acenaphthene 2.0

6 Fluorene 0.4

7 Phenanthrene 0.2

8 Anthracene 0.2

9 Fluoranthene 0.4

10 Pyrene 0.2

11 Benzo(a)anthracene 0.2

12 Chrysene 0.2

13 Benzo(e)pyrene* 2.0

peak analyte ppm

14 Benzo(b)fluoranthene 4.0

15 Perylene* 20.0

16 Benzo(k)fluoranthene 2.0

17 Benzo(a)pyrene 0.2

18 Dibenzo(a,h)anthracene 0.4

19 Benzo(g,h,I)perylene 4.0

20 Indeno(1,2,3-cd)pyrene 2.0

21 Benzo(b)chrysene* 20.0

22 Anthanthrene* 20.0

23 Coronene* 20.0

Regulated compound in red

*EPA 610 mix with seven other analytes

Page 11: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

11

0.010

0.020

0.030

226.9

264.7 296.6

0.010

0.020

0.030

226.9

264.7 296.6

-0.00001

0.00000

0.00001

0.00002

Wavelength230.00 250.00 270.00 290.00 310.00

211.7 237.5271.7 312.1

Benzo(a)pyrene

Library match(es)

Difference(s)

Figure 6. Library match triple plot for benzo(a)pyrene.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

20.75 20.85 20.95 21.05 21.15 21.25

AU

Deg

rees

20.75 20.85 20.95 21.05 21.15 21.25

-------

-------

0.002

0.006

0.010

0.014

0.018

0.022

0.026

0.030

0.034

nm220.00 240.00 260.00 280.00 300.00

226.9

264.7

296.6

226.9

264.7296.6

sample spectrum

library spectrum

AU

226.9

264.7

296.6

226.9

264.7296.6

Minutes

PA: 0.166 TH: 3.207Peak: Benzo(a)pyrenePurityNoise

Ben

zo(a

)pyr

ene

- 20.9

40

PurityNoise + Solvent (1.00)

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

Purity plot for benzo(a)pyrene PDA identification for benzo(a)pyrene

Figure 5. Purity angle of 0.166 is less than threshold of 3.207.

Page 12: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

12

ACQUITY PDA and ACQUITY UPLC FLR detectors with Empower 2 software.

Naphth

ale

ne

- 2.8

66

Ace

naphth

ene

- 4.6

24

Fluore

ne

- 4.8

36

Phen

anth

rene

- 5.7

31

Anth

race

ne

- 5.9

65

Fluora

nth

ene

- 6.5

14

Pyr

ene

- 6.7

63

Chry

sene

- 7.8

00

Ben

zo(a

)anth

race

ne

- 7.8

83

Ben

zo(b

)flu

oranth

ene

- 9.1

65

Ben

zo(k

)flu

ora

nth

ene

- 9.2

90

Ben

zo(a

)pyr

ene

- 9.5

78

Dib

enz(

a,h)a

nth

race

ne

- 10.2

98

Inden

o(1

,2,3

-cd)p

yren

e -

10.7

77

Ben

zo(g

,h,i)p

eryl

ene

- 10.9

38E

U

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

2200.00

2400.00

2600.00

Minutes0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00

Figure 8. PAHs on ACQUITY UPLC are completed up to three times faster than HPLC with acceptable resolution.

3.3.3. Waters acQuity uplc system

a. tuv detector

chromatographic conditions:

Instrument: ACQUITYUPLCwithTUVdetector

Column: ACQUITY™BEHC181.7mm,2.1mmIDx100mm

Mobilephase:Waterandacetonitrilegradient

Flowrate: 400μL/min

Detection: UVmaxplot

Sample: PAHstandardmixtureof10ppmeachanalyte

Injection: 5μLFluorescencedetector

b. fluorescence detector

chromatographic conditions:

Instrument: ACQUITYUPLCsystemwithACQUITYFLR

Sample: PAH610-QC,100:1inacetonitrile

Column: 2.1mmx150mmACQUITYBEHRP181.7μm

Flowrate: 600μL/min

Temperature: 45°C

MobilephaseA:water

MobilephaseB: acetonitrile

peak analyte

1 Napthalene

2 Acenaphthalene

3 1-Methylnaphthalene

4 2-Methylnaphthalene

5 Fluorene

6 Acenapthene

7 Phenanthrene

8 Anthracene

9 Decafluorobiphenyl

10 Fluoranthene

11 Pyrene

peak analyte

12 p-Terphenyl-d14

13 Chrysene

14 Benzo(a)anthracene

15 Decafluorobiphenyl

16 Benzo(b)fluoranthene

17 Benzo(k)fluoranthene

18 Benzo(a)pyrene

19 Dibenzo(a,h)anthracene

20 Indeno(1,2,3-cd)pyrene

21 Benzo(g,h,i)perylen

Regulated compound in red

Minutes2.00 3.00 4.00 5.00 6.00 7.00

1

2

3

4

5

6

7

8

9

1011 12

13

14

15

16

1718

19

20

21

Figure 7. ACQUITY analysis of 21 PAHs with UV detection.

Page 13: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

13

4. endoc rine disruptors (edc s)

4.1. introduction of endocrine disruptors

4.1.1. What are endocrine disruptors?

Until the early 1990s, non-polar hazardous compounds, i.e.

persistent organic pollutants (POP) and heavy metals, were the

focusofinterestandawarenessasprioritypollutantsand,conse-

quently,werepartofintensivemonitoringprograms.Today,these

compoundsarelessprevalentfor industrializedcountriessincea

drastic reduction of emissions has been achieved because of the

adoptionofappropriateregulatorymeasuresandtheeliminationof

thedominantpollutionsources.

However, theemissionofso-called“emerging”or“new”unregu-

lated contaminants have emerged as an environmental problem

andthereisawidespreadconsensusthatthiskindofcontamination

mayrequirelegislativeintervention.Thisgroupofcontaminantsis

mainlycomprisedofproductsusedinlargequantitiesineveryday

life,suchashumanandveterinarypharmaceuticals,personalcare

products, surfactants and surfactant residues, plasticizers and

different industrialadditives.Thesecontaminantsdonotneed to

be persistent in the environment to cause negative effects since

their high transformationand removal rates canbe compensated

bytheircontinuousintroductionintoenvironment.Oneofthemain

sourcesofemergingcontaminantsisuntreatedurbanwastewater,

and wastewater treatment plant (WWTP) effluents. Most current

WWTPswerenotdesignedtotreatthesesubstances,andthehigh

portionofemergingcompoundsandtheirmetabolitescanescape

elimination in the WWTP and enter the aquatic environment via

sewageeffluents.

The partial or complete closing of water cycles is an essential

part of sustainable water resources management. The increasing

scarcity of pristine waters for drinking water supply and

increasing use of water by industry and agriculture needs to be

counteredbytheefficientandrationalutilizationofresources.One

optionistorecycletheeffluentsforvariouspurposes,especially

inindustrialandagro/foodproductionactivities.However,dueto

the high costof end-of-pipeapproach (drinkingwater treatment),

thefutureofindirectportablereuserequiresanefficienttreatment

of wastewaters prior to their discharge. Thus, the occurrence of

traceorganic contaminants inwastewaters, theirbehaviorduring

wastewater treatment and drinking water production are the key

issuesthatrequirefurtherstudy.

4.1.2. analysis of emerging contaminants in Wastewaters

Oneofthemajorlimitationsintheanalysisofemergingcontami-

nantsisthelackofanalyticalmethodsforquantificationofthese

contaminantsatlowconcentrations.Theprerequisiteforproperrisk

assessment and monitoring of waste, surface and drinking water

quality is the availability of a multi-residual analytical method

thatpermitsmeasurementat the low (orevenbelow)ng/L level.

However,thefactthatthesecompoundsarenotontheregulatory

lists as environmental pollutants has resulted in comparatively

little attentionbeing received. Consequently, analyticalmethod-

ology for different groups of emerging contaminants is evolving

and the number of methods described in the literature for the

determinationofemergingcontaminantshasgrownconsiderably.

Still, the analysis of this group of contaminants requires further

improvementsintermsofsensitivityandselectivity,especiallyfor

verycomplexmatrices,suchaswastewater.

Page 14: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

14

methods for the analysis of acidic pharmaceuticals in wastewaters

compounds extraction derivatizationcHromatoGrapHic

metHoddetection od(ng/l)

Bezafibrate, diclofenac, ibuprofen, gemfibrozil, carbamezapine

Sequential SPE (C18 + polymeric sorbent) - LC MS 2

Salicylic acid, ibuprofen, ketoprofen, naproxen, bezafibrate, diclofenac SPE (polymeric sorbent) - LC MS 5-56

Bezafibrate, clofibric acid, diclofenac, fenoprofen, gemfibrozil, ibuprofen, inomethacin, ketoprofen, naproxen

SPE (C18) - LC MS/MS 5-20

Bezafibrate, clofibric acid, ibuprofen SPE (MCX or polymeric sorbent) - LC MS/MS 0.016-2.18

Ibuprofen, clofibric acid, ketoprofen, naproxen, diclofenac SPE (HLB) diazomethane GC MS 0.3-4.5

Clofibric acid, diclofenac, ibuprofen, phenazone, propyphenazone SPE (C18) Pentaflorobenyl bromide GC MS 0.6-20

Clofibric acid, naproxen, ibuprofen SPE (HLB)BSTFA (bis(trimethylsilyl)-triflouroacetamide)

GC MS 0.4-2.6

Ibuprofen, naproxen, ketoprofen, tolfenamic acid, diclofenac, meclofenamic acid

SPE (HLB)MTBSTFA (N-methyl-N- (tert-butyldimethylsiy) trifluoroacetamide)

GC MS 20

4.1.3. analysis of edcs in drinking Water

Manysyntheticchemicalshavebeensuspectedtohaveendocrine

disrupting properties, and further studies have shown develop-

mental, reproductive and other health problems in wildlife and

laboratory animals. These compounds include pesticides, includ-

inginsecticides,herbicides,fungicidesandnematocides,products

associated with plastics (bisphenol A, phthalates), pharmaceuti-

cals (drugestrogens suchasbirth control pills,DES, cimetidine),

ordinary household products, including breakdown products of

detergentsandassociatedsurfactants,includingnonylphenoland

octylphenol; and industrial chemicals (polychlorinated biphenyls

(PCBs), dioxin and benzo(a)pyrene). The environmental impact of

these compounds is of great concern, particularly in the aquatic

environment,wherefeminizationofmalefishhasbeenseen.Intake

ofsomeofthesecompoundsbyhumansviafoodordrinkingwater

hasbeenthoughttocauseinfertility.

EDCs have become an emerging area of concern. The endocrine

system produces hormones that regulate development, growth,

reproduction andbehavior. Chemicals that have beendetermined

to be estrogenic include synthetic estrogens, steroids, pesti-

cides, phthalates, alkylphenol ethoxylate surfactants, dioxins,

polychlorinated biphenyls (PCBs), andnatural estrogens, such as

phytoestrogens.Besidessyntheticestrogens,otherpharmaceuticals

havealsobecomeaconcernfortheenvironment,suchasibuprofen

andantibiotics,sulfonamides,penicillinsandtetracyclines.

Anenvironmentalendocrineorhormonedisruptormaybedefined

asanexogenousagentthatinterfereswiththesynthesis,secretion,

transport, binding, action, or elimination of natural hormones in

thebodythatareresponsibleforthemaintenanceofhomeostasis,

reproduction,development,and/orbehavior.Forthepurposeofthis

document, the term “endocrine disruptor” will be used synony-

mouslywithhormonedisruptor.Ofimportancehereistheconcept

thatendocrinedisruptorsencompassmorethanjustenvironmental

estrogens,andincludeanyagentthatadverselyaffectsanyaspect

of the entire endocrine system. Endocrine disruptors are usually

eithernaturalproductsorsyntheticchemicalsthatmimic,enhance

(an agonist), or inhibit (an antagonist) the action of hormones.

Undersomecircumstances,theymayactashypertrophic14(stimu-

latory) agents and tumor promoters. Dose, body burden, timing,

anddurationof exposure at critical periods of life are important

considerations forassessingadverseeffectsofanendocrinedis-

ruptor.Effectsmaybereversibleorirreversible,immediate(acute)

orlatentandnotexpressedforaperiodoftime.

Page 15: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

15

Theendocrinesystemincludesanumberofcentralnervoussystem

(CNS)-pituitary-targetorganfeedbackpathwaysinvolvedinregu-

latingamultitudeofbodilyfunctionsandmaintaininghomeostasis.

Assuch, therearepotentiallyseveral targetorgansitesatwhich

a given environmental agent could disrupt endocrine function.

Furthermore, because of the complexity of the cellular processes

involved in hormonal communication, any of these loci could be

involved mechanistically in a toxicant’s endocrinerelated effect.

Thus, impairedhormonalcontrolcouldoccurasaconsequenceof

altered hormone: synthesis, storage/release, transport/clearance,

receptorrecognition/binding,orpostreceptorresponses.

regulatory requirements

All European Union (EU) member states have to enforce the EU

directives.CountrieswishingtojointheEUmustcomplywiththeEU

standards.Directive2000/60/ECgivestheframeworkforwaterpoli-

cy.Thisisaverygeneraltext.TheDecision24555/2001/ECamends

thedirectiveandlists theprioritysubstances tobemonitored.This

appliestoallkindofwater.Directive98/83/EUismorespecific to

drinkingwater.

edcs metHod reportinG limit (ppt)

SteroidsAndrostenedione, Estradiol, Ethynylestradiol, Progesterone, Testosterone

LC/MS 1

PAHsAnthracene, Benzo(a)pyrene GC/MS or LC/MS 1

PesticidesAtrazine, Lindane, DDD, DDE, DDT, DEET, Methoxychlor

GC/MS 0.5-1

PlasticizerBisphenol A GC/MS or LC/MS 5

Fire retardantTCEP GC/MS or LC/MS 1

4.2. Waters solution

4.2.1. pharmaceutical compounds in the environment

analysis of surface and groundwater by lc/ms/ms

Hundreds of active substances are being used in human and

veterinary drug formulas. Because of the broad application field

ofpharmaceuticals,theirresiduescanreachtheenvironmentfrom

several pathways. The main pathway is through urinary or fecal

excretion. However, pharmaceutical manufacturing discharges

should also be considered and, even more, direct introduction

occurs when antibiotics are introduced into the aquacultures.

Pharmaceutical compounds are not completely eliminated in the

sewagetreatmentplantsthus,variableamountsreachsurfaceand

groundwatersamples.Inthelastfewyears,theinterestinassess-

ingthepresenceofpharmaceuticalsintheenvironmenthasbeen

growing.Thereisaspecialneedformethodsfortheirrapid,sensi-

tiveandselectiveanalysisofpharmaceuticalsinwater.

LC/MS/MS systems.

Page 16: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

16

SPE (Oasis MCX) condition step:

methanol: water pH=3 wash step: water pH=3

elution step: methanol/ammonia=95/5

REGULAR DRUGS TETRACYCLINES

SamplePre-treatment

Extraction

LC separation

MS detection

Adjust pH of 100 mL sample to pH=3

SPE (Oasis HLB) condition step:

methanol + water wash step: water

elution step: methanol

LC on XterraRP Mobile phase: MeOH/H2O +

ammonium accetate

MS/MS detection Micromass Quattro Premier XE

ESI (+) and ESI (-) mode

LC on Symmetry Shield C8 Mobile phase: MeOH/H2O +

ammonium acetate + formic acid

200 mL sample + 5 mL NaEDTA/MClIVaine buffer

Flow diagram of workflow.

analyte recovery (n=5) in % repeatability (n=5) %rds reproducibility (n=10) %rsd lod in ng/l

Acetylsalicylic acid 195 2 87 81

Bezafibrate 80 3 16 18

Bisprolol 87 5 15 9

Carbamazepine 89 2 4 14

Chloramphenicol 82 5 14 13

Chlortetracycline 95 6 22 300

Clofibric acid 78 2 18 13

Dehydro-erythromycine 96 5 29 20

Diclofenac 80 3 6 14

Doxycycline 91 14 41 100

Fenofibrate 36 7 18 22

Ibuprofen 62 9 16 15

Metoprolol 97 2 27 13

Oxytetracycline 97 8 32 100

Paracetamol 83 3 17 45

Sulphamethoxazole 63 12 29 15

Tetracycline 98 6 21 100

Method characteristics.

Page 17: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

17

4.2.2. pharmaceutical compounds in the environment

confirmation of residues of lc/Q-tof

Liquid chromatography and quadrupole-orthogonal acceleration

time-of-flight tandem mass spectrometry are used in order to

confirm the proposed identity of pharmaceuticals monitored in

surfaceandgroundwatersamples.Basedontheaccuratemass,the

elementalcompositionsfortheprecursorandproductionscanbe

calculated.Forthefinalconfirmationoftheidentityoftheanalyte,

two product ions (two MS/MS ions) are monitored and the ratios

betweentheionsarecalculatedandcomparedwiththoseofstan-

dardsandfortifiedsamples.Theratiosarecomparablewithinthe

tolerancesoftheEUcriteriacommissiondecision2002/657.

confirmation

LC/Q-Tofisaverypowerfultechniqueforsimultaneousscreening,

identificationandconfirmationof(drug)residues.

ACQUITY UPLC system with the QTof Premiermass spectrometer.

2318

13+14

1516

17 20

1

2

3+45

6

7

8+9

10

11

12

1921

22

Time

%

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.000

100

UPLC-TOF total ion chromatogram showing the separation of 23 pharmaceutical compounds analyzed in PI mode (100 ng/mL standard solution)

1-Acetaminophen2-Sotalol3-Famotidine4-Atenolol5-Ranitidine6-Trimethoprim7-Ofloxacine8-Sulphametaxozole9-Metoprolol10-Azithromycin11-Propranolol12-Pravastatin

13-Carbamazepine14-Propyphenazone15-Erythromycin16-Bezafibrate17-Ketoprofen18-Paroxetine19-Lansoprazole20-Fluoxetine21-Mefenamicacid22-Loratadine23-Mevastatin

Time0

1007

4

1

6

5

12

10

911

2

3

8

%

1.00 2.00 3.00 4.00 5.00 6.00 7.00

1-Acetaminophen2-Famotidine3-Clofibricacid4-Naproxene5-Ketoprofen6-Bezafibrate7-Diclofenac8-Ibuprofen9-Indomethacin10-Mefenamicacid11-Lansoprazole12-Gemfibrozil

UPLC-TOF total ion chromatogram showing the separation of 12 pharmaceutical compounds analyzed in NI mode (100 ng/mL standard solution).

Time2.00 4.00 6.00 8.00

0

100 1.43

2.00 4.00 6.00 8.000

100

2.00 4.00 6.00 8.000

100

2.00 4.00 6.00 8.000

100 5.84

5.66

5.00

Time2.00 4.00 6.00 8.00

0

1005.78

Carbamezapine

2.00 4.00 6.00 8.000

1003.12

m/z80 100 120 140 160 180 200

%

0

100 93.0344

110.0602

m/z100 200 300 400 500

0

100230.1160

123.0665

261.1346

275.1155

291.1435%

m/z100 200 300 400 500 600 700

%

0

100 591.4233

158.0944 573.5130 749.5177592.4300

750.5252

m/z100 200 300 400 500 600 700

%

0

100 576.3754

158.0938

558.3660 734.4704577.3840

100 150 200 250 300 350m/z

%

0

100 189.1033

231.1504

201.1030

100 150 200 250 300 350m/z

%

0

100 194.1585

192.1551179.0875

237.1036

Time2.00 4.00 6.00 8.00

0

100 1.43

2.00 4.00 6.00 8.000

100

2.00 4.00 6.00 8.000

100

2.00 4.00 6.00 8.000

100 5.84

5.66

5.00

Time2.00 4.00 6.00 8.00

0

1005.78

2.00 4.00 6.00 8.000

1003.12

Time2.00 4.00 6.00 8.00

0

100 1.43

Time2.00 4.00 6.00 8.00

0

100 1.43

2.00 4.00 6.00 8.000

100

2.00 4.00 6.00 8.000

100

2.00 4.00 6.00 8.000

100 5.84

5.665.66

5.00

Time2.00 4.00 6.00 8.00

0

1005.78

2.00 4.00 6.00 8.000

1003.12

2.00 4.00 6.00 8.000

1003.12

m/zTime2.00 4.00 6.00 8.00

0

100 1.43

2.00 4.00 6.00 8.000

100

2.00 4.00 6.00 8.000

100

2.00 4.00 6.00 8.000

100 5.84

5.66

5.00

Time2.00 4.00 6.00 8.00

0

1005.78

2.00 4.00 6.00 8.000

1003.12

m/z80 100 120 140 160 180 200

%

0

100 93.0344

110.0602

m/z100 200 300 400 500

0

100230.1160

123.0665

261.1346

275.1155

291.1435%

m/z100 200 300 400 500 600 700

%

0

100 591.4233

158.0944 573.5130 749.5177592.4300

750.5252

m/z100 200 300 400 500 600 700

%

0

100 576.3754

158.0938

558.3660 734.4704577.3840

100 150 200 250 300 350m/z

%

0

100 189.1033

231.1504

201.1030

100 150 200 250 300 350m/z

%

0

100 194.1585

192.1551179.0875

237.1036

Time2.00 4.00 6.00 8.00

0

100 1.43

2.00 4.00 6.00 8.000

100

2.00 4.00 6.00 8.000

100

2.00 4.00 6.00 8.000

100 5.84

5.66

5.00

Time2.00 4.00 6.00 8.00

0

1005.78

2.00 4.00 6.00 8.000

1003.12

Time2.00 4.00 6.00 8.00

0

100 1.43

Time2.00 4.00 6.00 8.00

%

0

100 1.43

Acetaminophen

2.00 4.00 6.00 8.00

%

0

100

2.00 4.00 6.00 8.00

%

0

100

2.00 4.00 6.00 8.00

%

0

100 5.84

5.665.66

5.00

Azithromycin

Erythromycin

Propyphenazone

Time2.00 4.00 6.00 8.00

%

0

1005.78

2.00 4.00 6.00 8.000

1003.12

2.00 4.00 6.00 8.00

%

0

1003.12

Trimethoprim

m/z

Confirmation of identity of target com-pounds in real wastewater samples.

Leftpanel:Narrowwindow(20mDa)extractedionchromato-gramsof[M+H]obtainedintheTOFmodefor:m/z152.071(acetaminophen)m/z291.146(trimethoprim)m/z749.516(azithromycin)m/z734.468(erythromcyn)m/z231.150(propyphenazonem/z237.103(carbamazepine).

Rightpanel:ProductionspectraobtainedintheQ-TOFmode.

Page 18: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

18

4.2.3. a confirmatory method for the determination of

synthetic pyrethroids in Wastewater

n Syntheticpyrethroidswereintroducedtoprovidealesshazard-

ousandlesspersistentalternativetoorganochlorineand

organophosphateinsecticides.

n Theyareamongthesafestinsecticidesavailablebecauseof

theirlowacutetoxicitytomammals.Pyrethroidformulations

areusedinagriculture,animalhusbandry,horticulture,and

inthehome.

n Theyareextensivelyusedformothproofingwoolenmaterials

inthetextileindustryandastheactiveingredientincommer-

cialsheepdips.

eu regulation

some of the synthetic pyrethroids are listed in the dangerous

substances directive (76/464/eec):

list 1.Substanceshavingthepotentialtocausethemost

harmtoaquaticlifeduetotheirpersistence,toxicityor

bioaccumulation.Thedirectiverequirestheeliminationof

dischargesofthesesubstancestotheenvironmentinorder

toreducepollution.

list 2.Substancesthatarethoughttobeharmful,butnotto

thesamedegreeasList1substances.Dischargesofthese

substancesmustbereduced.

cyfluthrin and permethrin are classified under list 2

the discharge of these two compounds into the aquatic environ-

ment should be reduced if:

n Thereisaneedforenvironmentalmonitoring

n EnvironmentalQualityStandards(EQS)cyfluthrin,

0.001mg/L,permethrin,0.01mg/L

n Othersyntheticpyrethroids

n Bifenthrin,l-cyhalothrin,cypermethrin,

fenvalerateanddeltamethrin

sample analysis

1. extraction of wastewater samples

n 10mLhexaneaddedto1Lofsample

n Sampleisshakenfor20minutes

n Theorganiclayerisremoved

n Hexanefractionisthenpassedthroughaconfidentialamino

SPEcleanupprocedure

n SPEcartridgeiswashedwithpentanetoremovenon-polar

matrixinterferences

n Syntheticpyrethroidselutedwithhexane/IPA

n 100timesconcentrationfactorintheextractionmethod

2. chromatographic conditions:

Instrument:MicromassQuattromicro™GC

(tandemquadrupoleGC/MS/MS)

Injector: CryocooledPTVinsolventventmode,10mL,injected

Column: AgilentJ&W,DB-5ms,

30mx0.25mm,IDx0.25m

Flowrate: 1.0mL/minhelium,constant

temperature program:

n 0min100°C

n 2min100°C

n 6min200°Cat25°C/min

n 16min300°Cat10°C/min

Quattro micro GC.

Page 19: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

1�

MRM method parameters for EI mode.

MassLynx method window showing how MRM transitions are arranged into five function windows. These functions can be overlapped slightly to allow for small changes in retention time.

Total Ion Chromatogram (TIC) of seven pyrethroids in EI mode.Sensitivity of MRM in EI mode for permethrin and cyflurthrin at a concentration equivalent.

ms method - negative chemical ionization

syntHetic pyretHroid mrm transition dWell time collision enerGy

Bifenthrin 181→166181→165

0.1s0.1s

15eV20eV

λ-Cyhalothrin 197→141181→152

0.1s0.1s

10eV20eV

Permethrin 183→153183→168

0.05s0.05s

12eV12eV

Cyfluthrin/Cypermethrin

163→127163→91

0.05s0.05s

5eV10eV

Fenvalerate 167→125125→89

0.1s0.1s

10eV15eV

Deltamethrin 253→93183→152

0.1s0.1s

15eV20eV

Permethrin≈0.01µg/L10µLinjected

Cyfluthrin≈0.001µg/L10µLinjected

Page 20: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

20

5. formaldeHyde analysis

5.1 introduction of formaldehydes

Formaldehyde is an important industrial chemical used to make

other chemicals, building materials, and household products. It

isoneof the large familyof chemical compounds calledvolatile

organic compounds or ‘VOCs’. The term volatile means that the

compounds vaporize, that is, become gaseous, at normal room

temperatures.Formaldehydeservesmanypurposesinproducts.

it is used as a part of:

n Glueoradhesiveinpressedwoodproducts(particleboard,

hardwood,plywood,andmediumdensityfiberboard(MDF)

n Preservativesinsomepaints,coatings,andcosmetics

n Coatingthatprovidespermanentpressqualitytofabrics

anddraperies

n Finishusedtocoatpaperproducts

n Certaininsulationmaterials(urea-formaldehydefoam

andfiberglassinsulation)

Formaldehydeisreleasedintotheairbyburningwood,keroseneor

naturalgas,fromautomobiles,andfromcigarettes.Formaldehyde

canbereleasedfrommaterialsmadewithit.Itisalsoanaturally

occurringsubstance.

Formaldehydeisacolorless,strongsmellinggas.Whenpresentin

theairatlevelsabove0.1ppm(partsinamillionpartsofair),it

cancausewateryeyes,burningsensations in theeyes,noseand

throat, nausea, coughing, chest tightness, wheezing, skin rashes,

andallergicreactions.Ithasalsobeenobservedtocausecancerin

scientificstudiesusinglaboratoryanimals,andmaycausecancer

inhumans.Typicalexposurestohumansaremuchlower;thusany

riskofcausingcancerisbelievedtobesmallatthelevelatwhich

humansareexposed.

regulation limit of each country:

ASHRAE* 0.1ppm

USHUD** 0.4ppm

WHO***Europe 0.08ppm

Sweden 0.1ppm

Japan 0.08ppm

*ASHRAE(AmericanSocietyofHeating,Refrigerating&AirConditioningEngineers)

**HUD(DepartmentofHousingandUrbanDevelopment)

***WHO(WorldHealthOrganization)

analytical method

epa metHod summary

sample matrix field samplinG sample prep Hplc

To-11 Ambient airSep-Pak DNPH-silica cartridge

Backflush cartridge with CH3CN

Two C18 columns 60-100% CH3CN linear gradient

554 Drinking water -DNPH reagent extract

with C18 cartridge

C18 column70-100% CH3OH

linear gradient

8315 Solid waste water -

Same as water or MeCl2

extraction option

Two C18 columns 60-100% CH3CN linear gradient

Page 21: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

21

2,4-dinitrophenylhydrazine (dnpH) derivatization method

Waters cartridges for aldehydes and ketones analysis in air

air sampling flow schematic with ozone scrubber cartridge

derivatization reaction (same derivatization used in niosH

method 2532, epa to-11, ip-6a and astm d51�7)

Waters dnpH/xposure™ cartridges air sampling

procedure for aldehydes

n Connectfemaleleur-tippfcartridgetointakeportofasuitable

pumpanddrawairsamplethroughcartridge.

n Fillaleur-tippedsyringewith10mLacetonitrileandconnect

femaleendofcartridgetothesyringetip.

n Pushtheacetonitrilethroughattherateoflessthan

3mL/min.

n Collectinto10mLvolumetricflaskandmakevolume

uptoppingto10mLacetonitrile.

n AnalyzebyHPLC.Air

sample in

Ozone scrubbercartridge

Vacuumsampling

pump

DNPH-Silicaor XPoSurecartridge

Ozone negatively impacts on the analysis of carbonyl compounds in air samples when drawn through cartridges containing silica coated with DNPH. Waters Ozone Scrubber cartridges are designed to remove the ozone interference.

H2 CHNN = NNHH+ R1

R

R1

RNO2

NO2 NO2

NO2 + H2OC = O

DNPH derivative(aldehydeor ketone)

2,4-Dinitrophenylhydrazine(DNPH)

Sep-Pak DNPH cartridge

Page 22: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

22

5.2. Waters solution

5.2.1. Hplc analysis

Instrument: BreezeBinaryGradientorAlliance

Column: Nova-Pak®C18,3.9mmx75mm

Mobilephase: Water/acetonitrile/tetrahydrafuran65/35/5/vv

Flowrate: 1.5mL/min

UV/Visdetector: 360nm

chemistry

Sep-PakDNPHcartridge

WatersXPoSurealdehydesamplercartridge

Ozonescrubber

Breeze binary gradient system

0 2 4 6 8 10 12 14Time (minutes)

1

2

3

4

5 6Lab Air Sample

Cartridge Blank

Low level examples aldehyde profile from laboratory airs 100 L sample collected at 0.65 L/min.

lab air

peak analyte ppbv

1 DNPH

2 Formaldehyde-DNPH 4.8

3 Acetaldehyde-DNPH 1.2

4 Acetone-DNPH 118.0

5 Butanone-DNPH 0.8

6 Isovaleraldehyde-DNPH 0.7

blank (calculated for 100l sample)

peak analyte ppbv

2 Formaldehyde-DNPH 0.35

3 Acetaldehyde-DNPH 0.27

4 Acetone-DNPH 0.34

Alliance HPLC system.

Page 23: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

23

5.2.2. Waters acQuity uplc method for formaldehyde

chromatographic conditions

Instrument: WatersACQUITYUPLC

Injectionmode: Fullloop

Loopsize: 5μl(5μlinjectionvolume),use15μlneedle

Weakwash: 5%acqueousacetonitrile-800μl

Strongwash: 50%acqueousacetonitrile-500μl

Sampletemp: 25°C

Detection: UVat360nm

allow two minute equilibration between injections

Column: WatersACQUITYUPLCBEHPhenyl2.1x100

mm,1.7μmat35°C

Eluent: A-90:10water-THF(stabilized)*

B-acetonitrile

*Mix900mlwaterand100mlstabilizedtetrahydrofuran(THF),filteranddegas.

Flowrate: 0.5ml/min

reference

“Fast Analysis of Aldehydes and Ketones by ACQUITY UPLC.”

2006,WatersCorporationApplicationNote:720001500EN.

1

1514

1312

11

1098

7

65

4

3

2

0.2

0 A

U

Minutes

4.00 6.00 12.00 16.00 20.00

1-Formaldehyde 9-Isovaleraldehyde

2-Acetaldehyde 10-Pentanal

3-Acetone 11-o-Tolualdehyde

4-Acrolein 12-p-Tolualdehyde

5-Propanal 13-m-Tolulaldehyde

6-Crotonaldehyde 14-Hexanal

7-Butanal 15-2-5Dimethylbenzaldehyde

8-Benzaldehyde

EPA method 8315 A-Opt. 2 analytes 20 ppm as DNPH derivatives.

1

1211

1098

76

5

43

2

0.2

0 A

U

Minutes

4.00 8.00 12.00 16.00 20.00

1-Formaldehyde 7-Pentanal

2-Acetaldehyde 8-Hexanal

3-Propanal 9-Heptanal

4-Crotonaldehyde 10-Octanal

5-Butanal 11-Nonanal

6-Cyclohexanone 12-Decanal

EPA method 554, 8315 A- Opt. 1 analytes 20 ppm as DNPH derivatives.

ACQUITY UPLC with TUV detector.

Page 24: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

24

6. dioxins

6.1. introduction of dioxins

dioxin basic chemistry

“Dioxins”referstoagroupofchemicalcompoundsthatsharecer-

tainsimilarchemicalstructuresandbiologicalcharacteristics.

several hundred of these toxic compounds exist and are members

of three closely related families:

n Thechlorinateddibenzo-p-dioxins(CDDs)

n Thechlorinateddibenzofurans(CDFs)

n Certainpolychlorinatedbiphenyls(PCBs)

CDDsandCDFsarenotproducedintentionallyordeliberately,but

are formed as a by-product of chemical processes. These range

fromnaturalprocessessuchasvolcanoeruptionsandforestfires

toman-madeprocessessuchasmanufacturingofchemicals,pesti-

cides,steelandpaints,pulpandpaperbreaching,exhaustemissions

andincineration.PCBsareman-made,butarenolongerproduced

intheUnitedStatesorEurope.

Dioxinsarereleasedintotheairfromcombustionprocessessuchas

commercialormunicipalwasteincinerationandfromburningfuels

likewood,coaloroil.Dioxinscanalsobeformedwhenhousehold

trashisburnedandduringforestfires.Chlorinebleachingofpulp

andpaper,certaintypesofchemicalmanufacturingandprocessing,

and other industrial processes all can create small quantities of

dioxins.Cigarettesmokealsocontainssmallamountsofdioxins.

Over the past decade, worldwide regulatory bodies have been

workingtogetherwithindustrytodramaticallyreducedioxinemis-

sions.Becausedioxinsareextremelypersistentcompounds,levels

ofdioxinsstillexistintheenvironmentfrombothman-madeand

natural sources, and will take years to decline. A large part of

the current exposures to dioxins in the United States are due to

man-made dioxins from releases that occurred in the past, even

decadesago.Evenifallhuman-generateddioxinscouldsomehow

beeliminated,lowlevelsofnaturallyproduceddioxinswillremain.

Countries worldwide are continuing to look for ways to reduce

dioxinlevelsenteringtheenvironmentandtoreducehumanexpo-

suretothem.

Dioxins are a colorless organic compound containing carbon,

hydrogen,oxygenandchlorine.Polychlorinateddioxinsandfurans

(PCDDs & PCDFs) are a group of 210 single compounds, which

typicallyoccurasamixtureofthedifferentcongeners.Seventeen

of these are regarded as being of toxicological concern, and

2,3,7,8-tetrachlordibenzo-p-dioxin(TCDD)isthemosttoxicofthe

dioxin-likesubstances.Itismeasuredinpartspertrillion(ppt).

Therelativetoxicityofthese17compoundsisintherangeofafac-

torof1000.Thetoxicityofallotherdioxinsisexpressedrelativeto

2,3,7,8-TCDDviaToxicEquivalenceFactors(TEFs).2,3,7,8–TCDD

ToxicEquivalents (TEQs)aredeterminedbymultiplying the com-

poundconcentrationsbytheirrespectiveTEFandsummingthem.

Air from combustion processes

DIOXIN FORMATION

Fuel components Industrial waste incineration

Page 25: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

25

Dioxins are not soluble in water and are highly soluble in fat.

Thismeans that theybind to sedimentandorganicmatter in the

environmentandareabsorbedintoanimalandhumanfattytissue.

Inaddition,theyarenotbiodegradablesotheyarepersistentand

bio-accumulateinthefoodchain.Oncereleasedintotheenviron-

ment,throughtheairorwater,theyaccumulateinthefattissueof

animalsandhumans.

PCBs,orpolychlorinatedbiphenylsareanothergroupofchemicals.

They are chlorinated aromatic hydrocarbons that are synthesized

bydirectchlorinatingofbiphenyls.TechnicalPCBmixturesarestill

widespread and present today, such as in transformers, building

materials,lubricants,coatings,plasticizersandinks.Someofthe

PCB compounds have toxicological properties that are similar to

dioxinsandarethereforeoftentermed“dioxin-like”PCBs.

First listed in the Second Annual Report on Carcinogens as

“ReasonablyAnticipatedtobeaHumanCarcinogen”–changedto

“KnowntobeaHumanCarcinogen”intheJanuary2001addendum

totheNinthReportonCarcinogens.TherevisedprofilelistingTCDD

as“KnowntobeaHumanCarcinogen”waspublishedasaresultofa

rulingbytheU.S.CourtofAppealsfortheDistrictofColumbiacircuit

dismissingtherequestforaninjunctiontopreventthelistingofTCDD

asa“KnownHumanCarcinogen”intheNinthReport.

regulation

EPAregulates2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD)asahaz-

ardouswasteandtoxicpollutantundertheCleanWaterAct(CWA),the

SafeDrinkingWaterAct(SDWA),theFederalInsecticide,Fungicide,

and Rodenticide Act (FIFRA), the Resource Conservation and

RecoveryAct(RCRA),theComprehensiveEnvironmentalResponse,

CompensationandLiabilityAct(CERCLA),andtheToxicSubstances

ControlAct (TSCA).A reportablequantityof1 lb. (0.454kg)has

beenestablished for TCDDunderCERCLA. Themaximumcontami-

nantlevelforthechemicalindrinkingwateris3*10-8mg/L.

The U.S. Food and Drug Administration (FDA) regulates TCDD in

bottledwater;theallowableconcentrationisalso3*10-8mg/L.

NIOSHhasrecommendedthattheexposurelimitofTCDDbethelow-

est feasible concentration. OSHA regulates TCDD under the Hazard

CommunicationStandardandasahazardouschemicalinlaboratories.

O

O

OCl

Cl Cl

Cl

2,3,7,8-Tetrachlorodibenzo-p-dioxin

3,3',4,4',5,5'-Hexachlorobiphenyl

2,3,7,8-Tetrachlorodibenzofuran

Dioxin structure

Furan structure

Biphenyl structure

Page 26: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

26

6.2. u.s. epa method 1613

tetra- through octa-chlorinated dioxins and furans by isotope

dilution HrGc/Hrms

EPAmethod1613wasdevelopedbytheUSEPA’sOfficeofScience

and Technology for isomerspecific determination of the 2,3,7,8-

substituted,tetra-throughocta-chlorinated,dibenzo-p-dioxinsand

dibenzofurans in aqueous, solid, and tissue matrices by isotope

dilution, high resolution capillary column gas chromatography

(HRGC)/highresolutionmassspectrometry(HRMS).

extraction

summary of method

n Aqueoussamples(samplescontaininglessthan1%solids)

Stableisotopicallylabeledanalogsof15ofthe2,3,7,8-

substitutedCDDs/CDFsarespikedintoa1Lsample,andthe

sampleisextractedbyoneofthreeprocedures:

Samplescontainingnovisibleparticlesareextractedwith

methylenechlorideinaseparatoryfunnelorbythesolid-

phaseextractiontechniqueasdescribedinSection1.1.3.

Theextractisconcentratedforcleanup.

Samplescontainingvisibleparticlesarevacuumfiltered

throughaglassfiberfilter.Thefilterisextractedina

Soxhlet/Dean-Stark(SDS)extractor(Reference7),andthe

filtrateisextractedwithmethylenechlorideinasepara-

toryfunnel.Themethylenechlorideextractisconcentrated

andcombinedwiththeSDSextractpriortocleanup.

Thesampleisvacuumfilteredthroughaglassfiberfilter

ontopofasolidphaseextraction(SPE)disk.Thefilterand

diskareextractedinanSDSextractor,andtheextractis

concentratedforcleanup.

n Solid,semi-solid,andmulti-phasesamples(butnottissue)

–Thelabeledcompoundsarespikedintoasamplecontaining

10g(dryweight)ofsolids.Samplescontainingmultiplephas-

esarepressurefilteredandanyaqueousliquidisdiscarded.

Coarsesolidsaregroundorhomogenized.Anynon-aqueous

liquidfrommulti-phasesamplesiscombinedwiththesolids

andextractedinanSDSextractor.Theextractisconcentrated

forcleanup.

n Fishandothertissue–Thesampleisextractedbyoneof

twoprocedures:

SoxhletorSDSextraction–A20galiquotofsampleis

homogenized,anda10galiquotisspikedwiththelabeled

compounds.Thesampleismixedwithsodiumsulfate,

allowedtodryfor12-24hours,andextractedfor18-24

hoursusingmethylenechloride:hexane(1:1)inaSoxhlet

extractor.Theextractisevaporatedtodryness,andthe

lipidcontentisdetermined.

HCldigestion–A20galiquotishomogenized,anda10

galiquotisplacedinabottleandspikedwiththelabeled

compounds.Afterequilibration,200mLofhydrochloric

acidand200mLofmethylenechloride:hexane(1:1)are

added,andthebottleisagitatedfor12-24hours.The

extractisevaporatedtodryness,andthelipidcontentis

determined.

after extraction

Cl-labeled 2,3,7,8-TCDD is added to each extract to measure

the374efficiencyof the cleanup process. Sample cleanupsmay

includeback-extractionwithacidand/orbase,andgelpermeation,

alumina, silica gel, Florisil and activated carbo chromatography.

High-performance liquid chromatography (HPLC) can be used for

further isolation of the 2,3,7,8-isomers or other specific isomers

orcongeners.Prior to thecleanupprocedurescitedabove, tissue

extracts should be cleaned up using an anthropogenic isolation

column,abatchsilicageladsorption,orsulfuricacidandbaseback-

extraction,dependingonthetissueextractionprocedureused.

Page 27: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

27

after cleanup

The extract is concentrated tonear dryness. Immediately prior to

injection,internalstandardsareaddedtoeachextract,andanaliquot

oftheextractisinjectedintothegaschromatograph.Theanalytes

are separated by the GC and detected by a high resolution mass

spectrometer.Twoexactm/z’saremonitoredforeachanalyte.

identification

An individual CDD/CDF is identified by comparing the GC reten-

tion time and ion abundance ratio of two exact m/z’s with the

corresponding retention time of an authentic standard and the

theoreticaloracquiredion-abundanceratioofthetwoexactm/z’s.

The non-2,3,7,8 substituted isomers and congeners are identi-

fiedwhen retention timesand ion-abundance ratiosagreewithin

predefinedlimits.Isomerspecificityfor2,3,7,8-TCDDand2,3,7,8-

TCDFisachievedusingGCcolumnsthatresolvetheseisomersfrom

theothertetra-isomers.

Quantitation

Quantitativeanalysisisperformedusingselectedioncurrentpro-

file(SICP)areas,inoneofthreeways:

n Forthe152,3,7,8-substitutedCDDs/CDFswithlabeled

analogs,theGC/MSsystemiscalibrated,andtheconcentra-

tionofeachcompoundisdeterminedusingtheisotope

dilutiontechnique.

n For1,2,3,7,8,9-HxCDD,OCDF,andthelabeledcompounds,

theGC/MSsystemiscalibratedandtheconcentrationofeach

compoundisdeterminedusingtheinternalstandardtechnique.

n Fornon-2,3,7,8-substitutedisomersandforallisomersata

givenlevelofchlorination(i.e.totalTCDD),concentrations

aredeterminedusingresponsefactorsfromcalibrationofthe

CDDs/CDFsatthesamelevelofchlorination.

Qualitation

Thequalityoftheanalysisisassuredthroughreproduciblecalibra-

tionandtestingoftheextraction,cleanupandGC/MSsystems.

6.3. Waters solution

The Micromass AutoSpec Premier™ is the market-leading instru-

ment for High Resolution Gas Chromatography (HRGC) coupled

withHighResolutionMassSpectrometry(HRMS).Itoffersultimate

sensitivity,quantitativelinearityandreproducibilitynecessaryfor

regulatorydioxinandfuranmonitoring.TheAutoSpecPremierpro-

videsunmatchedperformance for theanalysesofdioxins, furans,

polychlorinatedbiphenyls(PCBs),polybrominateddiphenylethers

(PDBEsfrombrominatedflameretardants)andrelatedcompounds.

Theuseofascreeningmethodpriortoconfirmatoryanalysiscan

greatlyreducetheworkloadofaHRGC/HRMSlaboratorybyhighlight-

ingsamplesthatareeithernon-detectable,orhaveconcentrations

atextremelyhighlevelsthatmayfalloutsidethequantifiablerange

oftheHRGC/HRMSmethod.Arapidscreeningmethodforallnon-

toxicandtoxicPCDD/Fsinasingleinjectionhasbeendevelopedby

GCTripleQuadrupoleMS/MS.Wecurrentlyrecommendthat10%of

screenedsamplesareverifiedbyHRGC/HRMS.

Quattro micro GC.

Page 28: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

28

6.3.1. dioxin screening using Gc/ms/ms (Quattro micro Gc)

QuattromicroGCisatandemquadrupoleinstrumentforsuperior

quantitative performance. It provides the exceptional sensitivity,

selectivity,androbustnessoftandemquadrupoleGC/MS/MS.The

instrument produces accurate and reproducible quantification of

targetcompoundsatlowlevelsincomplexmatricessuchasfruits,

vegetables and animal products. It provides complete range of

automatedreal-timeMS/MSexperiments:

MultipleReactionMonitoring(MRM),production,precursorionand

neutralloss.QuattromicroGCconsistsofnewionopticanddedi-

catedEIandCIsourceswithisolationvalveforrapidchangeover.

Quattro micro Gc conditions:

GCcolumn:

20m0.18mmI.D.0.18mmdfAgilentJ&W,DB-5ms

0.6mL/minHeflow

GCtemperatureramp:

140°Cfor1.5mins

18.4°C/minto220°C

3.7°C/minto255°C

10.4°C/minto310°Chold1min

Splitlessinjector,2mmIDdeactivatedquartzlinerinjector

temperature280°C

1.6minpurgetime30mL/minpurgeflow

1mLinjectionvolume

QUADRUPOLE(MS1)

HEXAPOLECOLLISION CELL

QUADRUPOLE(MS2)

PHOTOMULTIPLIER

PHOSPHOR

PRE-FILTERPOST-FILTER

CONVERSIONDYNODE

Detector

REMOVEABLEION SOURCE

GC INTERFACE

GC OVEN

Schematic diagram of the Quattro micro GC showing the key components of the tandem quadrupole mass spectrometer.

Mid point calibration standard, TIC and extracted mass chro-matograms for TCDF, 13C12-TCDF.

Mid point calibration standard, TCDF transition 306>243 and 13C12-TCDF transition 318>254.

Separation of 1,2,3,4,7,8-HxCDF and 1,2,3,6,7,8-HxCDF showing <25% valley as required by EU legislation.

Page 29: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

2�

temperature ramp optimized to satisfy eu legislation:

n Separationof1,2,3,4,7,8-HxCDFand1,2,3,6,7,8-HxCDFmust

be<25%valley.A13%valleyseparationisobtainedunder

theseconditions.Thischromatogramshowsinjectionnumber

80fromthebatchruns.

n OCDFelutesinlessthan20minutes

n Rapidanalysistime,maintainingrequiredseparation,maxi-

mumthroughput

n Midpointcalibrationstandard,TICandextractedmasschro-

matogramsforTCDF,13C12-TCDF

n Midpointcalibrationstandard,TCDFtransition306>243and

13C12-TCDFtransition318>254

Quattro micro Gc reproducibility

conGener prf %rsd ion ratio %rsd rt %rsd

2378-TCDF 6.35 5.9 0.14

12378-PeCDF 6.39 3.94 0.16

23478-PeCDF 6.81 4.53 0.13

123478-HxCDF 5.34 4.52 0.14

123678-HxCDF 4.78 4.23 0.15

234678-HxCDF 5.21 3.68 0.14

123789-HxCDF 5.06 3.75 0.13

1234678-HpCDF 4.88 5.27 0.11

1234789HpCDF 4.07 4.01 0.09

OCDF 3.48 2.96 0.09

2378-TCDD 6.51 4.99 0.13

12378-PeCDD 5.85 3.75 0.14

123478-HxCDD 4.13 4.36 0.14

123678-HxCDD 6.16 3.92 0.14

123789-HxCDD 4.09 3.53 0.14

1234678-HpCDD 3.6 3.46 0.08

OCDD 3.53 2.24 0.09

6.3.2. dioxin confirmation using Hrms (autospec premier)

TheAutoSpecPremier isbasedonWatersMicromassestablished

AutoSpectechnology.Withan installedbaseofover650instru-

ments, the AutoSpec family features patented tri-sector EBE

technology,ultrahighresolution(>80,000),aconstantgain,long

life detector, plug-in sources, unrivalled dynamic range >105),

advancedautotuneanduncompromisingsensitivity.

next generation informatics for complete dioxin confidence

The AutoSpec Premier is powered by Waters MassLynx software.

MassLynx automates instrument tuning, control and data acquisi-

tionintoasingleplatform. Inaddition,ourTargetLynx™Application

Manager, designed in collaboration with the world’s leading GC/MS

laboratories,providesanintegrateddataprocessingenvironmentfor

dioxin,environmentalandotherrelatedGC/MSquantitativeanalyses.

In addition, our TargetLynx Application Manager, designed in col-

laborationwith theworlds leadingGC/MS laboratories, provides an

integrated data processing and reporting environment for dioxin,

environmentalandotherrelatedGC/MSquantitativeanalyses.

TheTargetLynxapplicationnowsupportsreportingofresultscompliant

withUS EPAmethod1613 reporting protocols. TheReporting tools

allowtheusertoinputawiderangeoftraceabilityparametersdirectly

intoa fully customisable report,withparameters suchas labname,

samplereceiptdate,sampleextractionmethodandmanymore.During

thereportgeneration,itispossiblefortheusertoaddcommentsto

any of the fields on the report,with all comments appended to the

relevant‘table’ofthereport.

Afterinput,alloftheseparametersarethenstoredintheTargetLynx

dataset,maintaininggoodtraceabilityandallowingregenerationofa

reportwithease.

AllUSEPA1613reporttemplatesaresuppliedasstandard,andcanbe

modifiedtogenerateanyreportrequired.

AutoSpec Premier.

Page 30: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

30

7. Wat ers sof t Ware solut ions

7.1 masslynx related ms products

masslynxistheheartofthedatasystem.Thefollowingapplication

managersaresuitableforenvironmentalapplications.QuanLynx™

istheMassLynxApplicationManagerdedicatedtohighperformance

quantification. QuanLynx includes the QuanOptimize™ software

tool.AttheheartofQuanLynx,linkingtheextracteddata,calibra-

tions,chromatogramsandresultsisthesummarybar.Thesummary

barshowsallofyourinformationinapowerful,userconfigurable,

spreadsheet-like grid. Using the summary bar, you can navigate

through your data and rapidly check peaks areas, concentrations

andresidualsandmore.Fromthetoolbar,youcanenablethepop-

upstatisticswindowwhereyoucanviewbatchstatisticsincluding

mean,standarddeviationand%RSDofyourcompounds.Thecom-

pleteexperimentalrecordisalsopartoftheQuanLynxcohesivefile

architecture,whichincludesarecordofMSandsampleinformation

importedfromthemethodfilesandsamplelistwhentherawdata

wasfirstexportedintoQuanLynx.

Quanoptimize(includedwiththeQuanLynxoption)generatesMS

andMS/MSparametersbyoptimizingtheconevoltage,parention

and collision energy parameters. QuanOptimize then takes these

MS methods and performs automated acquisition and processing

usingprocessingmethodsdevelopedonthefly.

targetlynx application manager is designed for quantification

withcomprehensivetargetingandconfirmation.TargetLynxincludes

theQuanLynxandQuanOptimizetools.Forregulatoryfoodsafety

monitoring,evidenceisrequiredbeforethepresenceandconcen-

trationofananalytemaybereportedconfirmatory.Retentiontime,

S/Nratioandsecondaryionratioshavetobeverified.TargetLynx

is designed to automatically fulfill the requirements of the EU

Council Directive 96/23/EC and subsequent SANCO regulations.

TargetLynxgeneratesareport,whichclearlyhighlightsthepositive

samples,andflagstheQCparameterswhenoutoflimits.

Wheninjectingaseriesofsamples,theconcentrationsarereported

asfollows:

n Theconcentrationsthatarebelowthereportinglimit(user

defined,i.e.LOQ)arenotreported.

n Theconcentrationsbetweenthereportinglimitandthemaxi-

mumallowedconcentration(MRL)arereported.

n TheconcentrationsabovetheMRLarereportedinbold.

n IftheQCparametersareoutoflimits,theyareflaggedinred,

andtheexplanationappearsasatooltip.

Right click to add comments.

US EPA 1DFA samplesummary report.

Cal curve summary: five injections, 33 compounds, one page.

Page 31: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

31

chromalynx™ApplicationManagerisdesignedfortheautomated

processingofGC/MSorGC/MS/MSdata.Thehighchromatographic

separation efficiency and narrow chromatographic peak widths

typicalofGC/MSoftenincreasethechallengetoidentifyco-eluting

components.ThekeytotheexceptionalperformanceofChromaLynx

is thenew,proprietarychromatographicdeconvolutionalgorithm.

Thisprovidesexceptionalefficiencyforthelocation,peakdetection

andgenerationof ‘clean’massspectraof closelyelutingcompo-

nentsincomplexmixtures.Auniquefeatureofthealgorithmisits

abilitytoretainexactmassmeasurements (whenusedwithexact

mass instruments such as the Waters Micromass GCT), enabling

calculationofelementalcompositionfromthe‘clean’deconvoluted

massspectra.Dataisthenavailableforeasyreviewinthededicated

ChromaLynxdeconvolutionbrowser.Deconvolutedmassspectracan

beautomatically librarysearchedagainstcommerciallyavailable

libraries. Using instruments providing exact mass measurement,

theresultingelementalcompositioncalculationsfromexactmass

spectracangiveconfirmationofthelibrarysearchresults.

7.2 empower software

Empower2softwareisWaters’chromatographydatasoftware(CDS)

packageforadvanceddataacquisition,management,processing,and

reporting.Empower2capabilitiesincludecustomizabledatareports,

integrated custom calculations, and the ability to control Waters

UPLC, HPLC, and LC/MS systems, as well as third-party HPLC and

GCinstruments.CombinedwithEmpower2’sintuitiveuserinterface,

thesepowerfulfeatureshelpmaximizelaboratoryefficiency.Options

forEmpower2includeEmpower2MethodValidationManager(MVM)

andEmpower2EnterpriseDataManager(EDM).

Empower 2 MVM allows you to perform chromatographic method

validation, fromprotocolplanning through final reporting,within

oneapplication.Capabilitiesincludestorageofyourmethodvali-

dation SOP requirements in Empower 2 so that Empower 2 can

automaticallyguideyouthroughthemethodvalidationworkflow,

calculatemethodvalidationresults,determineifthedataadheres

toSOPrequirementsandiftheresultsarewithinspecification,and

generatecustomreports–allwhilemanagingthedatainasecure,

audittrailed,compliantenvironment.

Empower 2 EDM is an enterprise option designed for networked

environmentsthatoffersenhanceddatamanagementcapabilities

forchromatographicresults. Itprovidesautomatedprojectarchive

capabilitieswith advancedarchive logic. Fully configurable, EDM

scales from a single lab to the global enterprise without major

modifications toexisting IT infrastructures. Empower2EDMpro-

videsaccesstoCDSreportsanddataviaawebbrowser–enabling

QualityAssurance staff to review and approve electronic reports

withoutadditionalsoftware.

8. Wat ers Global serv ic es

WatersGlobalServicesoptimizesyourentirelaboratoryoperation

andinformationmanagementprocess.Wehelpyoutoachievenew

levelsofefficiencyandproductivitybyintegratingourbreadthof

knowledgein instrumentation,training,support,GxPcompliance,

andinformatics.

With94officesinmorethan50countries,ourlocalizedcustomer

service teams offer highly skilled and experienced professionals

whose mission is to provide you with the level of expertise and

responsivenessthatyouneed.

Ourportfolioincludes:

n Assetmanagement

n Relocationservices

n Educationandtraining

n GxPcomplianceservices

n Instrumentandsoftwareservices

n Enterprisesolutions

n Onlinesupportcenter

n WatersQualityParts®

Page 32: Waters white paper Solution 2.3.1. Waters HPLC and Fluorescence Detector 2.3.2. Waters Quadrupole Mass Spectrometer with HPLC 2.3.3. GPC Cleanup System and Envirogel Column 3. polynuclear

Waters corporation 34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990 www.waters.com

Waters,ACQUITYUPLC,Alliance,Sep-Pak,Micromass,Nova-Pak,Symmetry,ConnectionsINSIGHT,andBreezeareregisteredtrademarksofWatersCorporation.AutoSpec,AutoSpecPremier,ChromaLynx,Empower,Envirogel,GCT,MassLynx,Micromass,Q-Tof,Q-TofPremier,QuanLynx,QuanOptimize,QuattromicroGC,QuattroPremier,Sep-Pak,TargetLynx,XpoSure,andZQaretrademarksofWatersCorporation.Allothertrademarksarethepropertyoftheirrespectiveowners.

©2007WatersCorporation.PrintedintheU.S.A.June2007720002163ENJH-AC

SAleS OFFiceS:

austria 43 1 877 18 07

australia 61 2 9933 1777

belgium and luxembourg 32 2 726 1000

brazil 55 11 4134 3788

canada 1 800 252 4752

china 0086 10 8586 8899

czech republic 420 2 617 11384

denmark 45 46 59 8080

finland 358 9 5659 6288

france 33 1 30 48 72 00

Germany 49 6196 400 7000

Hong kong 852 2964 1800

Hungary 36 1 350 5086

india 91 80 2837 1900

ireland 353 1 448 1500

italy 39 02 265 0983

Japan 81 3 3471 7191

korea 82 2 820 2700

mexico 52 55 52 00 1860

the netherlands 31 76 508 7200

norway 47 6 384 6050

poland 48 22 833 4400

puerto rico 787 747 8445

russia/cis 495 727 4490 / 290 9737

singapore 65 6273 1221

spain 34 93 600 9300

sweden 46 8 555 115 00

switzerland 41 21 983 1818

taiwan 886 2 2543 1898

uk 44 208 238 6100

us 1 800 252 4752