WaterImplicaonsofCO 2&Emission&Performance&Standards&for ... · WaterImplicaonsofCO 2...

1
Water Implica-ons of CO 2 Emission Performance Standards for Fossil FuelFired Power Plants Shuchi Tala-, Haibo Zhai, and Granger Morgan Department of Engineering and Public Policy, Carnegie Mellon University, Pi<sburgh PA BACKGROUND Understanding water demand in the context of carbon regula6on policies and the mandate to begin using carbon capture systems is essen6al to future energy genera6on planning. The impacts of emission performance standards (EPS) recently proposed by U.S. Environmental Protec6on Agency (US EPA) to regulate CO 2 emissions from coal and natural gas plants have not been quan6fied. Currently, it is known that the addi6on of 90% carbon capture systems will lead to a nearly doubling of water use, however specific changes in water use to adhere to the proposed regula6on are not known. Research Objec-ves 1) Inves6gate plant level changes in water use for fossil fuel fired power genera6on systems with adherence to the proposed emissions performance standard 2) Explore changes in water use from the impact of plant design as well as policy choices 3) Evaluate the uncertainty in water use from the EPS 4) Understand the water management policy implica6ons. The proposed EPS is as following [2]: New Coal Units (PC & IGCC): 1,100 lb CO2/MWh gross over a 12opera6ng month period, or 1,0001,050 lb CO2/MWh gross over a 7year period NGCC units: 1,000 lb CO2/MWh gross for larger units or 1,100 lb CO2/MWh gross for smaller units METHODS The Integrated Environmental Control Model, developed by Carnegie Mellon University and the Na6onal Energy Technology Lab, was the main tool u6lized to conduct this analysis [3]. We first established base case PC and NGCC power plants without carbon capture, and a PC plant in compliance with the proposed EPS. We then conducted a large scale sensi6vity analysis to look at a range of factors affec6ng water use in fossil fuel power plants with an EPS measure in place. We then assessed uncertainty through the use of IECM’s uncertainty func6onality. [1] Freshwater Use by U.S. Power Plants: Electricity’s Thirst for a Precious Resource, UCS (2011) hbp://www.ucsusa.org/assets/documents/clean_energy/ew3/ew3freshwaterusebyuspowerplants.pdf [2] US EPA: hbp://www2.epa.gov/carbonpollu6onstandards/2013proposedcarbonpollu6onstandardnewpowerplants [3] IECM: hbp://www.cmu.edu/epp/iecm/ RESULTS Base cases Three power plant base cases were analyzed: supercri6cal pulverized coal (PC), supercri6cal PC with CCS to meet the EPS, and an NGCC plant. Plant Design Sensi-vity PC plant type, coal type, and cooling system type all significantly contribute to determining carbon removal efficiency and overall water use. An example of such sensi6vity is below, illustra6ng the varia6ons that occur based on changes in plant type. Cooling system type has the largest effect on overall water use, however plant type and coal type have larger effects on the carbon removal efficiencies and water use from the carbon capture system. Compliance Timing Sensi-vity The EPS allows for choice between a 12 and 84month opera6ng period, with 6ghter regula6ons for the laber. An analysis was conducted to determine if 1) there would be a significant difference in water 2) how long a plant would be able to wait before installing and u6lizing 90% carbon capture to meet the standard and 3) if this would cause significant differences in water use. We thank the Center for Climate and Energy Decision Making and the Department of Engineering and Public Policy at Carnegie Mellon University, for their support of this work. Sensi-vity to Policy Choices NGCC plants fall within compliance of the EPS. Only if more stringent measures were put in place would NGCC plants need to install CCS. Subsequent NGCC and PC consump6on intensi6es are shown below. The net vs. gross dis6nc6on in the policy is an important one. Requiring capture on a net basis, leads to a 10% increase in the carbon removal efficiency and subsequent higher water use. Uncertainty Uncertainty of the water use was assessed by looking at cumula6ve probability distribu6ons of plant water use for a 500 MW net Super PC plant with and without CCS to meet the EPS (a). We then looked at the cumula6ve distribu6on of added water use based by using the noCCS plant output as the input distribu6ons (b). We found that 95% ranges from 238258 tonnes/hour – an increase of approximately 30.4%. DISCUSSION Water use from carbon regula6on policies will have large effects on water use, however it can be decreased through the use of adap6ve strategies to limit it as much as possible. As standards become more and more stringent, more water will be required to generate the same amount of power from fossil fuel powered genera6on. Source: UCS [1] 0% 10% 20% 30% 40% 50% Sub Cri6cal Super Cri6cal Ultra Cri6cal CO2 Removal Efficiency (%) Plant Type 0 0.5 1 1.5 2 2.5 3 3.5 Sub Cri6cal Super Cri6cal Ultra Cri6cal Water Use Intensity (m^3/ MWh) Plant Type Consump6on Withdrawal 0 200 400 600 800 1000 1200 1400 1600 1800 1 2 3 4 5 6 7 8 9 101112 CO2 Emission Rate (lb/MWh gross) Deployment Time of CCS (nth month) No/90% Capture 40% Capture 0 0.25 0.5 0.75 1 230 240 250 260 270 Cumula-ve Probability Added Water Consump-on from CCS (tonnes/hr) (b) 0 0.25 0.5 0.75 1 750 900 1050 1200 1350 Cumula-ve Probability Plant Water Consump-on (tonnes/hr) (a) CCS (40% Capture) No CCS Variable Results Plant Type Super PC Super PC NGCC EPS (1100 lb/MWhg) No Yes No Gross output (MW) 536 578 557 Net output (MW) 500 500 542 Net plant efficiency 38.2% 32.8% 50.1% CO 2 removal efficiency 40% Emissions rate (lb/MWhg) 1687 1097 782 Consump6on Intensity (m 3 /MWh) 1.63 2.13 .67 Withdrawal Intensity (m 3 /MWh) 2.33 3.06 .89 Type 90% Capture (months) Consum Intensity Withdr Intensity Avg Annual Consump Avg Annual Withdr 12 months 4.75 2.10 3.00 6.9 E6 9.8 E6 84 months 36.1 2.14 3.05 7.0 E6 10 E6 Consistent 0 2.13 2.64 7.0 E6 8.7 E6 0 0.5 1 1.5 2 2.5 3 1500 1100 800 500 300 Water Consump-on Intensity (m^3/ MWh) Emissions Performance Standard (lbMWhgross) PC NGCC

Transcript of WaterImplicaonsofCO 2&Emission&Performance&Standards&for ... · WaterImplicaonsofCO 2...

Page 1: WaterImplicaonsofCO 2&Emission&Performance&Standards&for ... · WaterImplicaonsofCO 2 &Emission&Performance&Standards&for&Fossil&Fuel;Fired&Power&Plants& & Shuchi&Tala-,&Haibo&Zhai,&and&Granger&Morgan&

Water  Implica-ons  of  CO2  Emission  Performance  Standards  for  Fossil  Fuel-­‐Fired  Power  Plants    

Shuchi  Tala-,  Haibo  Zhai,  and  Granger  Morgan    

Department  of  Engineering  and  Public  Policy,  Carnegie  Mellon  University,  Pi<sburgh  PA  

BACKGROUND    Understanding   water   demand   in   the   context   of   carbon  regula6on   policies   and   the   mandate   to   begin   using   carbon  capture   systems   is   essen6al   to   future   energy   genera6on  planning.  The  impacts  of  emission  performance  standards  (EPS)  recently  proposed  by  U.S.  Environmental  Protec6on  Agency  (US  EPA)  to  regulate  CO2  emissions  from  coal  and  natural  gas  plants  have   not   been   quan6fied.   Currently,   it   is   known   that   the  addi6on   of   90%   carbon   capture   systems  will   lead   to   a   nearly  doubling  of  water  use,  however  specific  changes  in  water  use  to  adhere  to  the  proposed  regula6on  are  not  known.      Research  Objec-ves  1)  Inves6gate   plant   level   changes   in  water   use   for   fossil   fuel-­‐

fired   power   genera6on   systems   with   adherence   to   the  proposed  emissions  performance  standard  

2)  Explore   changes   in   water   use   from   the   impact   of   plant  design  as  well  as  policy  choices    

3)  Evaluate  the  uncertainty  in  water  use  from  the  EPS  4)  Understand  the  water  management  policy  implica6ons.    The  proposed  EPS  is  as  following  [2]:    •  New  Coal  Units  (PC  &  IGCC):  1,100  lb  CO2/MWh  gross  over  a  

12-­‐opera6ng   month   period,   or   1,000-­‐1,050   lb   CO2/MWh  gross  over  a  7-­‐year  period  

•  NGCC   units:   1,000   lb   CO2/MWh   gross   for   larger   units   or  1,100  lb  CO2/MWh  gross  for  smaller  units    

   METHODS      The  Integrated  Environmental  Control  Model,  developed  by  Carnegie  Mellon  University  and  the  Na6onal  Energy  Technology  Lab,  was  the  main  tool  u6lized  to  conduct  this  analysis  [3].      We  first  established  base  case  PC  and  NGCC  power  plants  without  carbon  capture,  and  a  PC  plant  in  compliance  with  the  proposed  EPS.  We  then  conducted  a  large  scale  sensi6vity  analysis  to  look  at  a  range  of  factors  affec6ng  water  use  in  fossil  fuel  power  plants  with  an  EPS  measure  in  place.  We  then  assessed  uncertainty  through  the  use  of  IECM’s  uncertainty  func6onality.                                  

[1]  Freshwater  Use  by  U.S.  Power  Plants:  Electricity’s  Thirst  for  a  Precious  Resource,  UCS  (2011)    hbp://www.ucsusa.org/assets/documents/clean_energy/ew3/ew3-­‐freshwater-­‐use-­‐by-­‐us-­‐power-­‐plants.pdf    [2]  US  EPA:  hbp://www2.epa.gov/carbon-­‐pollu6on-­‐standards/2013-­‐proposed-­‐carbon-­‐pollu6on-­‐standard-­‐new-­‐power-­‐plants  [3]  IECM:  hbp://www.cmu.edu/epp/iecm/    

RESULTS    Base  cases  Three   power   plant   base   cases   were   analyzed:   supercri6cal   pulverized   coal  (PC),  supercri6cal  PC  with  CCS  to  meet  the  EPS,  and  an  NGCC  plant.                              Plant  Design  Sensi-vity  PC  plant  type,  coal  type,  and  cooling  system  type  all  significantly  contribute  to  determining  carbon  removal  efficiency  and  overall  water  use.  An  example  of  such   sensi6vity   is   below,   illustra6ng   the   varia6ons   that   occur   based   on  changes   in   plant   type.   Cooling   system   type   has   the   largest   effect   on   overall  water   use,   however     plant   type   and   coal   type   have   larger   effects   on   the  carbon  removal  efficiencies  and  water  use  from  the  carbon  capture  system.        

 Compliance  Timing  Sensi-vity    The  EPS  allows  for  choice  between  a  12  and  84-­‐month  opera6ng  period,  with  6ghter  regula6ons  for  the  laber.  An  analysis  was  conducted  to  determine  if  1)  there  would  be  a  significant  difference  in  water  2)  how  long  a  plant  would  be  able   to  wait   before   installing   and   u6lizing   90%   carbon   capture   to  meet   the  standard  and  3)  if  this  would  cause  significant  differences  in  water  use.    

 

  We  thank  the  Center  for  Climate  and  Energy  Decision  Making  and  the  Department  of  Engineering  and  Public  Policy  at  Carnegie  Mellon  University,  for  their  support  of  this  work.    

Sensi-vity  to  Policy  Choices    NGCC   plants   fall   within   compliance   of   the   EPS.   Only   if   more  stringent  measures  were  put   in   place  would  NGCC  plants   need   to  install   CCS.   Subsequent   NGCC   and   PC   consump6on   intensi6es   are  shown  below.  

The   net   vs.   gross   dis6nc6on   in   the   policy   is   an   important   one.  Requiring   capture   on   a   net   basis,   leads   to   a   10%   increase   in   the  carbon  removal  efficiency  and  subsequent  higher  water  use.      Uncertainty  Uncertainty  of  the  water  use  was  assessed  by  looking  at  cumula6ve  probability  distribu6ons  of  plant  water  use  for  a  500  MW  net  Super  PC  plant  with  and  without  CCS  to  meet  the  EPS  (a).  We  then  looked  at   the   cumula6ve   distribu6on   of   added  water   use   based   by   using  the   no-­‐CCS   plant   output   as   the   input   distribu6ons   (b).  We   found  that   95%   ranges   from   238-­‐258   tonnes/hour   –   an   increase   of  approximately  30.4%.                          DISCUSSION    Water  use  from  carbon  regula6on  policies  will  have  large  effects  on  water  use,  however  it  can  be  decreased  through  the  use  of  adap6ve  strategies  to  limit  it  as  much  as  possible.  As  standards  become  more  and  more   stringent,  more  water  will   be   required   to   generate   the  same  amount  of  power  from  fossil  fuel  powered  genera6on.    

Source:  UCS  [1]  

0%  

10%  

20%  

30%  

40%  

50%  

Sub  Cri6cal   Super  Cri6cal  Ultra  Cri6cal  CO2  Re

moval  Efficien

cy  (%

)  

Plant  Type  

0  0.5  1  

1.5  2  

2.5  3  

3.5  

Sub  Cri6cal   Super  Cri6cal   Ultra  Cri6cal  

Water  Use  In

tensity

 (m^3/

MWh)  

Plant  Type  

Consump6on    Withdrawal  

0  200  400  600  800  1000  1200  1400  1600  1800  

1   2   3   4   5   6   7   8   9   10  11  12  

CO2  Em

ission

 Rate  (lb

/MWh-­‐

gross)  

Deployment  Time  of  CCS  (nth  month)  

No/90%  Capture  40%  Capture  

0  

0.25  

0.5  

0.75  

1  

230   240   250   260   270  

Cumula-

ve  Proba

bility  

Added  Water  Consump-on  from  CCS  (tonnes/hr)  

(b)  

0  

0.25  

0.5  

0.75  

1  

750   900   1050   1200   1350  

Cumula-

ve  Proba

bility  

Plant  Water  Consump-on  (tonnes/hr)  

(a)  

CCS  (40%  Capture)  

No  CCS  

Variable   Results  

Plant  Type   Super  PC   Super  PC   NGCC  

EPS  (1100  lb/MWh-­‐g)   No     Yes   No  

Gross  output  (MW)   536   578   557  

Net  output  (MW)   500   500   542  

Net  plant  efficiency   38.2%   32.8%   50.1%  

CO2  removal  efficiency   -­‐   40%   -­‐  

Emissions  rate  (lb/MWh-­‐g)   1687   1097   782  

Consump6on  Intensity  (m3/MWh)   1.63   2.13   .67  

Withdrawal  Intensity  (m3/MWh)   2.33   3.06   .89  

Type   90%  Capture  (months)  

Consum  Intensity  

Withdr  Intensity  

Avg  Annual  Consump  

Avg  Annual  Withdr    

12  months   4.75   2.10   3.00   6.9  E6   9.8  E6  

84  months   36.1   2.14   3.05   7.0  E6   10  E6  

Consistent   0   2.13   2.64   7.0  E6   8.7  E6  

0  

0.5  

1  

1.5  

2  

2.5  

3  

1500   1100   800   500   300  

Water  Con

sump-

on  In

tensity

 (m^3/

MWh)  

Emissions  Performance  Standard  (lb-­‐MWh-­‐gross)  

PC  

NGCC