Water Quality and Treatment

113
Outreach Program of the Water Purification Science and Technology Research Group at UNC-Chapel Hill – Visit us at http://coronell.web.unc.edu/outreach Water Quality and Treatment Lessons For Middle/High School Prepared by: Ariel Atkinson, Kasia Grzebyk, Lin Lin, Jingbo Wang, Orlando Coronell PhD Department of Environmental Sciences and Engineering Gillings School of Global Public Health University of North Carolina at Chapel Hill Robert Greenberg Chapel Hill High School, Chapel Hill, North Carolina June 2014

Transcript of Water Quality and Treatment

Outreach Program of the Water Purification Science and Technology Research Group at UNC-Chapel Hill – Visit us at http://coronell.web.unc.edu/outreach

Water Quality and Treatment

Lessons For

Middle/High School

Prepared by:

Ariel Atkinson, Kasia Grzebyk, Lin Lin, Jingbo Wang, Orlando Coronell PhD

Department of Environmental Sciences and Engineering Gillings School of Global Public Health

University of North Carolina at Chapel Hill

Robert Greenberg

Chapel Hill High School, Chapel Hill, North Carolina

June 2014

 

This packet serves as a guideline for middle/high school teachers to educate students about drinking water quality and production. Others who plan to hold outreach programs on water education may also use this as an additional support. This packet is a product of an outreach program conducted in 2014 at Chapel Hill High School in Chapel Hill, North Carolina.

This packet contains:

• A description of the purpose, content, and prerequisites for the lessons.

• A day-by-day layout of the outreach lectures, assignments, activities, and other support materials.

• Sample slides that were used in a series of lectures given in 2014 and instruction for the corresponding activities.

• Photos that were taken during the outreach in the spring of 2014.

2

 

Purpose

These lessons are designed to help the students learn about water through a combination of lectures and laboratory activities. The topics include water resource, water quality, conventional water treatment, and advanced water treatment. These topics aim to help students understand the importance of clean water, the water quality and regulations in the US, the latest technologies of drinking water production, and the future of drinking water supply for the world population.

The following subjects are covered:

Importance of clean water and current water scarcity issues

Water resources for drinking water production

Indications of water quality and regulations

Water quality testing

Conventional water treatment, including coagulation, flocculation, sedimentation, filtration and disinfection

Advanced water treatment with a focus on membrane technology (which is the authors’ area of expertise )

These lessons meet the following North Carolina public school common course standards:

EEn.2.4.1 Evaluate human influences on freshwater availability

EEn.2.8.2 Critique conventional and sustainable agriculture and aquaculture practices in terms of their environmental impacts.

EEn.2.8.3 Explain the effects of uncontrolled population growth on the Earth’s resources.

EEn.2.8.4 Evaluate the concept of “reduce, reuse, recycle” in terms of impact on natural resources.

Bio.2.2.1 Infer how human activities (including population growth, pollution, global warming, burning of fossil fuels, habitat destruction and introduction of nonnative species) may impact the environment.

Bio.2.2.2 Explain how the use, protection and conservation of natural resources by humans impact the environment from one generation to the next.

8.E.1.1 Explain the structure of the hydrosphere including: • Water distribution on earth • Local river basin and water availability

3

 

8.E.1.2 Summarize evidence that Earth’s oceans are a reservoir of nutrients, minerals, dissolved gases, and life forms: • Estuaries • Marine ecosystems • Upwelling • Behavior of gases in the marine environment • Value and sustainability of marine resources • Deep ocean technology and understandings gained

8.E.1.3 Predict the safety and potability of water supplies in North Carolina based on physical and biological factors, including: • Temperature • Dissolved oxygen • pH • Nitrates and phosphates • Turbidity • Bio-indicators

8.E.1.4 Conclude that the good health of humans requires: • Monitoring of the hydrosphere • Water quality standards • Methods of water treatment • Maintaining safe water quality • Stewardship Prerequisites

It is suggested students have been introduced to the following concepts before participating in these lessons:

• Hydrosphere and water cycle (Earth/Environmental Science)

• Health effects of bacteria and viruses (Biology)

• pH, acidic and basic (Chemistry)

• Filtration (Physics)

4

Table  of  Contents    Day   Activity/Material   In-­‐Class  Time  

Requirement  Page  Number(s)  

Day  1  

Water  Quality  Report  Card   15-­‐25  minutes   7-­‐14  Water  Quality  Report  Card  Worksheet  

15  

Homework-­‐water  collection   0  minutes   16  Day  2  

Water  Quality  Lecture  and  PowerPoint  with    Compartment  Bag  Test  Part  1  and    Water  Quality  Test  Strip  activity  and  Homework  Instructions  

30  minutes    10  minutes  10-­‐15  minutes  

18-­‐30    27  29  30  

Compartment  Bag  Test    Manufacturer  Instructions  

31-­‐34  

Water  Quality  Test  Strip  Activity  Worksheet  

35  

Day  3  

Conventional  Water  Treatment  Lecture  and  PowerPoint  with  Coagulation/  Flocculation/  Sedimentation  demonstration  

40  minutes  10  minutes  

 37-­‐53    49  

Day  4  

Conventional  Water  Treatment  Review  Lecture  and  PowerPoint  with  Build-­‐Your-­‐Own  Multimedia  Water  Filter  Activity  and  Compartment  Bag  Test  Part  2  

5  minutes    

30-­‐40  minutes    

5-­‐10  minutes  

55-­‐59    57    

58,  59  Build-­‐Your-­‐Own  Multimedia  Water  Filter  Activity  Worksheets  

60-­‐63  

Day  5  

Virtual  Tour  of  Advanced  Water  Treatment  Plant  Worksheet   30-­‐40  minutes   65  

Day  6  

Advanced  Water  Treatment  Lecture  with  Low-­‐Pressure  membrane  demonstration  

30-­‐35  minutes  5  minutes  

67-­‐108  90  

Review  Quiz   10-­‐15  minutes   109-­‐113    

5

Day  1:  Local  Drinking  Water  Quality  Reports    

1. Local  Water  Quality  Report  Card  2. Water  Quality  Report  Card  Worksheet  3. Water  Collection  Homework  Assignment  

6

����9CVGT3WCNKV[5HSRUW&DUG

2012 Water Quality ReportWe are pleased to provide this report on the quality ofour drinking water in 2012. We are committed to supplying excellent water for our community’s quality of life, health and safety and economic vitality.

In 2012, we treated about 2.6 billion gallons of drinking water, or 7.3 million gallons per day, in accord with Federal standards under the Safe Drinking Water Act, and related State standards.

Orange Water and Sewer Authority, 400 Jones Ferry Road, Carrboro, NC 27510

PRSRT STDU.S. POSTAGE

PAIDPERMIT NO. 1

ZIP CODE 14304

�7

Substances found in the Orange Waterand Sewer Authority’s Drinking Water in 2012(Public Water System Identification Number: 03-68-010) Please see the definitions on page 3.

Substanceand Unit Measurement

Turbidity(NTU)

Combined radium(pCi/L) (last tested in 2008)

Fluoride (ppm)

Sulfate (ppm)

Total Haloacetic Acids (ppb)

Total Trihalomethanes (ppb)

Chloroform (ppb)

Bromodichloromethane (ppb)

Chlorodibromomethane (ppb)

Chloramines (ppm)

Chlorine(ppm)

Total Organic Carbon (removal ratio) – TREATED WATER

Highest LevelDetected

(except as noted)

0.497and 99.9% of

samples below 0.3

0.1

0.66

24

22.6(running yearly

average)

31.4(running yearly

average)

11

6.1

1.5

2.9(average for Jan.,

Feb. andApril-Dec.)

1.17(average during

chlorine-onlydisinfectionin March.)

1.77

Highest LevelAllowed

(MCL)

TT = 1 NTUand 95% of samples

below 0.3

5

4*

250[Secondary MCL]

60 (running yearly

average)

80 (running yearly

average)

not regulated

not regulated

not regulated

MRDL = 4

MRDL = 4

TT = Removal ratio greater than

or equal to 1.0

Highest LevelGoal (MCLG)

0.3

0

4

N/A

0

0

notregulated

notregulated

notregulated

MRDLG = 4

MRDL = 4

N/A

Major Source in Drinking

Water

A measure of the cloudiness of water. Turbidity may be caused by

inorganic soil particles orfragments of organic matter that

can interfere with treatment

Erosion of natural deposits

Erosion of natural deposits; water additive which promotes strong

teeth; discharge from fertilizer and aluminum factories **

A mineral that occurs naturally in soils

By-product of disinfecting drinking water with chlorine or chlorine-

ammonia compound (chloramines)

By-product of disinfecting drinking water with chlorine or chlorine-

ammonia compound (chloramines)

By-product of disinfecting drinking water with chlorine or chlorine-

ammonia compound (chloramines)

By-product of disinfecting drinking water with chlorine or chlorine-

ammonia compound (chloramines)

By-product of disinfecting drinking water with chlorine or chlorine-

ammonia compound (chloramines)

Compound of chlorine andammonia used to disinfect water

Compound of chlorineand ammonia usedto disinfect water

Naturally presentin environment

MCL Violation? Y = yesN = no

N

N

N

N

N

N

N

N

N

N

N

N

RangeDetected

0.015 to0.497

no range

no range

no range

17.0 to 29.0 (individual

sample sites)

23.7 to 44.7 (individual

sample sites)

no range

no range

no range

0.1 to 3.9 (range for

Jan., Feb. and April-Dec.)

0.02 to 2.03 (range during chlorine-only disinfection in

March.)

1.09 to 2.53

Microbiological Substances

Radiological Substances

Inorganic Substances

Disinfectants and Disinfection By-products

Disinfection By-product Precursors

The presence of contaminants does not necessarily indicate that water poses a health risk.

Page 2

* The fluoride level in our water (0.66 of one part per million) was well below the maximum allowed (4 parts per million).** In accord with Federal requirements, our annual Water Quality Report Cards include a statement that potential sources of fluoride in drinking water include erosion of natural deposits; water additive which promotes strong teeth; [and] discharge from fertilizer and aluminum. However, there are no fertilizer or aluminum factories in the watersheds of our Cane Creek Reservoir and University Lake.

�8

Drinking Water Treatment

Page 3

1 2 76

43 5

8

Pump StationUntreated water from University Lake or the Cane Creek Reservoir is pumped to our Jones Ferry Road Water Treatment Plant.

1

MixingWhen the water enters our plant, powdered carbon and alum are mixed into the water to make solid particles clump together and to improve the taste and odor of the water.

2

ClarificationWater then flows to either a “pulsator” or settling basins, where solids settle out of the water.

3

DisinfectionAs water flows to filters, chlorine in the form of liquid bleach is added for initial disinfection.

4

FiltrationWater flows down through filters with layers of sand and anthracite coal, where additional particles are removed from the water.

5

Post TreatmentWe add fluoride for dental health, and a chemical to set the pH (acidity/alkalinity) of the water at the right level.

6

ClearwellThe water flows to our 1.5 million gallon “clearwell” tank fortemporary storage. Ammonia is added to the water and the ammonia combines with chlorine to form “chloramines” to further disinfect the water. Water isthen pumped to our waterstorage tanks.

7 Water TowerThe elevated tanks maintain water pressure so that drinking water can be delivered to your tap through our network of more than 380 miles of public water mains. The water tanks also help ensure that water is available to fight fires and to meet peak demand by our customers.

8

Supply DistributionTreatment

DEFINITIONS of words and phrases in the table of substances found in our waterMaximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL) - the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLs are set at very stringent levels. A person would have to drink 2 liters (about two quarts) of water at the MCL level every day for a lifetime to have a one-in-a-million chance ofhaving adverse health effects from many regulated contaminants.

Secondary Maximum Contaminant Level - a guideline foraesthetic (taste and odor), rather than health purposes.

Parts per million (ppm) - one part per million corresponds to about one minute in two years, or one penny in $10,000. One ppm is equivalent to 1 milligram per liter (mg/L).

Parts per billion (ppb) - one part per billion corresponds to about one minute in 2,000 years, or one penny in $10 million. One ppb is equivalent to 1 microgram per liter (ug/L).

Nephelometric Turbidity Unit (NTU) - a measure of cloudinessin water. Turbidity over 5 NTU is barely noticeable to theaverage person.

Action Level (AL) - the concentration of a contaminant which,if exceeded, triggers treatment or other requirements which awater system must follow.

Treatment Technique (TT) - a required process intended toreduce the level of a contaminant in drinking water.

90th Percentile – the contaminant level which 90 percent of the samples for a given water characteristic were below. The 90th percentile level is the required reporting unit for lead and copper.

Below Detectable Level (BDL) - a concentration below the level that can be detected using accepted laboratory methods.

Maximum Residual Disinfection Level Goal (MRDLG) - the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of using disinfectants to control microbial contaminants.

Maximum Residual Disinfectant Level (MRDL) - the highest level of a disinfectant allowed in drinking water. Disinfection is neces-sary to control microbial contaminants (germs) in drinking water.

Disinfection by-products - substances such as haloacetic acids and trihalomethanes, which are formed when chlorine or chlora-mines used to disinfect drinking water react with organic com-pounds naturally present in lake water. Federal standards require public water systems to limit the levels of haloacetic acids and trihalomethanes because they could be harmful at high levels.

Disinfection by-product precursors - organic carbon compounds that can combine with disinfectants (chlorine and chloramines) to form haloacetic acids and trihalomethanes as discussed above.

Removal Ratio - measure of the effectiveness of total organiccarbon removal during our water treatment process. This ratio should be greater than or equal to 1.0. The Removal Ratio is the Federally required reporting unit for total organic carbon.

Picocuries per liter (pCi/L) - a measure of the radioactivity in water. (A picocurie is one trillionth of a curie.)

9

Page 7

Lead and Your Health

TESTING Our Drinking Water for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. OWASA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. Plumbing code limits for lead in solder and fixtures were tightened in 1986 to reduce the potential for lead to dissolve from pipes, solder or fixtures into drinking water.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by running water for 30seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested (please see additional information below). Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from theEPA’s Safe Drinking Water Hotline, 800.426.4791, or at www.epa.gov/safewater/lead.

The Federal limit on lead in drinking water is a maximum of 15 parts per billion in at least 90% of the samples tested. (One part per billion corresponds to one penny in $10 million.) Our testing results are significantly better than this standard.

We regularly test our water as it leaves the Jones Ferry Road Water Treatment Plant. For over 10 years, all of these test results have been less than the detectable level of 3 parts per billion. In accord with Federal and State standards, we also test every three years for lead in tap water at 30 homes built between 1983

and 1985. The results from this testing in 2011 were all below the detectable level of 3 parts per billion.

In response to customers’ requests in 2012, we tested tap water for lead in 12 homes. In all of the water samples, lead was below the detectable level of 3 ppb.

For more information, including how you can have the water inyour home tested for lead at no charge, please contact the OWASA Laboratory staff at 919.537.4227 or [email protected].

GETTING INVOLVED in Water Quality and Supply IssuesYou can get involved in water resource issues at the local, State and national level.

• Being informed is the first step in being an effective participant.

• You can learn about water and water resource issues from news media; books in the library; websites such as those of the U.S. Environmental Protection Agency, American Water Works Association and other organizations; and by contacting OWASA (telephone: 919.968.4421; e-mail: [email protected]; website: www.owasa.org).

• If you have an e-mail address, we would be glad to send you our electronic notices and news releases about OWASA-related topics of interest to you. We invite you to contact OWASA Public Affairs at 919.537.4267 or [email protected] about the topics you are interested in.

• Expressing your views at public meetings, by contacting public officials, etc. is important when improvements, plans, policies and standards affecting water quality and watershed protection are needed or proposed.

We invite you to attend and participate in meetings of the OWASA Board of Directors, which makes decisions on plans and policies and adopts the annual budget for our water and wastewater services. The OWASA Board meets at 7 PM on second Thursdays of most months in the Community Room on the lower floor of the OWASA Administration Building, 400 Jones Ferry Road, Carrboro; and on fourth Thursdays at the Chapel Hill Town Hall. On fourth Thursdays, OWASA Board meetings are televised live on channel 18 of the cable television systems serving Chapel Hill and Carrboro.

Tip! If you are a residential customer and you use more than an average of 4,000 gallons per month, feel free to contact us or visitour website for information on conservation opportunities.

10

If you have any questions or comments about our drinking water, we invite you to contact our Water Treatment Plant Laboratory Supervisor at 919.537.4227 or our Water Supply and Treatment Manager at 919.537.4232; visit our website, www.owasa.org;or send us a letter (400 Jones Ferry Road, Carrboro, NC 27510), an e-mail ([email protected]) or fax (919.968.4464).

We welcome your questions and feedback!

Orange Water and Sewer AuthorityPublic Water Supply No.: 03-68-010

400 Jones Ferry RoadCarrboro, NC 27510919.968.4421 | [email protected] | www.owasa.orgTwitter: @owasa1EPA’s Safe Drinking Water Hotline: 800.426.4791

A public, non-profit agencyproviding water, sewer and reclaimed water services to the Carrboro-Chapel Hill community.

For More Information

Page 8

WATER CONSERVATION: Part of Our Sustainable Quality of LifeWater conservation makes us better prepared for future droughts, reduces the community’s long-term costs for water and sewer system capacity and lowers greenhouse gas emissions. (All water and wastewater is pumped, and most of the energy for pumping comes from fossil fuels comprised of hydrocarbons.) For information on the best ways to conserve, please visit the Conservation and Education part of our website, www.owasa.org; or contact OWASA Public Affairs at 919.537.4267 or [email protected].

OUR WATER Supply Plans, Including Access to Jordan LakeThanks largely to the 30 percent reduction in drinking water use by OWASA customers since 2002, our Cane Creek, University Lake, and Quarry Reservoir supplies can meet our expected needs for the next 50 years under most circumstances. Expanding the Quarry Reservoir west of Carrboro (after 2030, when the present quarry lease will end) is the most effective supplysupplement for the least investment and will provide local control of a substantial amount of high quality water.

However, we will still need the additional reliability offered by Jordan Lake in a severe drought or operational emergency.

Johnny Riley, our new Senior Lake Warden, joined OWASA after serving for 12 years at the NC Wildlife Resources Commission. His areas of expertise include wildlife habitat management, wildlife surveys, forestry management and land conservation. Johnny earned a Bachelor of Science degree in Fisheries and Wildlife Science from NC State University in 2001. However, he is no stranger to OWASA, the Cane Creek Reservoir or University Lake.In the summers of 1997 and 1998, Mr. Riley worked at our lakes as a part-time employee.

Our water sources including the Cane Creek Reservoir, our primary water source, are protected through local regulations which limit the amount of development, and through our program of acquiring land and conservation easements in our watersheds.

11

FOR PEOPLE With Special Risk of Infection

N.C. SOURCE Water Assessment Program Results

Some people may be more vulnerable to contaminants in drinking water than the general population. People with compromisedimmune systems such as those undergoing chemotherapy for cancer, people who have had organ transplants, people with HIV/AIDS or other immune system disorders, some elderly people and infants may be particularly at risk for infection.

These people should seek advice from their health care providers about drinking water. Guidelines from the U.S. Environmental Protection Agency (EPA) and Centers for Disease Control and Prevention (CDC) on appropriate means to lessen the risk of infection by Cryptosporidium (please see additional information in this report about Cryptosporidium) and other microbial contaminants are available from the EPA’s Safe Drinking Water Hotline, 800.426.4791.

Water that has received extra filtration (reverse osmosis) and disinfected with ultraviolet light is available at several supermarkets in our community.

The N.C. Department of Environment and Natural Resources (DENR), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) has done assessments for all drinking water sources in North Carolina. The purpose of the assessments was to determine the susceptibility of each source to potential contaminant sources (PCSs). The results of the assessment are available in SWAP Assessment Reports that include maps, background information and a susceptibility rating of Higher, Moderate or Lower.

The susceptibility rating of each water source for OWASA was determined by combining the contaminant rating (num-ber and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions in the watershed and its delineated assessment area). The SWAP findings are summarized below:

The complete SWAP Assessment report for OWASA may be viewed on the Web at www.deh.enr.state.nc.us/pws/swap.For a printed copy of this report, please mail a request to: Source Water Assessment Program – Report Request,1634 Mail Service Center, Raleigh NC 27699-1634,or e-mail your request to [email protected].

Please indicate your water system name (OWASA), OWASA’s public water supply number (03-68-010), and provide your name, mailing address and phone number. If you have any questions about the SWAP report, please contact the NC Source Water Assessment staff at 919.715.2633.

Page 6

WHAT Is Cryptosporidium?Cryptosporidium is a microbial parasite which comes from human and animal wastes and is found in surface water such as lakes throughout the U.S. Symptoms of infection by Cryptosporidium include nausea, diarrhea, and abdominal cramps. Although Crypto-sporidium can be removed by filtration, the most commonly used filtration methods cannot guarantee 100% removal. We monitor our lake water and treated drinking water for these organisms.

Current test methods do not enable us to determine whether the organisms are dead or whether they are capable of causing dis-ease. Most healthy individuals are able to overcome the disease within a few weeks. However, people with compromised immune systems have more difficulty and are at greater risk of developing severe, life-threatening illness. People with compromised immune systems are encouraged to consult their doctors regarding appropriate precautions to prevent infection. Cryptosporidium must be ingested for it to cause disease, and it may be spread through means other than drinking water.

We test our water annually for Cryptosporidium and it has not been detected.

Water Source Susceptibility RatingCane Creek Reservoir ModerateUniversity Lake Moderate

Susceptibility of OWASA’s Water Sources to Potential Contaminant Sources

At left is Ken Loflin, OWASA’s Water Supply and Treatment Manager, in the control room at the Jones Ferry Road Water Treatment Plant

12

Page 7

Lead and Your Health

TESTING Our Drinking Water for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. OWASA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. Plumbing code limits for lead in solder and fixtures were tightened in 1986 to reduce the potential for lead to dissolve from pipes, solder or fixtures into drinking water.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by running water for 30seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested (please see additional information below). Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from theEPA’s Safe Drinking Water Hotline, 800.426.4791, or at www.epa.gov/safewater/lead.

The Federal limit on lead in drinking water is a maximum of 15 parts per billion in at least 90% of the samples tested. (One part per billion corresponds to one penny in $10 million.) Our testing results are significantly better than this standard.

We regularly test our water as it leaves the Jones Ferry Road Water Treatment Plant. For over 10 years, all of these test results have been less than the detectable level of 3 parts per billion. In accord with Federal and State standards, we also test every three years for lead in tap water at 30 homes built between 1983

and 1985. The results from this testing in 2011 were all below the detectable level of 3 parts per billion.

In response to customers’ requests in 2012, we tested tap water for lead in 12 homes. In all of the water samples, lead was below the detectable level of 3 ppb.

For more information, including how you can have the water inyour home tested for lead at no charge, please contact the OWASA Laboratory staff at 919.537.4227 or [email protected].

GETTING INVOLVED in Water Quality and Supply IssuesYou can get involved in water resource issues at the local, State and national level.

• Being informed is the first step in being an effective participant.

• You can learn about water and water resource issues from news media; books in the library; websites such as those of the U.S. Environmental Protection Agency, American Water Works Association and other organizations; and by contacting OWASA (telephone: 919.968.4421; e-mail: [email protected]; website: www.owasa.org).

• If you have an e-mail address, we would be glad to send you our electronic notices and news releases about OWASA-related topics of interest to you. We invite you to contact OWASA Public Affairs at 919.537.4267 or [email protected] about the topics you are interested in.

• Expressing your views at public meetings, by contacting public officials, etc. is important when improvements, plans, policies and standards affecting water quality and watershed protection are needed or proposed.

We invite you to attend and participate in meetings of the OWASA Board of Directors, which makes decisions on plans and policies and adopts the annual budget for our water and wastewater services. The OWASA Board meets at 7 PM on second Thursdays of most months in the Community Room on the lower floor of the OWASA Administration Building, 400 Jones Ferry Road, Carrboro; and on fourth Thursdays at the Chapel Hill Town Hall. On fourth Thursdays, OWASA Board meetings are televised live on channel 18 of the cable television systems serving Chapel Hill and Carrboro.

Tip! If you are a residential customer and you use more than an average of 4,000 gallons per month, feel free to contact us or visitour website for information on conservation opportunities.

13

If you have any questions or comments about our drinking water, we invite you to contact our Water Treatment Plant Laboratory Supervisor at 919.537.4227 or our Water Supply and Treatment Manager at 919.537.4232; visit our website, www.owasa.org;or send us a letter (400 Jones Ferry Road, Carrboro, NC 27510), an e-mail ([email protected]) or fax (919.968.4464).

We welcome your questions and feedback!

Orange Water and Sewer AuthorityPublic Water Supply No.: 03-68-010

400 Jones Ferry RoadCarrboro, NC 27510919.968.4421 | [email protected] | www.owasa.orgTwitter: @owasa1EPA’s Safe Drinking Water Hotline: 800.426.4791

A public, non-profit agencyproviding water, sewer and reclaimed water services to the Carrboro-Chapel Hill community.

For More Information

Page 8

WATER CONSERVATION: Part of Our Sustainable Quality of LifeWater conservation makes us better prepared for future droughts, reduces the community’s long-term costs for water and sewer system capacity and lowers greenhouse gas emissions. (All water and wastewater is pumped, and most of the energy for pumping comes from fossil fuels comprised of hydrocarbons.) For information on the best ways to conserve, please visit the Conservation and Education part of our website, www.owasa.org; or contact OWASA Public Affairs at 919.537.4267 or [email protected].

OUR WATER Supply Plans, Including Access to Jordan LakeThanks largely to the 30 percent reduction in drinking water use by OWASA customers since 2002, our Cane Creek, University Lake, and Quarry Reservoir supplies can meet our expected needs for the next 50 years under most circumstances. Expanding the Quarry Reservoir west of Carrboro (after 2030, when the present quarry lease will end) is the most effective supplysupplement for the least investment and will provide local control of a substantial amount of high quality water.

However, we will still need the additional reliability offered by Jordan Lake in a severe drought or operational emergency.

Johnny Riley, our new Senior Lake Warden, joined OWASA after serving for 12 years at the NC Wildlife Resources Commission. His areas of expertise include wildlife habitat management, wildlife surveys, forestry management and land conservation. Johnny earned a Bachelor of Science degree in Fisheries and Wildlife Science from NC State University in 2001. However, he is no stranger to OWASA, the Cane Creek Reservoir or University Lake.In the summers of 1997 and 1998, Mr. Riley worked at our lakes as a part-time employee.

Our water sources including the Cane Creek Reservoir, our primary water source, are protected through local regulations which limit the amount of development, and through our program of acquiring land and conservation easements in our watersheds.

14

Name:________________________________________ Water Quality Report Card Worksheet Review the water quality drinking report card and answer questions below. 1) What is an MCL? Were there any MCL Violations? 2) What categories of contaminants are listed? What are the different sources of contamination? 3) Were any of the contaminants above the “goal” level? Why do you think they establish “goal” levels? 4) Why should we conserve water? And how can you personally conserve it? 5) How do you feel about drinking tap water? Why?

15

Name:________________________________________ Water Collection Homework

1) Collect a clear colorless liquid sample in the provided collection vial. Fill approximately ¾ of the way full. Do not collect colored or opaque liquids. Examples of recommended liquids: tap water, bottled water, club soda, pond water, swimming pool water, boiled water, vinegar Examples of liquids NOT to collect: coca-cola, orange soda, juice, milk, balsamic vinegar, pepto-bismol, windex

2) The pH of a liquid indicates how acidic or basic liquid is. Drinking water should be neutral between pH 6-8. Sodas, lemon juice, and vinegar have acidic pH around 2-3. Soapy water and baking soda have basic pH around 10-12. Based on this information predict the pH of your liquid.

3) Chlorine is a disinfectant that is used to inactivate harmful microorganisms in drinking water. The concentration of chlorine goes down with time, but it is desirable to maintain some chlorine in tap water before it is consumed to prevent harmful pathogens from contaminating or growing before the water reaches the consumer. However, too much chlorine can also cause eye and skin irritation. Chlorine is also used at higher concentrations in pools and spas to prevent the spread of pathogens. Based on this information hypothesize whether your liquid has too high of a concentration, an ideal or normal concentration, a low concentration, or no chlorine left.

4) Alkalinity is the concentration of dissolved carbonates (carbon dioxide, baking soda) in a liquid, which prevents rapid changes in pH. The bubbly in carbonated water and soda is dissolved carbon dioxide. Based on this information predict whether your liquid has high alkalinity, an ok/good alkalinity to maintain pH, or too low/no alkalinity. Keeping in mind what you know about the use of your liquid and about pH, do you think it would be desirable to keep the pH of your liquid the same over time?

16

Day  2:  Water  Quality      

1. Water  Quality  Lecture  Powerpoint  with    Compartment  Bag  Test  Part  1  Activity  2.  Compartment  Bag  Test  Instructions  3.  Water  Quality  Test  Strip  Activity                                                                                                                                                                        Worksheet  

17

For  the  whole  presenta.on,  ask  students  to  answer  ques.ons  then  reinforce  by  repea.ng  what  they  say  (perhaps  wri.ng  down  as  well)  and  adding  answers  they  did  not  get  a<er  they  finish.  

 18

Drink,  clean  our  dishes,  water  plants,  give  to  our  pets,  in  agriculture,  swim  in  it/recrea.onal  use,  cook  with  it,  shower/bathe,  wash  our  cars,  in  industry  (par.cularly  energy  produc.on),  etc.  

19

Given  these  uses,  how  are  we  exposed  to  water  and  the  contaminants  within?  -­‐through  our  skin  -­‐inges.on  -­‐inhala.on  -­‐intravenously  

 20

What  sort  of  things  indicate  water  quality  that  everyone  relies  on?  That  we  don’t  need  fancy  equipment  for?  -­‐color  -­‐turbidity/cloudiness  -­‐smell  -­‐taste  These  are  good  indicators-­‐BUT  some.mes  harmful  contaminants  cannot  be  detected  by  sight,  smell  or  taste!!  So  we  need  to  use  other  metho  

 21

Given  different  use  and  exposures,  do  we  have  different  quality  expecta.ons  for  the  different  uses?  How  high  of  quality  do  we  need  for  drinking  water  vs  water  used  to  flush  toilets  vs  of  surface  waters  vs  in  medical  uses?  Given  these  answers-­‐should  we  approach  water  quality  monitoring  the  same  or  differently  for  different  types  of  water?  

 22

What  sorts  of  things  can  contaminate  our  waters  (all  types)?  -­‐stormwater  runoff  -­‐runoff  from  agricultural  fields  -­‐animal  waste  -­‐industrial  dumping  -­‐leaching  from  water  transmission  pipes  -­‐etc.  

23

Because  there  is  a  poten.al  for  contamina.on  of  waters  that  we  are  exposed  to—we  have  regula.ons  that  dictate  monitoring  and  consequences  when  quality  is  not  up  to  standards.  Because  we  have  different  expecta.ons  for  different  waters  we  have  several  regula.ons.    

24

Discuss  local  water  quality  report  and  the  homework/worksheet  that  went  with  it.  Ask-­‐what  are  the  different  types  of  contaminants  that  were  listed  in  the  report?  Give  examples  for  each  type.  Ask  for  explana.on  of  what  a  disinfec.on  by-­‐product  is  and  what  a  precursor  is  (natural  organic  maZer=precursors,  precursors  react  with  disinfectant  to  make  poten.ally  harmful  disinfec.on  by-­‐products  )  Why  are  these  contaminants  regulated?  What  is  an  MCL?  What  is  the  difference  between  goal  levels  and  MCL?  Why  do  we  have  goal  levels?  

 25

How  do  we  monitor  these  contaminants  in  water?  For  microbes-­‐it’s  very  difficult  to  see  low  concentra.ons  of  microbes-­‐so  most  methods  involve  incuba.on  allowing  for  reproduc.on/growth  then  physically  coun.ng  colonies  of  bacteria  (ex.  Agar  plate-­‐colony  counts)à  Go  to  compartment  bag  test  slide  

 26

The  compartment  bag  test  is  a  water  quality  test.  It  tells  us  how  much  E.Coli  is  in  a  water  sample.  E.Coli  is  indicates  the  amount  of  harmful  pathogens  in  the  water  sample.  This  test  determines  whether  there  is  a  high,  low,  or  no  risk  from  microbial  contaminants  if  you  were  to  drink  the  water.  For  the  ac.vity  it  is  best  to  have  2  different  water  samples  here,  one  clean  water  (ex.  tap  water)  and  a  dir.er  water  (ex.river  or  pond  water).  Refer  to  the  aZached  Compartment  Bag  Test  Instruc.ons.  

27

For  most  other  contaminants-­‐use  special,  complex  analy.cal  equipment—may  have  heard  of  gas  chromatography  from  the  television  show  CSI.  One  simple  example  for  monitoring  equipment  is  the  use  of  light  absorp.on-­‐the  amount  of  light  at  a  par.cular  wavelength  corresponds  to  concentra.ons.  In  picture  concentra.on  of  milk  is  increasing  from  le<  to  right-­‐milk  proteins  absorb  light  at  the  ultraviolet/blue  end  of  the  spectrum  so  the  color  of  the  light  gets  more  and  more  red  as  more  “bluer”  light  is  filtered  out.  Test  strips  are  also  a  quick  and  easy  test  that  can  be  performed  to  monitor  water  quality—the  color  on  the  pads  on  the  test  strip  correspond  to  the  concentra.on  of  par.cular  contaminant  or  water  quality  parameter  à  Do  water  quality  test  strip  ac.vity  

28

Refer  to  Water  Quality  Strip  Ac.vity  worksheet.  Ask  students  what  each  parameter  is/what  they  mean  (answers  on  worksheet  and  in  homework)  Ask  the  students  to  think  about  their  liquid  samples  and  discuss  their  hypotheses  and  predic.ons-­‐lead  thoughts-­‐  if  you  have  don’t  have  pool  water  do  you  expect  to  see  cyanuric  acid?  If  you  have  CO2(which  contributes  to  alkalinity)  do  you  expect  your  alkalinity  to  be  high  or  low?  Etc.  Explain  how  to  dip  strip  and  hold  against  guide.  Ask  students  to  discuss  their  results  with  their  neighbor/group.  Go  around  and  discuss  with  students  results.  

 29

 30

&RPSDUWPHQW�%DJ�7HVW��,QVWUXFWLRQV�IRU�8VH

7gkW][dnIW\[�mWj[h�\eh�Wdoed["�Wdom^[h["�Wdoj_c[

.LW�&RPSRQHQWV &RPSDUWPHQW�%DJ�9ROXPHV

����P/

����P/

����P/

���P/

���P/

J^[�9ecfWhjc[dj�8W]�J[ij��98J��_i�W�Zh_da_d]�mWj[h�j[ij�j^Wj�Z[j[Yji�WdZ�gkWdj_Ó[i�;$�Yeb_�XWYj[h_W�_d�W�'&&�cB�iWcfb["�j^[�h[Yecc[dZ[Z�\[YWb�_dZ_YWjeh�WdZ�iWcfb[�lebkc[�Xo�j^[�MehbZ�>[Wbj^�Eh]Wd_pWj_ed�WdZ�K$I$�;dl_hedc[djWb�Fhej[Yj_ed�7][dYo$�

FehjWXb["�i_cfb[�WdZ�i[b\#YedjW_d[Z"�j^[�98J�b[ji�Wdoed["�Wdom^[h[�Z[j[hc_d[�_\�Zh_da_d]�mWj[h�fei[i�W�^[Wbj^�h_ia$

98J�A_j�_dYbkZ[i�ikffb_[i�\eh�'&�j[iji0���

'&�98J�XW]i'&�'&&�cB�iWcfb[�Xejjb[i'&�;$�Yeb_�Y^hece][d_Y�Ykbjkh[�c[Z_kc�j[ij�XkZi)&�Y^beh_d[�jWXb[ji'�h[kiWXb[�i[Wb�Yb_f

7�l_Z[e�ed�^em�je�ki[�j^[�98J�_i�ed�ekh�m[Xi_j[0�^jjf0%%mmm$WgkW][dn$Yec%^em#je#ki[#j^[#YXj%

9ecfWhjc[dj�8W]

9^beh_d[�JWXb[ji

I[Wb�9b_f

IWcfb[�8ejjb[

;$�Yeb_�C[Z_kc

J^[�fbWij_Y�XW]�^Wi�Ól[�YecfWhjc[dji�e\�Z_\\[h[dj�lebkc[i"�Wa_d�je�Ól[�j[ij�jkX[i0

'�3�'&�cB(�3�)&�cB)�3�+,�cB*�3�)�cB+�3�'�cB

JejWb�3�'&&�cB

;�Yeb_�c[Z_kc�YedjW_di�W�Y^hece][d_Y�ikXijhWj[0�+#Xhece#*#Y^behe#)#_dZebob#X[jW#:#]bkYkhed_Y�WY_Z��N#]bkY�

$TXDJHQ[��//&��v��ZZZ�DTXDJHQ[�FRP��v��LQIR#DTXDJHQ[�FRP��v�������������� 31

����3UHSDUH�ZRUN�DUHD�� IWd_j_p[�oekh�meha�Wh[W�ki_d]�W�Z_i_d\[YjWdj�Yb[Wd_d]�iebkj_ed�WdZ�fbWij_Y�]bel[i

����6HDO�EDJ�� Hebb�Zemd�XW]�je�Óbb�b[l[b"�Ybei[�XW]�m_j^�o[bbem�M^_hb#FWa�i[Wb��� 7jjWY^�m^_j[�fbWij_Y�jme#f_[Y[�Yb_f$�K#i^Wf[Z�fWhj�e\�Yb_f�]e[i�WYheii�m_Zj^�e\�XW]�`kij�WXel[�mWj[h�b[l[b�Wbed]�j^[�Óbb�b_d[�Xkj�X[bem�jef�ef[d_d]i�e\�j^[�YecfWhjc[dji�

�� IdWf�heZ#i^Wf[Z�fWhj�e\�j^[�Yb_f�ed�j^[�\hedj�e\�XW]�_dje�j^[�XWYa�e\�j^[�Yb_f�ed�ej^[h�i_Z[�e\�XW]�je�beYa�_j�_d�fbWY[

$TXDJHQ[��//&��v��ZZZ�DTXDJHQ[�FRP��v��LQIR#DTXDJHQ[�FRP��v��������������

+RZ�WR�8VH

����&ROOHFW�����P/�ZDWHU�VDPSOH�� <_bb�iWcfb[�Xejjb[�je�'&&�cB�cWha��� 7le_Z�jekY^_d]�_di_Z[�e\�Xejjb[�WdZ�b_Z�� H[YehZ�Z[jW_bi�\eh�oekh�iWcfb[

����0L[�ZDWHU�VDPSOH�ZLWK�JURZWK�PHGLXP�� Ef[d�]hemj^�c[Z_kc�fekY^�WdZ�WZZ�c[Z_kc�XkZ�je�mWj[h�iWcfb[���� :e�dej�jekY^�c[Z_kc�m_j^�Ód][hi�eh�^WdZi�� Fkj�b_Z�ed�Xejjb[�WdZ�Z_iiebl[�c[Z_kc�\eh�WXekj�'+�c_dkj[i"�f[h_eZ_YWbbo�im_hb_d]�je�c_n��

�� J^[�c[Z_kc�Z_iiebl[i�\hec�YWhh_[h$�M^[d�c[Z_kc�_i�Yecfb[j[bo�Z_iiebl[Z"�j^[�YWhh_[h�jkhdi�m^_j[�eh�d[Whbo�m^_j[$��

�� J^[�YWhh_[h�_ji[b\�Ze[i�dej�Z_iiebl[

����3RXU�VDPSOH�LQWR�FRPSDUWPHQW�EDJ�� J[Wh�e\\�j^[�f[h\ehWj[Z�i[Wc�Wj�jef�e\�XW]���� 8[\eh[�Óbb_d]�XW]"�bWX[b�_j"�j^[d�hkX�jme�i_Z[i�je][j^[h�m_j^�oekh�Ód][hi�je�cWa[�_j�[Wi_[h�je�ef[d�j^[�XW]�WdZ�fekh�iWcfb[�_dje�_j

�� Ki[�m^_j[�jWXi�Wj�jef�e\�XW]�je�^ebZ�XW]�ef[d�m^_b[�fekh_d]��� Ibembo�fekh�iWcfb[�_dje�XW]�� B[Wl[�j[ij�XkZ�_d�j^[�Xejjb[�m^_b[�fekh_d]�� I^_\j�XW]�je�WZ`kij�mWj[h�lebkc[i�_d�Wbb�YecfWhjc[dji�je�j^[�Óbb�cWha����� <_bb�cWhai�Wh[�_dZ_YWj[Z�Xo�^eh_pedjWb�b_d[i�jemWhZ�jef�e\�j^[�YecfWhjc[dji�� <_bb�cWhai�Wh[�j^[�iWc[�_d�[WY^�YecfWhjc[dj�WdZ�mWj[h�b[l[bi�i^ekbZ�X[�[l[d�WYheii�j^[�XW]

J_f��'��J[ij_d]�i^ekbZ�X[]_d�m_j^_d�i_n�^ekhi�e\�iWcfb[�Yebb[Yj_ed$�IWcfb[i�YWd�X[�^[bZ�\eh�Wi�bed]�Wi�\ekh�ZWoi�_\�j^[o�Wh[�a[fj�X[bem�'&��9��Xkj�dej�\hep[d�$

J_f��(��Edbo�j^[�c[Z_kc�Z_iiebl[i"�dej�_ji�YWhh_[h$��J^[�YWhh_[h�`kij�jkhdi�m^_j[�eh�d[Whbo�m^_j[$

:_iiebl[Z�c[Z_kc�_dZ_YWj[Z�Xo�YWhh_[h�jkhd_d]�m^_j[$

J_f��)��8[\eh[�Óbb_d]�j^[�XW]"�bWX[b�_j"�j^[d�hkX�j^[�jme�i_Z[i�m_j^�oekh�j^kcX�WdZ�Ód][hi�je�^[bf�i[fWhWj[�j^[c�ie�oek�YWd�Óbb�j^[�YecfWhjc[dji�Yecfb[j[bo�WdZ�[l[dbo$��

<_bb�cWhai�Wh[�icWbb�^eh_pedjWb�b_d[i$

J_f��*��Ki[�j^[�m^_j[�jme#f_[Y[�Yb_f�je�i[Wb�ckbj_fb[�XW]i�je][j^[h�Wj�j^[�iWc[�j_c[$��H[ki[�Yb_fi$

32

����6FRUH�DQG�UHFRUG�WHVW�UHVXOWV�� O[bbem%o[bbem#Xhemd�_dZ_YWj[i�d[]Wj_l[��WXi[dY[��e\�;$�Yeb_"�8bk[%Xbk[#]h[[d�_dZ_YWj[i�fei_j_l[��fh[i[dY[��e\�;$�Yeb_

�� 9edY[djhWj_ed�e\�\[YWb�XWYj[h_W�_d�j^[�iWcfb[�_i�[ij_cWj[Z�\hec�j^[�YecX_dWj_ed�e\�fei_j_l[�WdZ�d[]Wj_l[�YecfWhjc[dji"�]_l_d]�W�Ceij�FheXWXb[�DkcX[h��CFD��[ij_cWj[�e\�;$�Yeb_�f[h�'&&�cB

�� Ki[�CFD�JWXb[�ed�d[nj�fW][�je�Z[j[hc_d[�;$�Yeb_�YedY[djhWj_ed�� H[YehZ�CFD�h[ikbj

$TXDJHQ[��//&��v��ZZZ�DTXDJHQ[�FRP��v��LQIR#DTXDJHQ[�FRP��v��������������

+HDOWK�5LVN�%DVHG�RQ�:RUOG�+HDOWK�2UJDQL]DWLRQ�*XLGHOLQHV�IRU�'ULQNLQJ�:DWHU�4XDOLW\������

>[Wbj^�H_ia�9Wj[]eho ;$�Yeb_�9<K �f[h�'&&�cB

IW\[ 2'

?dj[hc[Z_Wj[�H_ia%FheXWXbo�IW\[ '#'&

>_]^�H_ia%FheXWXbo�KdiW\[ 4'&#'&&

L[ho�>_]^�H_ia%KdiW\[ 4'&&

CFD�WdZ�9<K��Yebedo�\ehc_d]�kd_ji��Wh[�[gk_lWb[dj�j[hci"�Xkj�CFD�_i�eXjW_d[Z�_d�gkWdjWb�j[iji�ikY^�Wi�j^[�98J�WdZ�9<K�_i�eXjW_d[Z�_d�Yebedo#XWi[Z�j[iji�ikY^�Wi�c[cXhWd[�ÓbjhWj_ed$

J_f��+��?dYkXWj_d]�98Ji�Z[l[bef�Wd�eZeh$�M[�h[Yecc[dZ�fbWY_d]�98Ji�_d�Wdej^[h�i[Wb[Z�fbWij_Y�XW]�eh�_dikbWj[Z�YedjW_d[h�Zkh_d]�_dYkXWj_ed�f[h_eZ$

����,QFXEDWH�� ?dYkXWj[�j^[�i[Wb[Z�YecfWhjc[dj�XW]�\eh�XWYj[h_Wb�]hemj^�� ?dYkXWj_d]�Wj�WcX_[dj�j[cf[hWjkh[�_i�Ód[�\eh�j[cf[hWjkh[i�e\�(+�9�WdZ�WXel[$�<eh�j[cf[hWjkh[i�X[bem�(+�9"�ki[�Wd�_dikbWj[Z�YedjW_d[h�eh�fehjWXb[�_dYkXWjeh$��

?dYkXWj_ed�J_c[�WdZ�J[cf[hWjkh[�H[Yecc[dZWj_edi0�

)+#**$+�90� _dYkXWj[�(&#(*�^ekhi)&#)+�90� _dYkXWj[�(*#)&�^ekhi(+#)&�90� _dYkXWj[�*&#*.�^ekhi�

����'HFRQWDPLQDWH�� Ef[d�XW]�WdZ�WZZ�)�Y^beh_d[�jWXb[ji�je�jef�e\�XW]$�7]_jWj[�XW]�kdj_b�Y^beh_d[�jWXb[ji�Z_iiebl[$�B[j�XW]�ijWdZ�\eh�*+�c_dkj[i$�

�� 7\j[h�*+�c_dkj[i"�fekh�b_gk_Z�Yedj[dji�_dje�W�i_da"�je_b[j�eh�^eb[�_d�j^[�]hekdZ�WdZ�iW\[bo�Z_ifei[�e\�j^[�[cfjo�XW]

�� H[jW_d�m^_j[�fbWij_Y�Yb_f�\eh�h[ki[�

O[bbem%O[bbem#8hemd��3�7Xi[dY[�e\�;$�9eb_8bk[%8bk[#=h[[d��3�Fh[i[dY[�e\�;$�Yeb_

33

$TXDJHQ[��//&��v��ZZZ�DTXDJHQ[�FRP��v��LQIR#DTXDJHQ[�FRP��v��������������

0RVW�3UREDEOH�1XPEHU�7DEOHJ^[�CFD�JWXb[�h[fh[i[dji�MehbZ�>[Wbj^�Eh]Wd_pWj_ed�Ç=k_Z[b_d[i�\eh�:h_da_d]�MWj[h�GkWb_jo"È�*j^�;Z_j_ed$�JWXb[�+$*�_d�j^[�=k_Z[b_d[i�^Wi�h_ia�YWj[]eh_[i�e\�Zh_da_d]�mWj[h�XWi[Z�ed�;$�Yeb_�b[l[bi�Wi�hWd][i0�&%'&&�cB�3�IW\[1�'#'&%'&&�cB�3�?dj[hc[Z_Wj[�H_ia1�''#'&&%'&&�cB�3�>_]^�H_ia1�WdZ�4'&&%'&&�cb�3�L[ho�>_]^�H_ia$�

J^[�][d[hWb�Yedi[diki�_i�Zh_da_d]�mWj[h�i^ekbZ�YedjW_d�de�;$�Yeb_"�Xkj�_d�iec[�Yekdjh_[i�;$�Yeb_�dkcX[hi�e\�kf�je�'&%'&&�cB�cWo�X[�jeb[hWj[Z�Wi�X[_d]�e\�_dj[hc[Z_Wj[�h_ia$

CWjY^�oekh�YecfWhjc[dj�XW]�lebkc[i�je�ed[�e\�j^[i[�)(�feii_Xb[�ekjYec[i0

34

Name, Liquid: __________________________ Hypotheses Results  

Directions: 1) Write down any expectations or hypotheses based on the water quality definitions (below) and the liquid you are testing. 2) Dip strip completely, take out immediately do not shake off excess liquid. After 15 seconds compare colors to the above guide, with the long end at the bottom. For each category circle the color that most closely matches your strip. 3) Compare your results to your hypotheses. Are you surprised by your results? Why might there be differences? 4) Compare your results to those of your classmates. Discuss differences. Water Quality Definitions

1) Total Chlorine-Total disinfectant (inactivates harmful microorganisms). There are two types of chlorine disinfectant- free chlorine and chloramines. Total chlorine is the sum of free chlorine and chloramines. If too high (>4 ppm), may cause eye, skin, and stomach irritation. If too low, may not be enough to protect against harmful microorganisms. 2) Free Chlorine- Disinfectant. If too high (>4 ppm), may cause eye, skin, and stomach irritation. If too low, may not be enough to protect against harmful microorganisms. 3) pH- Indicates how acidic/basic liquid is. Should be between 6 and 8. Exposure to extreme pH values results in irritation to the eyes, skin, and mucous membranes. If too low, corrosion may also occur. 4) Alkalinity- dissolved carbonates (dissolved carbon dioxide, baking soda); prevents rapid changes in pH, ideally 30-400 ppm (in drinking water). 5)Cyanuric Acid- used in pools to prevent degradation of disinfectant by the sun light

 

35

Day$3:$Conventional$Drinking$Water$Treatment$1. Conventional$drinking$water$treatment$lecture$2. Coagulation/Flocculation/Sedimentation$Demonstration$$

36

Today  I’ll  be  expanding  on  what  was  discussed  yesterday.    So  before  we  get  started,  can  you  all  tell  me  some  of  the  things  you  remember  from  the  previous  lecture?    

 37

Today  I’m  going  to  talk  to  you  about  water  treatment.    And  hopefully,  by  the  end  of  today’s  lecture,  you’ll  know  the  different  stages  of  water  treatment  and  understand  what  exactly  happens  to  your  water  before  it  comes  through  your  tap.  -­‐Let  me  preface  this  lecture  by  saying  that  there  are  actually  different  types  of  water  treatment  systems,  but  the  one  that  I’ll  be  talking  about  today  is  the  most  convenEonal  one,  and  it’s  the  one  that  OWASA  uses  here  in  Chapel  Hill,  so  it  directly  applies  to  your  water.  

38

Before  I  get  started  with  the  water  treatment  process,  let’s  discuss  where  our  drinking  water  comes  from.    So  we  have  here  surface  water  and  ground  water,  but  what  exactly  does  that  mean?    What  are  some  types  of  surface  water  that  water  treatment  plants  use  as  source  water?  And  how  about  ground  water?    What’s  meant  by  ground  water?    What’s  meant  by  aquifer?  –  underground  layer  of  unconsolidated  material  (gravel,  sand,  rocks)  or  permeable  rock  that  contains  water.    What  are  some  of  the  differences  between  SW  and  GW?  -­‐exposure  to  chemicals,  feces,  organic  ma>er  higher  in  SW,  whereas  there  is  high  mineral  content  in  GW  

39

Here  is  the  “treatment  train”  I’ll  be  talking  about  today.    We’re  going  to  dissect  it  into  pieces,  so  don’t  get  inEmidated!  So  we’ll  start  with  the  first  step  “rapid  mix”  also  known  as  coagulaEon  

 40

You  can  think  of  coagulaEon  as  “helping  to  bring  things  together”  The  purpose  of  the  coagulaEon  step  is  to  add  chemicals  to  water  so  that  the  parEcles  in  water  that  we  want  to  remove  sEck  together.    Why  do  we  want  them  to  sEck  together?    I’ll  get  into  that  in  a  bit.  It’s  a  very  fast  step,  and  so  it  occurs  in  under  a  minute.      Basically  you  have  your  treatment  facility  and  a  pipe  from  a  lake,  for  example,  that  goes  from  the  lake  to  the  treatment  facility.    Once  the  pipe  gets  to  the  treatment  facility,  coagulant  is  added  to  it.  There  are  different  types  of  chemicals  that  are  used  as  coagulants,  but  they  all  preVy  much  do  the  same  thing.  These  parEcles  that  sEck  together  form  clumps,  that  are  known  as  flocs.  

41

So  what  was  the  goal  of  coagulaEon  again?    EssenEally  in  coagulaEon  you’re  adding  chemicals  to  the  water  that  help  the  parEcles  sEck  together.    The  next  step,  logically  then,  is  the  act  of  the  parEcles  sEcking  together.    This  step  is  called  flocculaEon,  because  the  small  clumps  of  parEcles  are  called  flocs.  So  coagulaEon  happened  in  a  pipe,  right?    Well  flocculaEon  actually  happens  in  a  big  tank  that  has  a  mixer  in  it.  Why  do  you  think  we  need  a  mixer?    (To  get  the  water  moving  so  that  parCcles  actually  have  a  chance  to  interact)  Do  we  want  the  mixing  to  be  fast  or  slow?    (We  want  it  to  be  pre>y  fast  but  not  too  fast.    If  it’s  too  slow  the  water  won’t  move  enough.    If  it’s  too  fast  they’ll  hit  each  other  too  hard  and  break  apart)  Why  do  we  want  the  parEcles  to  come  together  (to  form  bigger,  heavier,  denser  parCcles  so  that  they  eventually  sink).  

 42

So  before  I  begin  this  next  step,  someone  tell  me  what  the  purpose  of  flocculaEon  was.    And  why  did  we  want  bigger  parEcles?    (We  want  these  big  parCcles  to  sink.)    So  that  is  the  next  step  –  the  sinking  of  the  parEcles.    Which  is  called  sedimentaEon.    Which  makes  sense,  right?    SedimentaEon  occurs  naturally  in  lakes  and  rivers,  when  clay  and  rocks  sink  to  the  boVom  of  the  water.    It’s  the  same  principle  here.    The  flocs  formed  in  the  previous  step  are  now  heavy  enough  to  sink  and  form  sediment.  This  step  also  occurs  in  a  tank,  but  there’s  no  mixing  involved.  Why  do  you  think  this  step  is  so  important?    The  picture  will  give  you  a  hint.    Compare  the  quality  of  water  on  the  le\  to  that  on  the  right.    Most  of  the  pollutants  that  were  floaEng  in  the  water  as  flocs  sink  to  the  boVom.    And  what’s  le\  is  this  clearer,  cleaner  water  on  top.  

 43

What  was  the  first  step  in  the  treatment  train?  

 44

CoagulaEon!    And  what  is  coagulaEon  again?  

 45

What  comes  a\er  coagulaEon?  

 46

FlocculaEon!    And  what  is  flocculaEon  again?  

 47

What  comes  a\er  flocculaEon?  

 48

Sedimenta)on!    What  is  sedimenta)on?    Coagula)on  Demonstra)on:    Into  two  250ml  erlenmeyer  flasks,  add  approximately  200ml  of  muddy  water  (mix  of  water  +  dirt).  To  one  of  the  flasks  add  (I  don't  remember  how  much  you  put  in  when  we  tried  it  out  in  Orlando's  lab...0.5g?)  ferric  sulfate  (coagulant)  and  mix  for  10sec.  Mix  the  other  flask  (not  containing  ferric  sulfate)  as  well  and  place  next  to  each  other.  Watch  closely  as  the  flask  with  ferric  sulfate  forms  flocs  that  seOle  out  of  the  water.  

49

Here  is  the  picture  of  the  treatment  train  that  was  shown  earlier.    We’ve  covered  all  the  way  up  to  filtraEon,  which  is  what  we’ll  be  talking  about  next.  

 50

Remember  in  sedimentaEon,  where  the  contaminants  in  water  sunk  to  the  boVom  of  the  tank?    And  remember  that  clearer  water  on  top?    Well  that  clear  water  then  undergoes  filtraEon.  The  goal  of  filtraEon  is  to  filter  out  remaining  parEcles  in  water.    Because  even  though  a  lot  of  the  contaminants  were  removed  and  sunk  to  the  boVom  of  the  tank,  there  are  sEll  some  contaminants  le\  in  the  water.    So  filtraEon  helps  remove  small  parEcles  that  were  too  small  and  too  light  to  sink  in  the  previous  example.    There  are  many  different  filters,  but  typically  they’re  made  of  sand  and  gravel.    So  water  enters  the  filter  from  the  top  and  moves  through  the  different  layers  of  the  filter,  like  sand  and  gravel  here,  and  then  clean  water  comes  out  the  boVom.    "Pay  close  aVenEon  to  this  slide  and  explanaEon  of  filters,  because  tomorrow  you  will  all  be  making  your  own!"    

 51

-­‐A\er  the  water  comes  out  of  the  filter,  it’s  clean,  but  it’s  sEll  not  perfect.    There’s  sEll  possibly  microorganisms  in  there  to  inacEvate.    That’s  why  we  do  the  last  step,  disinfecEon.    -­‐There  are  2  types  of  disinfecEon,  chemical  and  non-­‐chemical.    Do  you  guys  remember  the  chemical  disinfectants  that  were  discussed  in  the  previous  lecture?  

 -­‐Chlorine  was  discussed  previously,  and  it  is  one  of  the  most  common  drinking  water  disinfectants.    It  is  also  important  to  note  that  there  is  chlorine  residual  in  our  drinking  water.    This  means  that  enough  chlorine  was  added  iniEally  to  the  water  to  not  only  inacEvate  pathogens,  but  also  to  protect  the  water  from  recontaminaEon  during  storage  and  flow  through  municipal  pipes.      -­‐Can  you  think  of  a  non-­‐chemical  disinfectant?    Hint…its  on  the  screen.    UV  light!  

 -­‐UV  light  is  light  that  is  not  visible  to  the  human  eye,  is  responsible  for  our  sunburns,  but  also  damages  DNA,  which  is  how  it  inacEvates  pathogens  

52

 53

Day  4:  Multimedia  Water  Filter  and  Compartment  Bag  Test  Results  

1. Conventional  Water  Treatment  Review  Lecture  with  Filter  Activity  and  Compartment  Bag  Test  Part  2  Activity  

2. Build-­‐your-­‐own  multimedia  filter  activity  handouts    

54

Quick  review  of  steps-­‐  Demonstrate  water  filter  construc7on,  let  students  build  water  filter  in  groups  following  instruc7ons,  then  during  down  7me  talk  about  compartment  bag  test  results  (remind  them  of  importance  of  disinfec7on)  

55

So  remember  in  sedimenta7on,  where  the  contaminants  in  water  sunk  to  the  boAom  of  the  tank?    And  remember  that  clearer  water  on  top?    Well  that  clear  water  then  undergoes  filtra7on.  The  goal  of  filtra7on  is  to  filter  out  remaining  par7cles  in  water.    Because  even  though  a  lot  of  the  contaminants  were  removed  and  sunk  to  the  boAom  of  the  tank,  there  are  s7ll  some  contaminants  leH  in  the  water.    So  filtra7on  helps  remove  small  par7cles  that  were  too  small  and  too  light  to  sink  in  the  previous  example.    There  are  many  different  filters,  but  typically  they’re  made  of  sand  and  gravel.    So  water  enters  the  filter  from  the  top  and  moves  through  the  different  layers  of  the  filter,  like  sand  and  gravel  here,  and  then  clean  water  comes  out  the  boAom.    

 56

So  to  demonstrate  filtra7on,  you  will  be  building  filters  today,  that  will  look  something  like  this.  Let’s  pass  out  the  direc7ons,  and  then  I’ll  do  a  quick  demonstra7on  up  here  before  you  all  start.  

 57

Review  the  concept  of  the  compartment  bag  test-­‐  One  e.coli  is  very  small  and  difficult  to  see,  so  we  give  them  food  and  incubate  for  a  set  amount  of  7me  so  the  E.Coli  can  mul7ply  When  using  agar  plates  essen7ally  each  single  E.Coli  will  mul7ply  and  produce  a  colony  And  this  is  the  units  we  use  to  communicate  the  amount  of  bacteria  (E.Coli)  in  a  water  sample-­‐colony  forming  units.  With  the  Bag  test,  the  color  of  water  corresponds  to  the  concentra7on  of  bacteria  in  the  compartment  Use  the  chart  on  the  next  slide  to  let  students  calculate  the  concentra7on  of  E.Coli  in  the  water  samples—Is  each  water  sample  safe  to  drink?  Review  disinfec7on.  Why  is  disinfec7on  of  final  drinking  water  so  important?  

 58

59

Schema'c(of(Water(Filter(

Graded&Sand&)coarse&grain&(pebbles)&)medium&grain&(beach&sand)&)fine&grain&(smallest&size)&

Tubing&

Graded&sand&media&

Filter&cap&

Holes&on&the&bo=om&

Outlet&

Filter&support&

Molding&clay&

Inlet&

Carbon&layer&

60

Preparing(a(filter(1.  Place&tubing&in&yogurt&cup&and&secure&with&molding&clay&2.  Place&filter&support&on&the&bo=om&of&the&filter&cup&3.  Cover&filter&support&with&graded&sand&

1.  One&layer&of&coarse&grain&to&cover&the&support&2.  One&layer&of&medium&grain&to&cover&the&coarse&grain&3.  One&layer&of&fine&grain&to&cover&the&medium&grain&

4.  Cover&graded&sand&with&pelleLzed&carbon&5.  Cover&carbon&with&graded&sand&

1.  One&layer&of&fine&grain&to&cover&the&carbon&2.  One&layer&of&medium&grain&to&the&fine&grain&3.  One&layer&of&coarse&grain&to&cover&the&medium&grain&

6.  Cover&graded&sand&with&filter&cap&7.  Place&filter&cup&into&the&yogurt&cup&&

Preparing(a(filter(1.  Place&tubing&in&yogurt&cup&and&secure&with&molding&clay&2.  Place&filter&support&on&the&bo=om&of&the&filter&cup&3.  Cover&filter&support&with&graded&sand&

1.  One&layer&of&coarse&grain&to&cover&the&support&2.  One&layer&of&medium&grain&to&cover&the&coarse&grain&3.  One&layer&of&fine&grain&to&cover&the&medium&grain&

4.  Cover&graded&sand&with&pelleLzed&carbon&5.  Cover&carbon&with&graded&sand&

1.  One&layer&of&fine&grain&to&cover&the&carbon&2.  One&layer&of&medium&grain&to&the&fine&grain&3.  One&layer&of&coarse&grain&to&cover&the&medium&grain&

6.  Cover&graded&sand&with&filter&cap&7.  Place&filter&cup&into&the&yogurt&cup&

Preparing(a(filter(1.  Place&tubing&in&yogurt&cup&and&secure&with&molding&clay&2.  Place&filter&support&on&the&bo=om&of&the&filter&cup&3.  Cover&filter&support&with&graded&sand&

1.  One&layer&of&coarse&grain&to&cover&the&support&2.  One&layer&of&medium&grain&to&cover&the&coarse&grain&3.  One&layer&of&fine&grain&to&cover&the&medium&grain&

4.  Cover&graded&sand&with&pelleLzed&carbon&5.  Cover&carbon&with&graded&sand&

1.  One&layer&of&fine&grain&to&cover&the&carbon&2.  One&layer&of&medium&grain&to&the&fine&grain&3.  One&layer&of&coarse&grain&to&cover&the&medium&grain&

6.  Cover&graded&sand&with&filter&cap&7.  Place&filter&cup&into&the&yogurt&cup&

Preparing(a(filter(1.  Place&tubing&in&yogurt&cup&and&secure&with&molding&clay&2.  Place&filter&support&on&the&bo=om&of&the&filter&cup&3.  Cover&filter&support&with&graded&sand&

1.  One&layer&of&coarse&grain&to&cover&the&support&2.  One&layer&of&medium&grain&to&cover&the&coarse&grain&3.  One&layer&of&fine&grain&to&cover&the&medium&grain&

4.  Cover&graded&sand&with&pelleLzed&carbon&5.  Cover&carbon&with&graded&sand&

1.  One&layer&of&fine&grain&to&cover&the&carbon&2.  One&layer&of&medium&grain&to&the&fine&grain&3.  One&layer&of&coarse&grain&to&cover&the&medium&grain&

6.  Cover&graded&sand&with&filter&cap&7.  Place&filter&cup&into&the&yogurt&cup& 61

Tes'ng(the(filter&1.  CondiLon&the&filter&by&adding&water&unLl&flow&from&&&&&&&&&&&&the&outlet&is&achieved&&&&&&&&&&&&***Be&careful&not&to&disturb&the&filter&surface***&2.  Add&50&mL&of&dyed&water&to&the&top&of&the&filter&3.  Keep&adding&water&to&the&filter&cup&unLl&the&dyed&&&&&&&&&&&&water&appears&in&the&outlet&of&the&yogurt&cup&&&&&&&&&&&Note&how&long&it&takes&for&the&dyed&water&to&flow&&&&&&&&&through&the&filter&and&exit&through&the&outlet&&&&&&&&&Is&there&any&noLceable&color&change&from&the&original&&&&&&&&&dyed&water?&

Tes'ng(the(filter&1.  CondiLon&the&filter&by&adding&water&unLl&flow&from&&&&&&&&&&&&the&outlet&is&achieved&&&&&&&&&&&&***Be&careful&not&to&disturb&the&filter&surface***&2.  Add&50&mL&of&dyed&water&to&the&top&of&the&filter&3.  Keep&adding&water&to&the&filter&cup&unLl&the&dyed&&&&&&&&&&&&water&appears&in&the&outlet&of&the&yogurt&cup&&&&&&&&&&&Note&how&long&it&takes&for&the&dyed&water&to&flow&&&&&&&&&through&the&filter&and&exit&through&the&outlet&&&&&&&&&Is&there&any&noLceable&color&change&from&the&original&&&&&&&&&dyed&water?&

Tes'ng(the(filter&1.  CondiLon&the&filter&by&adding&water&unLl&flow&from&&&&&&&&&&&&the&outlet&is&achieved&&&&&&&&&&&&***Be&careful&not&to&disturb&the&filter&surface***&2.  Add&50&mL&of&dyed&water&to&the&top&of&the&filter&3.  Keep&adding&water&to&the&filter&cup&unLl&the&dyed&&&&&&&&&&&&water&appears&in&the&outlet&of&the&yogurt&cup&&&&&&&&&&&Note&how&long&it&takes&for&the&dyed&water&to&flow&&&&&&&&&through&the&filter&and&exit&through&the&outlet&&&&&&&&&Is&there&any&noLceable&color&change&from&the&original&&&&&&&&&dyed&water?&

Tes'ng(the(filter&1.  CondiLon&the&filter&by&adding&water&unLl&flow&from&&&&&&&&&&&&the&outlet&is&achieved&&&&&&&&&&&&***Be&careful&not&to&disturb&the&filter&surface***&2.  Add&50&mL&of&dyed&water&to&the&top&of&the&filter&3.  Keep&adding&water&to&the&filter&cup&unLl&the&dyed&&&&&&&&&&&&water&appears&in&the&outlet&of&the&yogurt&cup&&&&&&&&&&&Note&how&long&it&takes&for&the&dyed&water&to&flow&&&&&&&&&through&the&filter&and&exit&through&the&outlet&&&&&&&&&Is&there&any&noLceable&color&change&from&the&original&&&&&&&&&dyed&water?&

62

Notes(on(filters(•  Importance&of&washing/condiLoning&filter&

–  Washes&out&dust&and&parLculates&–  Allows&layers&and&grains&of&filter&media&to&se=le&–  Prepares&filter&so&that&water&will&contact&all&layers&of&the&filter&

•  Sand&filters&remove&sediments&and&certain&types&of&bacteria&•  Carbon&filters&remove&organic&chemicals&that&give&tastes&and&

odors&&•  Tracer&of&dyed&water&to&observe&flow&through&the&filter&

–  Don’t&want&a&fast&filter&which&is&the&result&of&breakthrough&(not&touching&the&filter&media)&

–  Don’t&want&a&really&slow&filter&which&would&take&forever&to&give&clean&water&

•  DO(NOT(DRINK(THIS(WATER(

63

Day$5:$Recycled$Water$Plant$Tour$$1. Virtual$Tour$of$Bundamba$Purified$Recycled$Water$Tour$W ÏÒËÓÈÅÅÔ

64

Advanced water treatment plant virtual tour worksheet Go to: http://www.seqwater.com.au/education/virtual-tour/bundamba-0 Follow the water flow to take the virtual tour. Click on videos and more info at each step. Answer the following questions as you go through the tour. 1) What is the source water for this water treatment plant? Based on what you’ve learned from previous classes, are there any potential alternative water sources and how will you judge whether they can/can’t be the source water? 2) What’s the purpose of pre-treatment? Briefly describe what happened during this process. 3) What’s inside of the vessels? How do they work to purify water? How often are the vessels washed during microfiltration? What’s the purpose of back washing? How do they check the integrity of filters? 4) What has been removed during the reverse osmosis process? How do spiral-wound modules work? Briefly describe the process based on the following spiral-wound schematic. What’s the percentage of source water that becomes purified water?

5) What’s the purpose of UV-advanced oxidation and how does it work? 6) What water quality parameters are analyzed? Name at least four and explain why they are important based on what you learned from previous classes. 7) Why is the remineralisation step necessary? What is added into the water and what is the purpose of adding it?

65

Day  6:  Advanced  Water  Treatment  1. Advanced  water  treatment  lecture  2. Low-­‐pressure  membrane  demonstration  3. Review  Quiz  

 

66

 67

Review  from  previous  class:  ask  students  to  describe  what  happens  in  each  step  briefly.  Lead  to  new  topic  of  this  class:  Conven>onal  water  and  wastewater  treatment  processes  have  been  long  established  in  removing  many  chemical  and  microbial  contaminants  of  concern  to  public  health  and  the  environment.  However,  it  may  have  problems.    

68

For  example,  researches  showed  possible  link  between  halogenerated  disinfec>on  by-­‐products  (DBPs)  and  cancers,  and  the  recent  outbreaks  caused  by  Giardia  cysts  and  Cryptosporidium  oocysts.    

69

These  have  promoted  the  USEPA  to  propose  the  Interim  Enhanced  Surface  Water  Treatment  Rule  for  the  mandatory  destruc>on  of  these  microbial  contaminants  and  the  Disinfec>on–Disinfec>on  By-­‐Product  Rule  for  lowering  the  MCLs  for  total  trihalomethanes  (THMs)  and  seUng  new  MCLs  for  haloace>c  acids  (HAAs).  Similarly,  the  stricter  regula>ons  have  been  set  over  a  much  broader  range  of  contaminants  for  wastewater  discharge.  Among  them,  the  most  significant  are  perhaps  the  new  requirements  to  remove  nutrients  (nitro-­‐  gen  and  phosphorus)  and  synthe>c  organic  compounds  (SOCs)  because  of  their  significant  impacts  on  public  health  and  the  environment.    

 70

 71

Increased  release  of  toxic  compounds  

 72

the  reuse  of  municipal  and  industrial  wastewaters  and  the  recovery  of  poten>al  pollutants  used  in  industrial  processes  become  more  cri>cal.  This  is  especially  true  in  arid  or  semiarid  areas  where  the  potable  water  and  irriga>on  water  must  be  imported  at  great  expense.  The  reclama>on  may  be  further  jus>fied  in  view  of  growing  concern  over  the  contamina>on  of  water  resources  by  the  release  of  more  toxic  compounds.    

 73

To  resolve  these  new  challenges  and  be^er  use  economical  resources,  various  advanced  treatment  technologies  have  been  proposed,  tested,  and  applied  to  meet  both  current  and  an>cipated  treatment  requirements.  Among  them,  membrane  filtra>on,  advanced  oxida>on  processes  (AOPs),  and  UV  irradia>on  have  been  proven  to  successfully  remove  a  wide  range  of  challenging  contaminants  and  hold  great  promise  in  water  and  wastewater  treatment.    

74

Pass  around  real  membranes  if  possible.    Flat  sheet  membrane:  Membranes  are  cast  as  a  sheet  and  used  as  a  single  layer  in  a  special  filtra>on  cell.  Common  in  laboratory  separa>on  but  difficult  to  implement  at  an  industrial  scale.  (will  introduce  more  widely-­‐used  membrane  elements  in  industry  later)  

 75

Images  from  SEM(scanning  electron  microscopes)  A,B,C  represent  3  different  membrane  samples  Columns  from  led  to  right:  top  view,  bo^om  view,  cross-­‐sec>on  view    What  can  you  see  from  the  pictures?  Pores!  That’s  how  membranes  work—let  things  smaller  than  the  pores  (like  water)  go  through  while  rejec>ng  the  molecules  that  are  larger  than  the  pore  size  (like  microorganisms  and  some  chemical  compounds)  

 76

Depth  filtra>on:  sand  filter  from  last  hands-­‐on  ac>vity  Surface  filtra>on:  membrane  

 77

More  specifically,  membrane  filtra>on  can  be  further  classified  in  terms  of  the  size  range  of  permea>ng  species,  the  mechanisms  of  rejec>on,  the  driving  forces  employed,  the  chemical  structure  and  composi>on  of  membranes,  and  the  geometry  of  construc>on.  The  most  important  types  of  membrane  filtra>on  are  pressure-­‐  driven  processes  including  microfiltra>on  (MF),  ultrafiltra>on  (UF),  nanofiltra>on  (NF),  and  reverse  osmosis  (RO).      

 78

 79

 80

 81

Ader  learning  about  membrane  procedures,  let’s  look  at  some  membrane  elements  that  are  used  in  industry.    Tubular  elements:  Membranes  are  constructed  as  a  monolithic  structure  with  one  or  more  channels,  or  tubes,  through  the  structure.  Tubular  membranes  are  frequently  structured  of  inorganic  material  and  called  ceramic  or  mineral  membranes.  These  membranes  have  a  low  packing  density  but  can  be  operated  at  a  high  cross-­‐flow  velocity,  which  is  ideal  for  applica>ons  where  the  solute  concentra>on  is  extremely  high.    

 82

Pass  around  hollow  fibers    Hollow  fiber:  Membranes  cast  as  hollow  tubes  with  an  outside  diameter  ranging  from  0.5  to  2mm.  Hollow  fiber  is  the  most  common  configura>on  in  membrane  filtra>on  for  water  treatment.  The  packing  density  (specific  surface  area)  is  1200-­‐1700  m2/m3.  

 83

Video:0:00-­‐1:05    Ask  students  to  summarize  how  hollow  fiber  works  ader  watching  the  video.  

 84

Spiral  wound:  Flat-­‐sheet  membranes,  stacked  in  layer  separated  by  permeate  and  retentate  spacers,  then  rolled  around  a  central  tube  so  that  the  permeate  travels  in  a  spiral  flow  path  towards  the  central  collec>on  tube.  Common  NF  and  RO  membranes,  but  not  in  wide  use  for  membrane  filtra>on  due  to  clogging  of  flow  paths  with  par>cular  ma^er  and  problems  with  backwashing  effec>vely.  The  packing  density  is  700-­‐1000m2/m3.    Play  video: 0:00-­‐3:23,  ask  students  to  summarize  how  spiral  wound  works.    

85

 86

Dead-­‐end  filtra>on  opera>on:  The  bulk  feed  water  flow  is  transverse  (perpendicular)  to  and  toward  the  membrane  surface  during  dead-­‐end  filtra>on,  so  all  solids  accumulate  on  the  membranes  during  the  filtra>on  cycle  and  are  removed  during  backwash  cycle.    

 87

Schema>c  of  dead-­‐end  opera>on  mode.  Feed  water  (water  need  to  be  treated)  is  pumped  through  membrane;  collect  permeate  (clean  water)  from  the  other  side.    Retentate  is  the  aolu>on  containing  water  and  impermeable  components  retained  on  the  feed  side  of  membrane.  

 88

Pictures  of  real  dead-­‐end  cells  

 89

This  is  a  typical  process  configura>on  for  batch  filtra>on  using  an  inert  gas  blanket  on  the  feed  reservoir.    (1)  nitrogen  gas  tank  to  maintain  the  necessary  pressure  gradient  to  force  the  feed  

solu>on  through  the  membrane.  (2)  The  dispensing  pressure  vessels  are  designed  for  dispensing  fluids  under  pressure  

for  filtra>on  through  any  pressure-­‐type  filter  holder.  (3)  Dead-­‐end  cell  on  a  magne>c  s>rrer.  The  magne>c  s>rrer  provides  a  high  but  

undefined  shear  force  needed  to  reduce  solid  cake  built  up  on  the  membrane  surface.  

(4)  The  digital  balance  was  employed  to  measure  the  mass  coming  out  as  permeate.  It  was  connected  using  the  USB  port  to  a  computer  where  a  data  acquisi>on  system  called  Lab  view  was  employed  to  control  the  system  as  well  as  to  con>nuously  log  data  during  filtra>on.  

 Perform  the  dead-­‐end  filtra>on/play  video  in  class.  

 90

The  feed  water  is  pumped  at  a  high  rate  through  the  membranes.  The  cross-­‐flow  velocity,  typically  0.5  to  1m/s,  is  parallel  to  the  membrane  surface  and  about  four  orders  of  magnitude  greater  than  the  superficial  velocity  of  water  toward  the  membrane  surface.  The  velocity  parallel  to  the  membrane  surface  creates  a  shear  force  that  reduce  the  development  of  a  surface  cake.  Because  many  solids  are  carried  away  with  the  retentate  instead  of  accumula>ng  on  the  membrane  surface,  the  system  can  be  operated  at  a  higher  flux  or  with  longer  intervals  between  backwashes.  The  retentate  is  recirculated  to  the  feed  water,  so  cross-­‐flow  filtra>on  requires  a  substan>al  recircula>on-­‐the  permeate  flow  is  typically  less  than  25%  of  the  feed  flow.    The  retentate  can  be  returned  directly  to  the  feed  line  to  the  membrane  modules  or  to  a  mixing  basin  upstream  of  the  modules.  In  either  case,  the  solids  content  of  the  feed  water  will  increase  due  to  the  recircula>on.  

 91

 92

Ques>on:  which  is  dead-­‐end  opera>on?  Which  is  ross-­‐flow  opera>on?  Why?    The  greater  solids  accumula>on  during  the  dead-­‐end  filtra>on  run  may  result  in  lower  average  flux  values  than  those  achieved  with  cross-­‐flow  filtra>on.  

 93

Membranes  are  pressure  driven  system.      Pressure  is  force  per  unit  area  applied  in  a  direc>on  perpendicular  to  the  surface  of  an  object.  Gauge  pressure  (also  spelled  gage  pressure)[a]  is  the  pressure  rela>ve  to  the  local  atmospheric  or  ambient  pressure.  Pressure  is  measured  in  any  unit  of  force  divided  by  any  unit  of  area.  The  SI  unit  of  pressure  is  the  newton  per  square  metre,  which  is  called  the  pascal  (Pa)  ader  the  seventeenth-­‐century  philosopher  and  scien>st  Blaise  Pascal.  A  pressure  of  1  Pa  is  small;  it  approximately  equals  the  pressure  exerted  by  a  dollar  bill  res>ng  flat  on  a  table.  Everyday  pressures  are  oden  stated  in  kilopascals  (1  kPa  =  1000  Pa).  1  atm=1.01*10^5Pa,  1psi(pound  per  square  inch)=6.89*10^3Pa,  1  bar=10^5Pa    Low  pressure  membranes:  MF  0.1-­‐3  bar  UF  2-­‐10  bar  

 94

High  pressure  membranes:  NF  5-­‐30  bar  RO  10-­‐100  bar    

 95

Fouling:  process  resul>ng  in  loss  of  performance  of  a  membrane  due  to  the  deposi>on  of  suspended  or  dissolved  substances  on  its  external  surfaces,  at  its  pore  openings,  or  within  its  pores.  

96

Pass  around  fouled  membrane  sheet  

 97

The  membrane  treatment  plant  virtual  tour  should  be  completed  before  this  lecture  begins.  Students  should  already  have  the  answers  by  now.  This  part  should  be  more  student-oriented.  

 98

1)      What’s  the  source  water  of  this  water  treatment  plant?  (Treated  wastewater  from  wastewater  treatment  plant)  Based  on  what  you’ve  learned  from  previous  classes,  what  could  be  alterna>ve  water  sources  and  how  will  you  judge  whether  they  can/can’t  be  the  source  water?  (Other  surface  water  or  groundwater  we  talked  about  in  previous  classes.  By  monitoring  water  quality: pH,  turbidity  and  other  parameters  to  judge  whether  the  water  can  be  source  water.)    

 99

2)      What’s  the  purpose  of  pre-­‐treatment?  ( Clarify  the  tank,  remove  dissolved  phosphate  and  suspended  par>cles)  Briefly  describe  what  happened  during  this  process(Par>cles  bind  together  into  small  clums  and  se^les  down  to  the  bo^om  of  the  tank.  Clear  water  flow  into  a  large  storage  tank  and  ready  for  microfiltra>on)    

 100

3)    What’s  inside  of  the  vessels?  (Thousands  of  hollow  fibers)  

 101

 102

How  do  they  work  to  purify  water?(The  water  is  forced  through  vessels  which  contain  thousands  of  hollow  fibers.  The  outer  wall  of  each  hollow  fiber  is  made  of  >ny  pore  of  0.4μm  in  size.  The  fibers  filtered  out  microscopic  par>cles  such  as  bacteria,  even  viruses)  How  oden  are  the  vessels  been  washed  during  microfiltra>on?(Every  30  min)  What’s  the  purpose  of  back  washing?(remove  any  build-­‐up  par>cles  on  membrane  wall)  How  do  they  check  the  integrity  of  filters?(1.con>nous  monitoring  of  water  passing  through  turbidity  meters  which  indicate  the  level  of  suspended  ma^er;  2.  regular  “air  pressure”  tests  of  each  membrane  vessel  to  detect)    

103

4)      What’s  been  removed  during  reverse  osmosis  process?(slats,  microorganisms,  organic  compounds,  viruses)  How  do  spiral-­‐wounds  work?  Briefly  describe  the  process  based  on  the  following  spiral-­‐wound  schema>c.  (Force  water  through  special  flat  sheet  membrane.  Rolls  of  membrane  sheets  are  wounded  into  cylinder  shaped  elements. As  water  enters  into  the  vessel,  it  flows  over  the  membrane  surface  as  it  moves  from  one  end  to  the  other. The  membrane  allow  water  pass  through  while  rejec>ng  contaminants  based  on  molecules’  size,  shape  and  charge.  Two  strings  of  water  are  produced.  Pure  water,  which  is  called  the  permeate,  flows  across  the  membrane  sheet  and  passes  through  the  membrane  layer  to  the  inside  core  tube.  Water  does  not  come  through  the  membranes  become  more  highly  concentrated  in  salt  and  other  substances.  This  water  is  called  the  concentrate.  Clean  water  flows  out  the  vessel  from  one  end  of  pressure  vessel  and  the  concentrate  flows  out  from  the  other  outlet.  The  concentrate  can  flow  through  other  vessels  for  the  same  process  to  happen  again  so  that  more  pure  water  can  be  recovered.)What’s  the  percentage  of  source  water  becomes  purified  water?  (~82%)    

104

5)      What’s  the  purpose  of  UV-­‐advanced  oxida>on  and  how  does  it  work?  (Water  is  dosed  with  hydrogen  peroxide  and  exposed  to  strong  UV  lights.  It  removes  any  trace  of  organic  molecules.  It  can  instantly  destroy  the  gene>cs  material-­‐DNA  within  any  virus  and  break  down  organic  molecules.)    

 105

6)      What’re  the  water  quality  parameters  being  analyzed?  Name  at  least  four  of  them  and  explain  why  they’re  important  based  on  what  you  learned  from  previous  classes.  (1.  Hardness:  If  too  high,  may  cause  salts  (scaling)  to  form  in  pipes,  sinks,  and  cause  laundry  staining.      2.  Turbidity:  don’t  want  to  have  suspended  or  dissolved  solids  in  water.  3.  DBP:  poten>al  health  risk  4.  pH:  Should  be  between  6  and  8.  Exposure    to  extreme  pH  values  results  in  irrita>on  to  the  eyes,  skin,  and  mucous    membranes.  If  too  low,  corrosion  may  also  occur.)      

 106

7)  Why  the  remineralisa>on  step  is  necessary?  (Stabilize  water,  match  closely  to  other  water  sources)  What  are  added  into  water  and  what’s  the  purpose  of  adding  them?  (1.  Lime  and  carbon  dioxide  are  added  to  control  pH;  2.  Chlorine  is  added  to  control  biological  growth  in  pipeline)    

 107

 108

Review  Quiz:  Water  quality  and  water  treatment  

1.  List  2  points  of  human  exposure  to  water.  

 

 

 

2.  List  2  potential  sources  of  contamination  for  our  waters.  

 

 

 

3.  List  2  contaminants  that  may  exist  in  our  water.  (hint:  listed  in  water  quality  report  card)    

 

 

 

4.  What  does  MCL  stand  for  in  the  water  quality  report  card?  

 

 

 

5.  List  2  sources  of  drinking  water.  

 

 

 

6.  What  does  AOP  stand  for  in  water  treatment?  

 

 

 

 

 

 

109

7.  Which  of  the  following  is  a  water  quality  parameter?  (You  may  choose  more  than  one  answer.)  

a.  pH  

b.  Color  

c.  Turbidity  

d.  Odor  

 

8.    What  is  the  correct  order  of  treatments  in  a  conventional  drinking  water  treatment  plant?  

a.  Filtration,  disinfection,  coagulation/flocculation/sedimentation  

b.  Coagulation/flocculation/sedimentation,  filtration,  disinfection  

c.  Disinfection,  jar  test  

d.  Carbonation,  disinfection,  desalination  

 

9.  What  is  the  purpose  of  coagulation  in  water  treatment?  

a.  Help  particles  in  water  stick  together  by  using  chemicals  

b.  Filter  out  particles  in  water  

c.  Inactivate  microorganisms  

d.  Test  water  quality  

 

10.  Which  one  of  the  following  is  a  commonly  used  disinfectant  in  drinking  water  treatment  plants?  

a.  Sodium  Chloride  

b.  Chlorine  

c.  Organic  matter  

d.  A  strong  base    

11.    Which  of  the  following  can  also  be  used  for  disinfection?  

a.  Nitrogen  

b.  Flocculation  

c.  Compartment  bag  test  

d.  UV  light    

110

 

12.  Which  of  the  following  is  an  advanced  treatment?  

a.  Disinfection  

b.  Clearwell  storage  

c.    Jar  test  

d.    Membrane  filtration  

 

13.  Which  of  the  following  is  a  membrane  technology?  (You  may  choose  more  than  one  answer).  

a.  Microfiltration  

b.  Ultrafiltration  

c.  Nanofiltration  

d.  Reverse  osmosis  

 

14.  Which  of  the  following  is  NOT  a  membrane  element  configuration?  

a.  Tubular  

b.  Hollow  fiber  

c.  Spiral  wound  

d.  Permeate  

 

15.  Which  of  the  following  is  a  membrane  operation  configuration?  

a.  Cross  flow  

b.  Complete  mix    

c.  Plug  flow  

d.  Filtration  

 

 

 

 

111

Answer  key:  

1.     Through  our  skin  (Dermal  exposure)  

Ingestion  

Inhalation  

Intravenously  

 

2.     Stormwater  runoff  

  Runoff  from  agricultural  fields  

  Animal  waste  

  Industrial  dumping  

  Leaching  from  wastewater  transmission  pipes  

  etc.  

 

3.   Microbes  

  Radioactive  Substances  

  Inorganics  

  Disinfectants  

  Disinfection  by-­‐products  and  precursors  

  Organic  Chemicals  

 

4.     Maximum  Contaminant  Level  

 

5.     Surface  water  

  Ground  water  

  Seawater  

  Water  reuse  

 

6.     Advanced  oxidation  process  

 

112

7.     a,  b,  c,  d  

 

8.   b  

 

9.     a  

 

10.         b  

 

11.     d  

 

12.         d  

 

13.     a,  b,  c,  d  

 

14.     d  

 

15.     a  

 

 

 

 

 

113