Water absorption in polymers - DiVA portal

1
Water absorption in polymers Peter Ahlström , Tobias Gebäck, Erik Johansson  and Kim Bolton University of Borås, SE-501 90 Borås (  present address: University of KwaZulu Natal, Durban, South Africa) ABSTRACT In this work two different examples of water absorbtion in polymers are studied by Monte Carlo simulations. Both of them are of large technical and commercial impotance. The first example is the water absorption in polyethylene cables where the water absorption plays a crucial role in the degradation of the cable insulation and thus should be as low as possible. The second example is bio-based superabsorbents made from denatured protein where water absorption capability is the prime desired property. Methods Gibbs Ensemble Monte Carlo simulations [1] were used to study the hydration of polymers. All simulations are performed with two boxes, one of which is filled with water at the start of the simulation, whereas the other contains polymer molecules and possible ions. The polymer molecules are not allowed to swap boxes whereas the water molecules are allowed to do so thus constituting an osmotic Gibbs ensemble [2]. For the polyethylene a connectivity-altering algorithm was used whereas the protein molecules were simulated using a side-chain regrowth model in addition to traditional Monte Carlo moves. For the polyethylene, the TraPPE [6] force field was used and the protein molecules, the Amber force field [10] was used. Water was modelled using simple point charge models [4,5]. Electrostatic interactions are treated using Ewald summation methods. The protein molecules were of different amino acid compositions and in different conformations, e.g., β-turns and random coils obtained using the amorphous cell method[6]. Studies were made with different degrees of charging on, e.g., lysine side chains mimicking different ionization states. Results The studies of polyethylene revealed the importance of ions left from the polymerisation catalyst for the absorbtion of water and the concomitant degradation of polyethylene cable insulation. Also the absorption properties of the protein molecules is strongly related to the presence of charged groups and fully charged protein molecules absorb large amounts of water. However, neither native nor denatured protein molecules show superabsorbing properties (i.e. absorbing hundreds of times their own mass) as they show in experimental studies and the reasons for this discrepancy will be discussed. References [1] A.Z. Panagiotopoulos, Mol. Phys. 61 813 (1987). [2] D.N. Theodorou, U.W. Suter, Macromolecules 18, 1467 (1985). [3] E. Johansson, K. Bolton, D.N. Theodorou, P. Ahlström, J. Chem. Phys., 126, 224902 (2007) [4] J.I. Siepmann, and D. Frenkel, Mol. Phys.. 75, 59-70 (1992). [5] H. J. C. Berendsen, J. P. M. Postma and W. F. van Gunsteren, in Intermolecular Forces, B. Pullman, ed. (Reidel, Dordrecht, 1981) p. 331. [6] H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987). [7] M. C. Martin and J. I. Siepmann, J. Phys. Chem. B 102, 2659 (1998). [8] Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J. Am. Chem. Soc.  117, 5179  (1995) [9] E. Johansson, K. Bolton, and P. Ahlström,  J.Chem.Phys., 127  (2007), 024902 [10]E. Johansson, K. Bolton, D.N. Theodorou, and P. Ahlström, J. Chem. Phys. 127 (2007), 191101 . [11]E. Johansson, P. Ahlström, K. Bolton, Polymer 49, 5357 (2008). [12] T. Gebäck and P. Ahlström, work in progress; presented at nearby poster! Background The absorbtion of water in polymers is central in several areas and we have studied a few of those by molecular simulation methods. Desired absorbtion: Super absorbent materials – diapers etc. Undesired absorbtion: Packaging for food (where water and/or air penetration can lead to food deterioration) Electric cables (can lead to formation of water trees and cable breakdown) Methods Gibbs Ensemble Monte Carlo Simulations [1] Two boxes, water and polymer respectively, at start Polymer simulations: Starting structure of polymer from ”amorphous cell” method [2] Isoosmotic ensemble [3], i.e., polymer molecules not allowed to swap boxes In order to speed up the calculation the configurational bias method [4] and chain regrowth methods were used For polyethylene end-bridging methods were used Water models: SPC[5] (or SPC/E[6] with ions) Hydrocarbon model: TraPPE [7] Protein model: Amber [8] with side chain regrowth Gibbs ensemble Monte Carlo Move/regrow/rotate Transfer Volume change At constant NpT or NVT Unfolded proteins as (super)absorbents Protein molecules with certain non-native structures are experimentally known to act as superabsorbents (absorbing up to hundreds of times their own mass) Charged groups are essential Certain structural features, e.g., β-hairpins Alternative: ”random” structure from amorphous cell method [2] Structure known to be highly absorbing was constructed Gibbs ensemble simulation performed To speed up simulations ”cavity bias” Equilibrium appears to be reached (see figure right that shows density in the protein box as a function of the number of steps) Charged groups and charge models found to be essential High absorbtion but no superabsorbtion observed Possible cause of discrepancy: lack of crosslinks in the simulation model For more details see [12] Water in polymer insulators Water trees are known to play a crucial role in polymer insulator degradation. The mechanism of water tree formation is not fully understood. Impurities and an AC field are necessary conditions for water tree growth. Water structure is of interest. Water trees can be seen as tree- or bush- like structures built up by paths of small water containing voids, or in more severe cases, channels in the polymer (Photo by B. Holmgren, ABB, Sweden). Water and polyethylene (PE) Force field combination rule by fitting solubilities in/of hydrocarbons No reliable experimental data for water in PE due to low solubility Little clustering of water in hydrocarbons and PE and solubility decreases with electric field => water absorbtion by pure PE cannot explain cable breakdown Solubility Electric field (NB! Log scale) (Water in hydrocarbons)[3] Effect of ionic impurities in polyethylene Ions can be leftovers from polymerization catalysts Modelled by Na +  and Cl -  ion pair at different distances Leads to formation of water cluster if distance not too large[10] 1.5 nm 2.0 nm 2.5 nm Na-Cl distance Added electric field enhances or weakens cluster depending on direction => AC field could lead to void formation A probable explanation of the water tree formation [11] E E Conclusions Water absorbtion is readily modelled with Gibbs Ensemble Monte Carlo simulation using techniques like configurational bias, cavity bias etc. Water absorbtion is heavily dependent on charged groups and thus can the degradation of polyethylene cables be explained by ionic impurities from, e.g., catalyst leftovers Protein superabsorbents are not yet completely well modelled Effect of electric field and  ionic impurities in PE

Transcript of Water absorption in polymers - DiVA portal

Page 1: Water absorption in polymers - DiVA portal

Water absorption in polymers Peter Ahlström, Tobias Gebäck, Erik Johansson¶ and Kim Bolton

University of Borås, SE­501 90 Borås (¶ present address: University of KwaZulu Natal, Durban, South Africa)

ABSTRACT

In this work two different examples of water absorbtion in polymers arestudied by Monte Carlo simulations. Both of them are of large technicaland commercial impotance. The first example is the water absorption inpolyethylene cables where the water absorption plays a crucial role in thedegradation of the cable insulation and thus should be as low as possible.The second example is bio-based superabsorbents made from denaturedprotein where water absorption capability is the prime desired property.

MethodsGibbs Ensemble Monte Carlo simulations [1] were used to study thehydration of polymers. All simulations are performed with two boxes, oneof which is filled with water at the start of the simulation, whereas theother contains polymer molecules and possible ions. The polymermolecules are not allowed to swap boxes whereas the water molecules areallowed to do so thus constituting an osmotic Gibbs ensemble [2]. For thepolyethylene a connectivity-altering algorithm was used whereas theprotein molecules were simulated using a side-chain regrowth model inaddition to traditional Monte Carlo moves. For the polyethylene, theTraPPE [6] force field was used and the protein molecules, the Amberforce field [10] was used. Water was modelled using simple point chargemodels [4,5]. Electrostatic interactions are treated using Ewaldsummation methods. The protein molecules were of different amino acidcompositions and in different conformations, e.g., β-turns and randomcoils obtained using the amorphous cell method[6]. Studies were madewith different degrees of charging on, e.g., lysine side chains mimickingdifferent ionization states.

Results

The studies of polyethylene revealed the importance of ions left from thepolymerisation catalyst for the absorbtion of water and the concomitantdegradation of polyethylene cable insulation. Also the absorptionproperties of the protein molecules is strongly related to the presence ofcharged groups and fully charged protein molecules absorb large amountsof water. However, neither native nor denatured protein molecules showsuperabsorbing properties (i.e. absorbing hundreds of times their ownmass) as they show in experimental studies and the reasons for thisdiscrepancy will be discussed.

References

[1] A.Z. Panagiotopoulos, Mol. Phys. 61 813 (1987).[2] D.N. Theodorou, U.W. Suter, Macromolecules, 18, 1467 (1985).[3] E. Johansson, K. Bolton, D.N. Theodorou, P. Ahlström, J. Chem. Phys., 126,224902 (2007)[4] J.I. Siepmann, and D. Frenkel, Mol. Phys.. 75, 59­70 (1992).[5] H. J. C. Berendsen, J. P. M. Postma and W. F. van Gunsteren, in IntermolecularForces, B. Pullman, ed. (Reidel, Dordrecht, 1981) p. 331.[6] H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem. 91, 6269(1987).[7] M. C. Martin and J. I. Siepmann, J. Phys. Chem. B 102, 2659 (1998).[8] Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM,Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J. Am. Chem. Soc. 117,5179  (1995) [9] E. Johansson, K. Bolton, and P. Ahlström,  J.Chem.Phys., 127  (2007), 024902 [10]E. Johansson, K. Bolton, D.N. Theodorou, and P. Ahlström, J. Chem. Phys.127 (2007), 191101 .[11]E. Johansson, P. Ahlström, K. Bolton, Polymer 49, 5357 (2008).[12] T. Gebäck and P. Ahlström, work in progress; presented at nearby poster!

BackgroundThe absorbtion of water in polymers is central in several areas and we have studied a few of thoseby molecular simulation methods.

Desired absorbtion:●Super absorbent materials – diapers etc.

Undesired absorbtion:●Packaging for food (where water and/or air penetration can lead to food deterioration)

●Electric cables (can lead to formation of water trees and cable breakdown)

Methods●Gibbs Ensemble Monte Carlo Simulations [1]

● Two boxes, water and polymer respectively, at start●Polymer simulations:

● Starting structure of polymer from ”amorphous cell” method [2]

● Isoosmotic ensemble [3], i.e., polymer molecules not allowed to swap boxes

●In order to speed up the calculation the configurational bias method [4] and chain regrowth methods were used●For polyethylene end-bridging methods were used●Water models: SPC[5] (or SPC/E[6] with ions)●Hydrocarbon model: TraPPE [7]●Protein model: Amber [8] with side chain regrowth

Gibbs ensemble Monte Carlo

Move/regrow/rotate

Transfer

Volume change

At constant NpT or NVT

Unfolded proteins as (super)absorbents

Protein molecules with certain non-native structures are experimentally known to act as superabsorbents (absorbing up to hundreds of times their own mass)●Charged groups are essential●Certain structural features, e.g., β-hairpins●Alternative: ”random” structure from amorphous cell method [2]

●Structure known to be highly absorbing was constructed●Gibbs ensemble simulation performed ●To speed up simulations ”cavity bias”●Equilibrium appears to be reached (see figure right that shows density in the protein box as a function of the number of steps)

●Charged groups and charge modelsfound to be essential

●High absorbtion but no superabsorbtion observed

●Possible cause of discrepancy: lack of crosslinks in the simulation model

●For more details see [12]

Water in polymer insulatorsWater trees are known to play acrucial role in polymer insulatordegradation.

The mechanism of water treeformation is not fully understood.

Impurities and an AC field arenecessary conditions for watertree growth.

Water structure is of interest.

Water trees can be seen as tree- or bush-like structures built up by paths of small water containing voids, or in more severe cases, channels in the polymer (Photo by B. Holmgren, ABB, Sweden).

Water and polyethylene (PE)●Force field combination rule by fitting solubilities in/ofhydrocarbons

●No reliable experimental data for water in PE due to low solubility

●Little clustering of water in hydrocarbons and PE andsolubility decreases with electric field => water absorbtion by pure PE cannot explain cable breakdown

Solubility

Electric field (NB! Log scale)

(Water in hydrocarbons)[3]

Effect of ionic impurities in polyethylene●Ions can be leftovers from polymerization catalysts●Modelled by Na+ and Cl­ ion pair at different distances●Leads to formation of water cluster if distance not too large[10]

1.5 nm

2.0 nm

2.5 nm

Na-Cldistance

●Added electric field enhances or weakens cluster dependingon direction => AC field could lead to void formation

●A probable explanation of the water tree formation [11]

EEE

E

Conclusions●Water absorbtion is readily modelled with Gibbs EnsembleMonte Carlo simulation using techniques like configurationalbias, cavity bias etc.

●Water absorbtion is heavily dependent on charged groups and thus can the degradation of polyethylene cables be explained by ionic impurities from, e.g., catalyst leftovers

●Protein superabsorbents are not yet completely well modelled

Effect of electric field and ionic impurities in PE