Wall Stabilized Operation in High Beta NSTX Plasmas

11
NSTX SAS - FEC ‘04 S. A. Sabbagh 1 , A.C. Sontag 1 , R. E. Bell 2 , J. Bialek 1 , D.A. Gates 2 ,A. H. Glasser 3 , B.P. LeBlanc 2 , J.E. Menard 2 , W. Zhu 1 , M.G. Bell 2 , T.M. Biewer 2 , A. Bondeson 4 , C.E. Bush 5 , J.D. Callen 6 , M.S. Chu 7 , C. Hegna 6 , S. M. Kaye 2 , L. L. Lao 7 , Y. Liu 4 , R. Maingi 5 , D. Mueller 2 , K.C. Shaing 6 , D. Stutman 8 , K. Tritz 8 , C. Zhang 9 Wall Stabilized Operation in High Beta NSTX Plasmas Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland U New Mexico U Rochester U Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo JAERI Ioffe Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching U Quebec 20 th IAEA Fusion Energy Conference 1-6 November 2004 Vilamoura, Portugal 1 Department of Applied Physics, Columbia University, New York, NY, USA 2 Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA 3 Los Alamos National Laboratory, Los Alamos, NM, USA 4 Institute for Electromagnetic Field Theory, Chalmers U., Goteborg, Sweden 5 Oak Ridge National Laboratory, Oak Ridge, TN, USA 6 University of Wisconsin, Madison, WI, USA 7 General Atomics, San Diego, CA, USA 8 Johns Hopkins University, Baltimore, MD, USA 9 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

description

Supported by. Wall Stabilized Operation in High Beta NSTX Plasmas. Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland U New Mexico U Rochester U Washington U Wisconsin - PowerPoint PPT Presentation

Transcript of Wall Stabilized Operation in High Beta NSTX Plasmas

Page 1: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

S. A. Sabbagh1, A.C. Sontag1, R. E. Bell2, J. Bialek1, D.A. Gates2,A. H. Glasser3, B.P. LeBlanc2, J.E. Menard2, W. Zhu1, M.G. Bell2, T.M. Biewer2, A. Bondeson4, C.E. Bush5, J.D. Callen6, M.S. Chu7, C. Hegna6, S. M. Kaye2, L. L. Lao7, Y. Liu4, R. Maingi5, D. Mueller2, K.C. Shaing6, D. Stutman8, K. Tritz8, C. Zhang9

Wall Stabilized Operation in High Beta NSTX Plasmas

Supported by

Columbia UComp-X

General AtomicsINEL

Johns Hopkins ULANLLLNL

LodestarMIT

Nova PhotonicsNYU

ORNLPPPL

PSISNL

UC DavisUC Irvine

UCLAUCSD

U MarylandU New Mexico

U RochesterU Washington

U WisconsinCulham Sci Ctr

Hiroshima UHIST

Kyushu Tokai UNiigata U

Tsukuba UU Tokyo

JAERIIoffe Inst

TRINITIKBSI

KAISTENEA, Frascati

CEA, CadaracheIPP, Jülich

IPP, GarchingU Quebec

20th IAEA Fusion Energy Conference1-6 November 2004Vilamoura, Portugal

1Department of Applied Physics, Columbia University, New York, NY, USA2Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

3Los Alamos National Laboratory, Los Alamos, NM, USA4Institute for Electromagnetic Field Theory, Chalmers U., Goteborg, Sweden5Oak Ridge National Laboratory, Oak Ridge, TN, USA6University of Wisconsin, Madison, WI, USA7General Atomics, San Diego, CA, USA8Johns Hopkins University, Baltimore, MD, USA9Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

Page 2: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

Wall stabilization physics understanding is key to sustained plasma operation at maximum

• High t = 39%, N = 6.8 reached

N

li

N/li = 12 68

4

10

wall stabilized

• Global MHD modes can lead to rotation damping, collapse

• Physics of sustained stabilization is applicable to ITER

• Operation with N/Nno-wall > 1.3 at

highest N for pulse >> wall

-25-20-15-10

-505

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N

01234567

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

DCON

W

0

10

20

0.6 0.70.50.40.30.20.10.0t(s)

n=1 (no-wall)n=1 (wall)

112402

wall stabilized

0

1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

EFIT

core plasma rotation(x10 kHz)

Page 3: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

Theory provides framework for wall stabilization study

• This talk: Resistive Wall Mode physics RWM toroidal mode spectrum Critical rotation frequency, crit

Toroidal rotation damping Resonant field amplification (RFA)

• Theory Ideal MHD stability – DCON (Glasser) Drift kinetic theory (Bondeson – Chu) RWM dynamics (Fitzpatrick – Aydemir)

2**

211ˆ11ˆˆˆˆ mdmdSmdsii

plasma inertia dissipation mode strength wall response wall/edge coupling

S* ~ 1/wall

0.0 0.5 1.0 1.5-1.0

-0.5

0.0

0.5

1.0

mo

de

str

eng

th s

ideal wall limit

no-wall limit*=

Fitzpatrick-Aydemir (F-A)stability curves

plasma rotation

Phys. Plasmas 9 (2002) 3459

stable

wall stabilized

stable

Page 4: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

Unstable RWM dynamics follow theory

• Unstable n=1-3 RWM observed ideal no-wall unstable

at high N

n > 1 theoretically less stable at low A

• F-A theory / experiment show mode rotation can

occur during growth growth rate, rotation

frequency ~ 1/wall

• << edge > 1 kHz RWM phase velocity

follows plasma flow n=1 phase velocity

not constant due to error field

• Low frequency tearing modes absent

growth w/o mode rotation mode rotation during growth

N

|Bp|(n=1)

(G)

(G)

(G)

|Bp|(n=2)

|Bp|(n=3)

Bp(n=1)(deg

)B

z(G

) (f<40 kHz, odd-n)

n=2,3

n=1 no-wall unstable

n=1-3 no-wall unstable

0.22 0.24 0.26 0.28t(s)

-20-10010200

100200300010

20300102030400204060

02

46

0.18 0.20 0.22 0.24 0.26 0.28t(s)

-20-10010200

1002003000

10

20010

20300102030

02

46

114147

FIG. 1

114452

moderotation

mode growth

Page 5: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

• Visible light emission is toroidally asymmetric during RWM

• DCON theory computation displays mode uses experimental equilibrium reconstruction includes n = 1 – 3 mode spectrum uses relative amplitude / phase of n spectrum

measured by RWM sensors

Camera shows scale/asymmetry of theoretical RWMRWM with Bp = 92 G

Before RWM activity

114147t = 0.250s

114147t = 0.268s

Theoretical B (x10) with n=1-3 (DCON)

114147 114147

(interior view)(exterior view)

Page 6: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

0.08

0.06

0.04

0.02

0.000.270 0.275 0.280 0.285 0.290 0.295

0.270 0.275 0.280 0.285 0.290 0.295

0.270 0.275 0.280 0.285 0.290 0.295

0.08

0.06

0.04

0.02

0.00

0.08

0.06

0.04

0.02

0.00

0.08

0.06

0.04

0.02

0.000.270 0.275 0.280 0.285 0.290 0.295

0.270 0.275 0.280 0.285 0.290 0.295

0.270 0.275 0.280 0.285 0.290 0.295

0.08

0.06

0.04

0.02

0.00

0.08

0.06

0.04

0.02

0.00

0.08

0.06

0.04

0.02

0.000.270 0.275 0.280 0.285 0.290 0.295

0.270 0.275 0.280 0.285 0.290 0.295

0.270 0.275 0.280 0.285 0.290 0.295

0.08

0.06

0.04

0.02

0.00

0.08

0.06

0.04

0.02

0.00

Chord 3

Chord 4

Chord 5

Bay G array (0 deg)Bay J array (90 deg)

Inte

nsity

(ar

b)

• Experiment / theory show RWM not edge localized Supported by

measured Te

114024, t=0.273sN = 5

0.27 0.28 0.29

8

4

0

6

4

0

6

4

0

t(s)

Inte

nsity

(ar

b)In

tens

ity (

arb)

0.0 0.5 1.0 1.5 2.0R(m)

2

1

0

-1

-2

Z(m

)

35 4

RWM growth

2

1

0

0.0 0.2 0.4 0.6 0.8 1.0

DCON n = 1 modedecomposition

n

(arb

)

m=34

56

USXR separated by 90 degrees

n = 0.13

n = 0.4

Soft X-ray emission shows toroidal asymmetry during RWM

2

2

6

2

n = 0.24

m=2

n:0.13 0.24

m=1

0.4

Page 7: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

q1 2 3 4 5

/

A

0.5

0.4

0.3

0.2

0.1

0.0

stabilized1/(4q2)not stabilized

Experimental crit follows Bondeson-Chu theory

• Experimental crit

stabilized profiles: >N

no-wall (DCON)

profiles not stabilized cannot maintain > N

no-wall

regionsseparated by A =1/(4q2)

• Drift Kinetic Theory Trapped particle

effects significantly weaken stabilizing ion Landau damping

Toroidal inertia enhancement more important

• Alfven wave dissipation yields crit = A/(4q2)

/A(q,t) profiles

Phys. Plasmas 8 (1996) 3013

Page 8: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

/

A crit follows F-A theory with neoclassical viscosity

q95

2 4 6 8 10

0.06

0.05

0.04

0.03

0.02

0.01

0.00

stabilized1/(4q2)not stabilized

/A in F-A inertial layer (edge) • Experimental crit

stabilized points: >N

no-wall (DCON)

points not stabilized cannot maintain > N

no-wall regionsseparated by

A =1/(4q2)

• F-A Theory Standard F-A theory

has crit ~ 1/q neoclassical viscosity

includes toroidal inertia enhancement (K. Shaing, PoP 2004)

• yields crit ~ 1/q2

Page 9: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

Plasma rotation damping described by NTV theory

• Evolution detail differs for other modes no momentum transfer across rational surfaces no rigid rotor plasma core (internal 1/1 mode)

0

5

10

15

20

25

30

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

t=0.265576

t=0.275576

113924

1.0 1.2 1.4 1.6R(m)

/

2 (

kHz) 25

20

10

15

5

Td (

N m

-2)

0.40.30.20.10.0

-0.1-0.2

0

t = 0.276s

TNTV

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

0

10

20

30

40

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

t=0.225729

t=0.235729

t=0.255729

40

30

20

10114452

/

2 (

kHz) t(s)

0.2260.2360.256

see EX/P2-26 Menard

theory

• Neoclassical toroidal viscosity (NTV) ~ B2*Ti0.5

• Rapid, global damping observed during RWM Edge rotation ~ 2kHz maintained Low frequency tearing modes absent

full rotation evolution

1.0 1.2 1.4 1.6R(m)

0.8

t(s)0.2660.276

initial rotation evolution

measured-R2(d/dt)

axis edge

Page 10: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

Resonant Field Amplification increases at high N

• Plasma response to applied field from initial RWM stabilization coil pair AC and pulsed n = 1 field

• RFA increase consistent with DIII-D

• Stable RWM damping rate of 300s-1 measured

N

Nno-wall

Initial RWM stabilization coils

Sensors

Completed coils will be used to suppress RFA, stabilize RWM, sustain high

(n = 1)

0

0.2

0.4

0.6

4.0 4.5 5.0 5.5 6.0

Pla

sma

re

sp/a

pp

lied

fie

ldpl

asm

a B

p / a

pplie

d B

p

Page 11: Wall Stabilized Operation in High Beta NSTX Plasmas

NSTX SAS - FEC ‘04

Wall stabilization research at low aspect ratio illuminates key physics for general high operation

• Plasma t = 39%, N = 6.8, N/li = 11 reached; N/Nno-wall > 1.3

• Unstable n = 1-3 RWMs measured (n > 1 prominent at low A)

• Critical rotation frequency ~ A/q2 strongly influenced by toroidal inertia enhancement (prominent at low A)

• Rapid, global plasma rotation damping mechanism associated with neoclassical toroidal viscosity

• Resonant field amplification of stable RWM increases with increasing N (similar to higher A)

• Evidence for AC error field resonance observed (see poster)

• Effect of rotation on equilibrium reconstruction evaluated (see poster)

Completed RWM active stabilization coil to be used for research in 2005