W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates...

18
. . t EIHIBIT F PRAIRIE ISLAND NUCLEAR GENERATING PLANT . License Amendment Request Dated January 13, 1986 2 DEMONSTRATION OF THE (DNFORMANG ' OF PRAIRIE ISLAND UNITS 10 APPENDIX K AND 10CFR50.46 FOR SMALL BREAK LOCAs ' . W2stingnouse Electric Corporation . Nuclear Technology Division Nuclear Safety Department . Safeguards Engineering and Development October 1985 ! g601g{0 PDR PDR p.g , P i _ _ _ .__- .

Transcript of W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates...

Page 1: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

.

. t

EIHIBIT F

PRAIRIE ISLAND NUCLEAR GENERATING PLANT.

License Amendment Request Dated January 13, 19862

DEMONSTRATION OF THE (DNFORMANG'

OF

PRAIRIE ISLAND UNITS

10

APPENDIX K AND 10CFR50.46

FOR

SMALL BREAK LOCAs'

.

W2stingnouse Electric Corporation.

Nuclear Technology Division

Nuclear Safety Department .

Safeguards Engineering and Development

October 1985

!

g601g{0 PDRPDR p.g ,

P i

_ _ _ .__- .

Page 2: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

. .

I. In*nc h tien

This doceent reports the results of an analysis that was performed todemonstrate tnat Prairie Island, Units I and II, meet the requirements of

Appendix K and 10CFR50.46 for small break LOCA. The analysis incorporatesanticipated plant harmare modifications, i.e. , the new upper reactor internals

package and the tnimble plus removal, as well as increased levels of Fg and

steam generator tube plugging.

II. Methed of Analysis

The analysis was perfccmed using the ]d NOTRUMP and LOCTA computer codes for a

spectra of small break sizes. These codes are incorprated in the approvedWestingnouse ECCS Small Break Evaluation Model ceveloped to cetermine the RCS

response to cesign basis small break LOCAs and to address the NRC concernsexpressec in NUREG-0611, " Generic Evaluation of Feewater Transients and Small

Break Loss-of-Coolant Accidents in Westinghouse-Designed Operating Plants."

The NCIRUMP coc:puter code is a one-dimensional general network code consisting

of a rA2::ber of SCVanced features, including the Calculation of thermalnon-equilibrim in all fluid volmes, flow regime-depencent crif t fluxcalculations with counter-current flooding limitations, mixture lev'el trackinglo61c in multiple-stacked fluid noces, and regime-cepenoent heat transfer

i correlations. NOTRUMP includes the representation of the reactor core asheated control volmes with an associated bubble rise model to permit atransient mixture height calculation. The multinoce capability of the programenables an explicit and cetailed spatial representation of various systemcocpanents. In particular, it enables a proper calculation of the benavior oftne loop seal curing a loss-of-coolant transient.

Claccing ther=al analyses are performed with tne LOCTA-IV (Reference 3) code

whien uses the RC pressure, fuel rod power history, steam flow past themcovered part of the core, and mixture height history from the N07 RUMPhycraulic calculations, as input.

F-2

Page 3: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

~

T-

. .

Table 1 lists important input parameters and initial conditions med in theNOTRUMP analysis. The core power decay and axial power distribution are snownin Figures 1 and 2. For tnese analyns, the SI delivery considers pmp

injection flow which is depicted in Figure 3 as a ftnetion of RCS pressure.This figure represents injection flow from the SI pmps based on performancecurves degraced 5 percent from the design head. The Safety Injection (SI)system was assmed to be delivering to the RCS 25 seconds after the generationof a safety injection signal. The 25-second oelay includes time required for

diesel startup and Icecing of the safety injection pumps onto the emergencybuses. Minimm safeguarcs Emergency Core Cooling Systerr. capability andoperability has, also, been assmed in this analysis.

The nycraulic ana.'.yses are performed with the NOTRUMP code using 102 percent ofthe licensec NSSS core pwer. The core thermal transient analyses areperformed with the LOCTA-IV coce using 102 percent of licensed NSSS core pwer.

Three break size transients were evaluated, 3 inch, 4 inch, and 6 inch. Thesetransients were considered to be terminated when the follming criteria weremet:

1. RCS system pressure had decreased below the accumulator set pint andacetz:ulator flow hac been initiated.

2. The core had been recovered and the core / upper plentra mixture level

was at or above the bottom of the vessel outlet nozzles.

3. The net flow to the RCS was psitive with accumulator and SI fimexceeding the break f1w.

-

F-3

.

Page 4: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

- ,

.. .,

i

III. Reste ts and cnne1 usi ons

Of the tnree break sizes evaluated, core mcovery occurred only for the 4-inchbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inchbreak transient; producing a positive slope en the core mixture level curve. Asimilar result occurs for the 6-inch break. The 4-inch break shows two briefperiods of ccre mcovery prior to accumulator 1rdection. During the secondperiod of mcovery a PCT of 1000 F occurs, Figure 8. This value is well belowall Acceptance Criteria limits of 10CFR50.46 and is non-limiting in comparisonto large break analysis results.

F-4

Page 5: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

. . ,

|i

l

REFERENCES

i 1. Lee, H. , Rupprecht, S. D. , Tauche, W. D. , Schwar , W. R. , " WestinghouseSmall Break ECCS Evaluation Model Using the NOTRUMP Code," WCAP-100% P-1,August 1985.

| 2. Meyer, P. E., "NOTRUMP, A Nodal Transient Small Break and General NetworkCode," WCAP-10074-P-1, August 1985.

3Bordelon, F. M.,8101 (Proprietary), and WCAP-8306 (Non-Proprietary), June

et al. , "LOCIA-IV Program: Loss-of-Coolant TransientAralysis," WCAF-1974.

.

F-5

Page 6: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

.. _ _ . .

. .

TABLE 1

INPJT PAR AMETrR9 flSFB IN THE SMAf f BRCAV ANif YRFR

Parameter 4m11 Brente

Peak Linear Power (kw/ft) 15.03(incluces 1025 factor)

Total Peaking Factor, F 2.50g

Power Shape See Figure 2

Fuel Assembly Array 14x14 0FA

Nominal Cold Les Accynulator 1266Water Volme (ft"/accmulator)

Nominal Colc Leg Aeg/ accumulator)mulator 2000

Tank Volune (ft

! Minimun Colc Leg Accumulator 715Gas Pressure (psia)

Pucped Safety ledection Flow See Figure 3

Steam Generator Initial Pressure (psia) 733.0

Steam Generator Tuoe Plugging Level % 10

Fuel Assemcly Thictle Flugs Removed

Reactor Upper Internals Package New Design

I

i

F-6

. - _ , __ - . _ . _ _ _ . _ _ .

Page 7: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

.

. o.

'

4

TABLE 2

SM1? f RRFAY LOCA TIME MFOfffMCF OF EVFRE '

i

,

3 in. Break 4 in. Break 6 in. Break(sec) (sec) (sec)

Start 0.0 0.0 0.0

Reactor Trip 4.5 2.8 17

Top of Core Uncovered WA 183 7 WA

Cold Leg Accumulator Injection 703.0 371.5 162.6

Peax Cad Temperature Occurs WA 297 8 WA

Tcp of Core Covered WA 325.8 WA

i;

'

,;.

!

!

I

|

-

F-7\

|

-- _. _. __ , - -. __ _ - - __

Page 8: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

_ _

. .

TABLE 3

SMALL BREAK LOCA RESULEFUEL C_ADDIE DATA

.

.3 in. Break 4 in. Break 6 in. Break

4

Results

Peak Cad Temperature ( F) WA 1000 W/.

Peak Cad Location (ft) WA 12.00 WAt

Local Zr/P 0 Resction (max), (5) WA 0.066 WA2

Local Zr/P 0 Reaction Location (ft) WA 12.00 WA2

Total Zr/H O Reaction (%) <.3 <.3 <.32

; Hot Roc Burst Time (sec) WA WA WA

Hot Rod Burst Location (ft) WA WA WA

:

,

4

1

1

d

J

l

.

i

F-8

- ..

Page 9: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

r i

= 't,

a$632 3

100_7 35 -

_

_

2 7 TOTAL RESIDUAL HEAT (WITH 4% SHUTCOWN)C

fIC-' :::--

t 7 -

~

* a< - _

_

--

<g2 -

mIC*2 _--

D 7 ~

5 -

-

-

2 -

i e s a t t eil i t t s i t e il e r i e s it el i e t e r i til i i v i sis3

IC-8 2 5 100 2 5 108 2 5 102 2 5 103 2 5 IC'TIME AFTER SHUTCOwN ISECONCS)

i

|

9

:

: Figure 1. Core Power After Reactor Trip

F-9

.-- - . - _. . - __ .- .-

Page 10: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

._

a - i

issa2 2

't

16

14 -

t

12 -

-

>i N |O -

! W' xi *

c

fB '

-

c.

8C

6s9.

,-

4

2 -

ai

' ' ' ' 'OO 2 4 6 8 10 12

CORE HEIGHT (FT)

Figure 2. Small Break Power Distribution Assumed for Loca AnalysisJ

F-10,

.. . _ . _ _ ._ _. ... _ - ._ _ _. _ _ _ ._. - - . .

Page 11: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

__ _

. .

196324

2400

2200 -

2000

1800 -

-

to 1600 -

u)Q.~

1400 -

@ 1200 -

Ec.

i000 -

2wvig 800 -

.

600 -

400 -.

200 -

'OO 100 200 300 400

FLOW (LS/SEC)

,

Figure 3. Safety injection Flowrate Versus Pressure

F-11

Page 12: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

,

. .

19632-5.

2500

2000 -

715

h 1500 -

sWt 1000 -

mE

500 -

.

.

i f I i 1 i igO 250 500 750 1000 1250 1500 1750 2000

TIWE (SECONOS}I

J

1

.

Figure 4. 3 Inch Cold Leg Break RCS Pressure Versus Timef

, F-12!

!

'_. - _ . _ _ _ __ - . . . . - . - - -.

Page 13: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

._. ..

,

. .

15s324

.

|

301

28 -

-

.I

: _i ,

*J

s ze -

w4

W5-

E 24 -

2.

W5U

22 -

TOA.----------_---------_---__----_----_O_rC_O_R_E___--___--._

I t I i l i !2.,

0 250 500 750 1000 1250 1500 1750 2000TIME (SECONOS)

.

8*

Figure 5. 3-inch Cold Leg Break Core Mixture Level Versus Time

F-13

- _ _ _ _ _ - - _ _ _ - _ _ _ _ - - _ - - - - _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ - - _ - _ _ - _ - _ _ _ _ - _ - _ _ _ _ _ _ - - _ - _ - _ - _ _ - _ - _ _ - _ _ - _ _ _ .

Page 14: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

.. .

.

15632 7

.

2500

2000 -

2Eb 1500 '

y . -

54

f1000.

-

.N

sOO -

.

f i f ' I ' ' I IOC 200 400 600 900 1000

TIME ISECONOS)

.

Figure 6. 4 inch Cold Leg Break RCS Pressure Versus Time

F-14

Page 15: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

- . . - - . - - .. - .

. .

1432-e.

.

Go

40 -

-

.i_4

} W 30 -

- H: -

W4

=g _ _ _ _ _ _ _ _ _ _T_o_o o_f_C_o_R_E_ _ _ _ _ __ _ _ _ ., .________ .._.. _ _ _ ___ __,

.2

<~ W

5u

10 -

f

i f f f f f f f s,; eo 200 400 500 000 1000

TIME (SECONoS),

h

4

:

.

Figure 7. 4 Inch Cold Leg Break Core Mixture Level Versus Time;

,

}

F-15;

;

.. _ . . . - . - . . - . . ~ , . _ _ _

Page 16: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

- .,

. .

*_

15E324

.

3000j

-| aan

b2500 -

c-

>

k2000 -

w57'

1500 -

Y5W

-

g |000 -

e* \<

500 -e<d

O'' ' ' '

O 100 200 300 400 500TIME (SECONOS)

!

,

e

Figure 8. 4-inch Cold Leg Break Clad Average Temperature, Hot Rod. Versus Time

;,

F-16

, . - _ - _ . . - _- _- . _ , -_ _ _

Page 17: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

T

. .

19632 10

.

.

2500

2000 -

51-,

.E I500--

W$m

fI000 -

mE

500 -

_

f t | foo 100 200 300 400 500

TIuE ISECONDS)

.

Figure 9. 6 Inch Cold Leg Broek RCS Pressure Versus Time

F-17

Page 18: W2stingnouse Electric Corporationbreak case, Figures 5, 7, and 10. Accumulator injection terminates the 3-inch break transient; producing a positive slope en the core mixture level

. . . -

.

. .

.

A

1ss3211.

i

4

30

29

.i

I _ '

.! $ 26 --'

W ,

.a., .

W5-

5 24 -

2

W5u

22 -

,

TOo OF CORE1 I I Ig

O I00 200 300 400 500TIME (SECONDS)

;

!

i

.

Figure 10. 6 inch Cold Leg Breen Core Mixture Level Versus Timei

o

F-18.

,v. , ----, ,.. - -,- -,-. . - , + - ,~ , . - - , - - - - - - .--r,,. --