w11d1_class_27

download w11d1_class_27

of 29

Transcript of w11d1_class_27

  • 8/13/2019 w11d1_class_27

    1/29

    Experiment 09: Angularmomentum

    Experiment 09: Angularmomentum

  • 8/13/2019 w11d1_class_27

    2/29

    Goals Investigate conservation of angular momentum

    and kinetic energy in rotational collisions.

    Measure and calculate moments of inertia.

    Measure and calculate non-conservative work inan inelastic collision.

  • 8/13/2019 w11d1_class_27

    3/29

     Apparatus Connect output of

    phototransistor tochannel A of 750.

    Connect output oftachometergenerator to channelB of 750.

    Connect powersupply.

    Red button ispressed: Power isapplied to motor.

    Red button isreleased: Rotorcoasts: Read outputvoltage using

    DataStudio.

    Use black sticker or tape on white plastic

    rotor for generator calibration.

  • 8/13/2019 w11d1_class_27

    4/29

    4

    Calibrate tachometer-generator  Spin motor up to full speed, let it coast. Measure and plot voltages

    for 0.25 s period. Sample Rate: 5000 Hz, and Sensitivity: Low.

    Average the outputvoltage over the same 10

    periods.

    Time 10 periods to measure ω.

    Then calculate ω for 1 Voutput.

  • 8/13/2019 w11d1_class_27

    5/29

  • 8/13/2019 w11d1_class_27

    6/29

  • 8/13/2019 w11d1_class_27

    7/29

    Measure IR

    results

    Measure and record αup and αdown.

    For your report, calculate IR:

    up

    up down

    ( ) R

    mr g r   I 

    α 

    α α 

    −=

    down f R I τ α =

  • 8/13/2019 w11d1_class_27

    8/29

    Fast collision

    Find ω 1 (before) and ω 2 (after), estimate δt for collision.

    Calculate

    Falls below 0.5V1 sec200 HzLow

     Auto StopDelayed

    StartSample RateSensitivity

    2 212

      ( )W o i I m r r ω = +

  • 8/13/2019 w11d1_class_27

    9/29

    Slow collision

    Find ω 1 and ω 2 , measure δt , fit or measure to find ac.

    Keep a copy of your results for the homework problem.

  • 8/13/2019 w11d1_class_27

    10/29

    Kepler Problem and

    Planetary Motion

    8.01t

    Nov 15, 2004

  • 8/13/2019 w11d1_class_27

    11/29

  • 8/13/2019 w11d1_class_27

    12/29

    Kepler Problem• Find the motion of two

    bodies under theinfluence of a

    gravitational force

    using Newtonianmechanics

    ( )  1 2

    1,2   2   ˆ

    m m

    r G r = −F r

  • 8/13/2019 w11d1_class_27

    13/29

  • 8/13/2019 w11d1_class_27

    14/29

    Solution of One Body Problem

    • Solving the problem means finding the

    distance from the origin andangle as functions of time

    • Equivalently, finding the distance from the

    center as a function of angle

    • Solution:

    ( )r t ( )t θ 

    ( )r  θ 

    0

    1 cos

    r r 

    ε θ =

  • 8/13/2019 w11d1_class_27

    15/29

    Constants of the Motion• Velocity

    • Angular Momentum

    • Energy

    ˆˆdr d 

    dt dt  

    θ = +v r   θ

    2   1 21

    2

    Gm m E v

    r µ = −

    2

    tangential 

    d  L rv r 

    dt 

    θ µ µ = =

    2 2

    2   dr d v r 

    dt dt  

    θ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

    ⎝ ⎠ ⎝ ⎠

    2 2

    1 21

    2

    Gm mdr d 

     E r dt dt r  

    θ 

    µ 

    ⎡ ⎤⎛ ⎞ ⎛ ⎞= + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

    2 2

    1 2

    2

    1

    2 2

    Gm mdr L E 

    dt r r  

    µ 

    µ 

    ⎛ ⎞= + −⎜ ⎟⎝ ⎠

  • 8/13/2019 w11d1_class_27

    16/29

    Reduction to One Dimensional

    Motion

    • Reduce the one body problem in two

    dimensions to a one body problem movingonly in the r-direction but under the action of a

    repulsive force and a gravitational force

  • 8/13/2019 w11d1_class_27

    17/29

    PRS QuestionSuppose the potential energy of two particles (reduced mass µ) is given by

    where r is the relative distance between the particles. The force

    between the particles is

    1. attractive and has magnitude

    2. repulsive and has magnitude

    3. attractive and has magnitude

    4. repulsive and has magnitude

    2

    2

    1

    ( ) 2

     L

    U r  r =

    2

    3

     L F 

    r µ 

    =

    2

    3 F 

    r =

    2

    2 F 

    r =

    2

    2 F  r =

  • 8/13/2019 w11d1_class_27

    18/29

    One Dimensional Description

    • Energy

    • Kinetic Energy

    • Effective Potential Energy

    • Repulsive Force

    • Gravitational force

    2 2

    1 2

    2

    1 1

    2 2  effective

    Gm mdr L E K U 

    dt r r  µ 

    µ 

    ⎛ ⎞= + − = +⎜ ⎟

    ⎝ ⎠ 21

    2

    dr  K 

    dt µ 

    ⎛ ⎞=   ⎜ ⎟⎝ ⎠

    2

    1 222effective

    Gm m LU  r r µ = −

    2 2

    2 32centrifugal 

    d L L F 

    dr r r  µ 

    ⎛ ⎞= − =⎜ ⎟

    ⎝ ⎠

    1 2

    2

     gravitational 

     gravitational 

    dU    Gm m F 

    dr r = − = −

  • 8/13/2019 w11d1_class_27

    19/29

    Energy Diagram2

    1 2

    22effectiveGm m L

    U  r r µ = −

    Case 4: Circular Orbit E = Eo

    Case 3: Elliptic Orbit Eo < E < 0

    Case 2: Parabolic Orbit E = 0

    Case 1: Hyberbolic Orbit E > 0

  • 8/13/2019 w11d1_class_27

    20/29

    PRS QuestionThe radius and sign of the energy for the lowest energy orbit (circular

    orbit) is given by

    1. energy is positive,

    2. energy is positive,

    3. energy is negative,

    4. Energy is negative,

    2

    0

    1 2

     Lr 

    Gm mµ =

    2

    0

    1 22 Lr 

    Gm mµ =

    2

    0

    1 22

     Lr 

    Gm mµ =

    2

    0

    1 2

     Lr 

    Gm mµ 

    =

  • 8/13/2019 w11d1_class_27

    21/29

    PRS Answer: Circular Orbit

    • The lowest energy state corresponds to a

    circular orbit where the radius can befound by finding the minimum of effective

    potential energy

    • Energy of circular orbit

    ( )   ( )0

    2

    1 20   22

    effectiver r 

    Gm m E U 

     L

    µ 

    == = −

    2

    1 2

    3 20

      effectivedU    Gm m L

    dr r r  µ = = − +

    2

    0

    1 2

     L

    r  Gm mµ =

  • 8/13/2019 w11d1_class_27

    22/29

  • 8/13/2019 w11d1_class_27

    23/29

    PRS QuestionIf the earth slows down due to tidal forces

    will the radius of the moon’s orbit

    1. increase2. decrease

    3. cannot tell from the information given

  • 8/13/2019 w11d1_class_27

    24/29

    Orbit Equation• Solution:

    where the two constants are

    • radius of circular orbit

    • eccentricity

    0

    1 cos

    r r 

    ε θ =

    2

    0

    1 2

     Lr Gm mµ 

    =

    ( )

    122

    2

    1 2

    21

      EL

    Gm mε 

    µ 

    ⎛ ⎞= +⎜ ⎟

    ⎜ ⎟⎝ ⎠

  • 8/13/2019 w11d1_class_27

    25/29

    Energy and Angular Momentum

    • Energy:

    where E0 is the energy of the ‘ground state’

    • Angular momentum

    where r 0 is the radius of the ‘ground state’

    ( )1

    2 20   1 E E    ε = −

    ( )

      ( )0

    2

    1 2

    0  22

    effectiver r 

    Gm m E U 

     L

    µ 

    =

    = = −

    ( )1/ 2

    0 1 2

     L r Gm mµ =

  • 8/13/2019 w11d1_class_27

    26/29

    Properties of Ellipse:

    ( )   001

    maximumr r r   θ 

    ε = = =

    ( )   01

    minimum

    r r r   θ π 

    ε = = =

    +

    ( )   0 0 0   1 221 12 2 1 1 1 2maximum minimumr r r    Gm ma r r 

     E ε ε ε ⎛ ⎞= + = + = = −⎜ ⎟− + −⎝ ⎠

    Semi-Major axis

    location of the center of the ellipse

    Semi-Minor axis

     Area

    00   2

    1maximum

    r  x r a a

    ε ε 

    ε 

    = − = =

    ( )2 2 1/ 2 1/ 20 0b a x a r  = − =

    3/ 2 1/ 2

    0ab a r  π π = =

  • 8/13/2019 w11d1_class_27

    27/29

    Kepler’s Laws: Equal Area• Area swept out in time ∆t

    • Equal Area Law:

    ( )12 2

    r    r r r 

    t t t 

    θ θ    ∆∆ ∆ ∆⎛ ⎞= +⎜ ⎟∆ ∆ ∆⎝ ⎠

    21

    2

    dA d r 

    dt dt  

    θ =2

    d L

    dt r 

    θ 

    µ =

    2

    dA Lconstant 

    dt    µ = =

  • 8/13/2019 w11d1_class_27

    28/29

    Kepler’s Laws: Period• Area

    • Integral of Equal Area Law

    • Period

    • Period squared proportional to cube of themajor axis but depends on both masses

    3/ 2 1/ 2

    0 A ab a r π π = =

    0

    2  T 

    orbit 

    dA dt   L

    µ =∫ ∫

    3/ 2 1/ 2

    022   a r T A L L

    µπ µ = =

    ( )

    2 2 3 2 32 2 3

    02

    1 2 1 2

    4 4 4a aT a r 

    Gm m G m m

    µ π µ π  π = = =

    +

  • 8/13/2019 w11d1_class_27

    29/29

    Two Body Problem Revisited• Elliptic Case: Each

    mass orbits aroundcenter of mass with

    ( )2 1 21 1 2 21 1 1

    1 2 1 2 2

    cm

    mm m

    m m m m m

    µ −+′ = − = − = =+ +

    r rr rr r R r r

    2

    2mµ ′ = −r r