w02 Tapered Beam

36
DYT101, Workshop 2, January 2005 Copyright 2005 MSC.Software Corporation WS 2-1 WORKSHOP 2 TAPERED BEAM IMPACT

Transcript of w02 Tapered Beam

Page 1: w02 Tapered Beam

DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation WS 2-1

WORKSHOP 2

TAPERED BEAM IMPACT

Page 2: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-2DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Page 3: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-3DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

In this example a tapered beam will impact a rigid wall. This workshop example is designed to make you familiar with the following:

1 - How to define a Surface Contact

2 - How to define a Rigid Plate and constrain it

3 - How to define a velocity for the projectile (Tap ered beam in this case)

4 - How to Define Material Properties for the Steel Beam using DMAT Material model and a Rigid Material for the Rigid Plate.

5 - How to constrain a Rigid Body.

Page 4: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-4DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Page 5: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-5DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

a

Step 1. Files: Create a New Database

Open new database and name it tapered_beam .

a. Open File Menu and click New.

b. Type tapered_beam under File name and click OK.

c. Select MSC.Dytran for Analysis Code and click OK

c

b

Page 6: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-6DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 2. Geometry: Create / Solid / XYZ

Create base of beam.a. Geometry: Create /

Surface / XYZb. Enter <2 2 0> for

Vector Coordination List.

c. Enter [-1 -1 0] for Origin Coordinates List

d. Click Apply .

d

c

b

a

Page 7: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-7DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

a. Geometry: Transform / Surface / MScale

b. Enter <0 0 –40> for Translation Vector.

c. Enter 2.0 0.0 0.0 for Column 1 0.0 2.0 0.0 for Column 2 0.0 0.0 2.0 for Column 3 under Rotation Matrix

d. Select Surface 1 for Surface List.

e. Click Apply .

Step 3. Geometry: Transform / Surface / Mscale

a

b

c

d

e

Page 8: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-8DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

a. Geometry: Transform / Surface / MScale

b. Enter <0 0 0.25> for Translation Vector

c. Enter 3.0 0.0 0.0 for Column 1, 0.0 3.0 0.0, for Column 2, 0.0 0.0 3.0 for Column 3 under Rotation Matrix.

d. Select Surface 1 .e. Click Apply .

Step 4. Geometry: Transform / Surface / Mscale

a

d

c

b

e

Page 9: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-9DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

a. Geometry: Create / Solid / Surface.

b. Option: 2 Surfacec. Select Surface 1 for

Starting Surface List.d. Select Surface 2 for

Ending Surface List.e. Click Apply .

Step 5. Geometry: Create / Solid / Surface

a

d

c

b

e

Page 10: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-10DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

a. Elements: Create / Mesh Seed / Uniform.

b. Enter 2 for Numberc. Select Surface 2.1,

2.2, 2.3, 2.4 for Curve List

d. Click Apply .

Step 6. Elements: Create / Mesh Seed / Uniform

a

d

c

b

Page 11: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-11DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 7. Elements: Create / Mesh Seed / Uniform

a. Elements: Create / Mesh Seed / Uniform.

b. Enter 40 for Numberc. Select an edge along

the length of the beam.d. Click Apply .

c

a

c

b

d

Page 12: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-12DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 8. Elements: Create / Mesh Seed / Uniform

a. Elements: Create / Mesh Seed / Uniform.

b. Enter 6 for Numberc. Select Surface 3.1,

3.2, 3.3, 3.4 for Curve List.

d. Click Apply .

a

b

c

d

Page 13: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-13DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Mesh the beam by using Hex8 elements.

a. Elements: Create / Mesh / Solid.

b. Select Hex for Elem Shape, IsoMesh for Mesher, Hex8 for Topology.

c. Select Solid 1 for Solid List.

d. Click Apply .

Step 9. Elements: Create / Mesh / Solid

d

c

b

a

Page 14: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-14DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Create the Mesh for the Rigid Plate by using Quad4 Elements

a. Elements: Create / Mesh / Surface

b. Select Quad for Elem Shape, IsoMesh for Mesher, Quad4 for Topology.

c. Select Surface 3 for Surface List.

d. Click Apply .

Step 10. Elements: Create / Mesh / Surface

a

d

c

b

Page 15: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-15DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

a

Create groups for beam, rigid_plate and vel.

a. Group: Createb. Enter beam for New

Group Name.c. Enter Point 1:8 Surface

1 2 Solid 1 Node 1:369 Elm 1:160 for Entity Selection

d. Click Apply .e. Enter rigid_plate for

New Group Name.f. Enter Point 9:12 Surface

3 Node 370:418 Elm 161:196 for Entity Selection

g. Click Apply .h. Enter vel for New Group

Namei. Enter Node 6 366 for

Entity Selectionj. Click Apply then Cancel

Step 11. Group: Create

d

c

b

g

f

e

i

h

j

Page 16: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-16DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Define Material Properties for the beam using DMAT Constitutive Material Model

a. Materials: Create / Isotropic/ Manual Input.

b. Enter steel for Material Name.c. Click Input Properties .d. Constitutive Model: ElasPlas

(DMAT) Element Type: Lagrangian SolidYield Model: Von Mises Failure Model: None, Spallation Model: Spallation Pressure

e. Enter 0.000783 for Density1.64E9 for Coeff. A1 8.18E8 for Shear Modulus1.4E7 for Yield Strength –3.8E7 for Spallation Pressure.

f. Click OKg. Click Apply

Step 12. Materials: Create / Isotropic / Manual Inp ut

f

e

d

c

b

a

g

Page 17: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-17DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Define Material Properties for the rigid plate using MATRIG definition

a. Materials: Create / Isotropic / Manual Input

b. Enter rigid for Material Namec. Click Input Properties .d. Select Constitutive Model:

Rigid(MATRIG)Valid For: ShellRigid Body Properties: Geometry

e. Enter 50 for Massf. Click OK and then Apply .

Step 13. Materials: Create / Isotropic / Manual Inp ut

c

b

a

f

d

e

Page 18: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-18DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Create a Property called beamfor the tapered beam

a. Properties: Create / 3D / Lagrangian Solid

b. Enter steel_beam for Property Set Name

c. Click Input Properties .d. Select steel for Material

Namee. Click OKf. Select Solid 1 for Select

Membersg. Click Add .h. Click Apply .

Step 14. Properties: Create / 3D / Lagrangian Solid

e

d

c

b

a

h

g

f

Page 19: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-19DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Create a Property called plate for the rigid plate

a. Properties: Create / 2D / Shell

b. Enter plate for Property Set Name

c. Click Input Properties .

d. Select rigid for Material Name

e. Enter 0.001 for Shell Thickness

f. Click OK.g. Select Surface 3 for

Select Membersh. Click Add .i. Click Apply .

Step 15. Properties: Create / 2D / Shell

f

e

d

c

b

a

g

i

h

Page 20: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-20DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

a

Post group beam and define an impact velocity of 10000 in/sec in positive Z direction for the beam

a. Group: Post

b. Select beamc. Click Apply and then Cancel .d. Loads/BCs: Create / Initial Velocity

/ Nodal

e. Enter initial_velocity for New Set Name.

f. Click Input Data .

g. Enter <0 0 10000> for Trans Veloc

h. Click OK.

i. Click Select Application Region .

j. Click FEM.

k. Select all beam nodes for Select Nodes

l. Click Add .

m. Click OK.

n. Click Apply .

Step 16. Loads/BCs: Create / Initial Velocity / Nod al

g

c

bj

m

l

k

i

f

e

d

n

Page 21: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-21DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Post group rigid_plate and define a constraint on the rigid plate

a. Group: Post

b. Select rigid_plate .

c. Click Apply then Cancel .d. Loads/BCs: Create / Rigid

Body Object / Nodal

e. Enter rigid_plate for New Set Name

f. Click Input Datag. Select rigid .

h. Activate all Rigid Body Constraints .

i. Click OK.

j. Click Select Application Region .

k. Select FEM.

l. Select a node on the plate.

m. Click OK.

n. Click Apply .

Step 17. Loads/BCs: Create / Rigid Body Object / No dal

c

b

a

i

h

g

m

l

k

e

d

f

jn

Page 22: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-22DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Define a Master/Slave Contactbetween Plate (Master) and the beam (Slave)

a. Loads/BCs: Create / Contact / Element Uniform

b. Choose Master-Slave Surface for Option

c. Enter contact for New Set Name

d. Click Select Application Region .

e. Choose Groups for Form Types

f. Mater / 2D / Bothg. Select rigid_plate from

Available Gradesh. Click Add .i. Slave / 3Dj. Select beam from Available

Grades.k. Click Add .l. Click OK.m. Click Apply .

Step 18. Loads/BCs: Create / Contact / Element Unif orm

l

k

j

i

g

f

e

h

d

c

b

a

m

Page 23: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-23DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 19. Analysis: Analyze / Input Deck / Translate

Now we are ready for Output Request in Case Control section of the input deck. You may start with defining the Execution Control Parameters

a. Analysis: Analyze / Input Deck / Translate

b. Click Execution Controls .c. Click Execution Control

Parameters .d. Enter 1200 for End Step

1e-7 for Time Step Size at Start1e-9 for Minimum Time Step.

e. Click OK.f. Click OK.

f

c

a

b

e

d

Page 24: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-24DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 20. Analysis: Analyze / Input Deck / Translate

Request Effective Stress, Pressure and Effective Plastic Strain for beam

a. Analysis: Analyze / Input Deck / Translate

b. Click Output Requests .c. Enter beam for Result

Name.d. File Type: Archivee. Result Type: Element

Outputf. Select Steps for Outputg. Enter 50 for 0 THRU END

BY (Step) .h. Click Add .i. Select beam for Select

Groups for Output.j. Select Lagrangian for

Entity Typek. Select EFFSTS,

PRESSURE, EFFPLS from Results Types.

l. Click Apply .

a

b

g

f

e

d

c

h

k

j

i

l

Page 25: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-25DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 21. Analysis: Analyze / Input Deck / Translate

Create an Archive file for the Rigid Platea. Enter plate for Result

Name.b. File Type: Archivec. Result Type: Element

Outputd. Select Steps for Outpute. Enter 50 for 0 THRU

END BY (Step) .f. Click Add .g. Select rigid_plate for

Select Group for Output.h. Select Dummy for Entity

Type.i. Select user-specified for

Results Typesj. Click Apply .

f

e

d

c

b

a

i

h

g

j

Page 26: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-26DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 22. Analysis: Analyze / Input Deck / Translate

Request a Velocity and Force Time History Plots of the nodes located at the tip and end of the beam.

a. Enter vel for Result Nameb. File Type: Time Historyc. Result Type: Grid Point

Output.d. Select Steps for Outpute. Enter 2 for 0 THRU END

BY (Step) .f. Click Add .g. Select vel from Select

Groups for Output.h. Select ZPOS, ZVEL,

ZFORCE for Result Types.

i. Click Apply .j. Click OK

i

h

ga

j

f

e

b

c

d

Page 27: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-27DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 23. Analysis: Analyze / Input Deck / Translate

Now you are ready to write the input deck

a. Analysis: Analyze / Input Deck / Translate

b. Click Apply .

b

a

Page 28: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-28DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 24. Simulation on UNIX-platforms

Simulation on UNIX-platforms

The Dytran input deck will be named tapered_beam.dat which will be in your directory.

To run the job on Unix Platform, type in the following command in your working directory:

dytran jid=tapered_beam

Page 29: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-29DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 25. MSC.Dytran Analysis

Run MSC.Dytran Analysisa. Select tapered_beam.dat

for Dytran Analysisb. Click the play icon

a

b

Page 30: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-30DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 26. Analysis: Read Archive File / Results / Tr anslate

Read in the results by translating the ARC-file where the analysis results are storeda. Analysis: Read Archive File / Results

/ Translate.b. Click Select Archive File .c. Select and Add both

TAPERED_BEAM_BEAM_0.ARC and TAPERED_BEAM_PLATE_0.ARC

d. Click Add.e. Click Apply.f. Click Apply .

e

d

c

b

a

f

Page 31: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-31DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 27. Results: Create / Quick Plot

Let’s have a Quick Plot of the Deformed Shape of the last cycle.

a. Results: Create / Quick Plot

b. Select Cycle 1200c. Select EFFSTS for

Select Fringe Results

d. Select Displacement for Select Deformation Result.

e. Click on Deform Attributes .

f. Select True Scalefor Scale Interpretation.

g. Deactivate Show Undeformed .

h. Click Apply .

e

d

c

b

a

g

f

h

Page 32: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-32DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 28. Results: Create / Deformation

a. Results: Create / Deformationb. Select all from Select Result

Case(s).c. Select Displacement from

Select Deformation Resultd. Click Animate .e. Click Display Attributes .f. Select True Scale for Scale

Interpretation.g. Deactivate Show

Undeformed .h. Click on Animation Options .i. Select 3D for Animation

Graphicsj. Enter 25 for Number of

Frames.k. Click Apply .

h

g

f

e

d

c

b

a

i

k

j

Page 33: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-33DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 29. Results: Create / Fringe

a. Results: Create / Fringeb. Select EFFSTS from

Select Fringe Resultc. Enable Animate .d. Click Apply .

d

c

b

a

Page 34: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-34DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 30. Analysis: Read History File / Results / Tr anslate

a. Analysis: Read History File / Results / Translate

b. Click Select History File .c. Select

TAMERED_BEAM2_VEL_0.THS .d. Click Add .e. Click Apply .f. Click Apply .

b

a

f

d

c

e

Page 35: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-35DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 31. Analysis: Time History

a. Analysis: Time Historyb. Click Apply .c. Uncheck Normalize .d. Click Windows .e. Enter nodes for Current

Window.f. Click Create .g. Click Cancel

d c

f

e

g

b

a

Page 36: w02 Tapered Beam

Mar120, Workshop 10, March 2001 WS2-36DYT101, Workshop 2, January 2005Copyright 2005 MSC.Software Corporation

Step 32. Analysis: Time History

a. Select th_ZVEL_gp_6.curve2 and th_ZVEL_gp_366.curve5 from the Existing Curves box.

b. Click Post .

b

a