W01

1
UNIVERSITY OF WISCONSIN - ENGINE RESEARCH CENTER Reactivity Controlled Compression Ignition Combustion in a Heavy-Duty Engine R. M. Hanson, R. D. Reitz Funding Sponsor : US Department of Energy RCCI Motivation Injection Setup 9 bar SOI1 SWEEP 3401E SCOTE Geometry 9.1:1 Effective Compression Ratio Stock Piston Bowl Geometry Articulated Piston Type 0.7 Swirl Ratio (stock) 335.00 IVO (deg ATDC) 85.00 IVC (deg BTDC) (modified cam) 4 Number of Valves 1.57 Squish Height (mm) 261.60 Connecting Rod Length (mm) 165.10 Stroke (mm) 137.20 Bore (mm) 16.1:1 Geometric Compression Ratio 2.44 Displacement (l) 9 Bar Gas % Sweep High Load Ethanol/Diesel Conclusions Engine experiments showed RCCI combustion to be controlled by SOI timing and/or by the low reactivity-to-high reactivity fuel split. Thermal efficiencies over 50% were shown to be possible from 9 bar IMEP to 16 bar IMEP Over the same range, it was possible to achieve NOx and PM emissions below EPA 2010 heavy-duty limits. High reactivity fuel Low reactivity fuel 750 [cc/min] Steady Flowrate 3 Number of Holes 15° Included Spray Angle 0.5 Injection Pressure [MPa] Port Type BOSCH Manufacturer Low Pressure Injector High Pressure Injector 1500 Injection Pressure [bar] DSLA95PV3387517 Nozzle Part Number 1000 Steady Flowrate [cc/30 sec] at 100 bar 250 Hole Diameter [μm] 6 Number of Holes 145° Included Spray Angle Gen 2 Common Rail Body Type BOSCH MFG -30 -20 -10 0 10 20 30 40 50 0 2 4 6 8 10 12 14 16 Experiment Simulation Crank [°ATDC] Pressure [MPa] 0 200 400 600 800 1000 1200 1400 1600 62 58 AHRR [J/°] SOI1 = Sweep SOI2 = -37 ° ATDC 55 0.0 0.1 0.2 0.3 0.000 0.004 0.008 0.012 0 4 8 12 0 4 8 12 160 170 180 -62 -61 -60 -59 -58 -57 -56 -55 5 10 15 NOx [g/kW-hr] soot [g/kW-hr] 2010 HD Limit HC [g/kW-hr] CO [g/kW-hr] Net ISFC [g/kW-hr] Experiment Simulation PRR [bar/deg] SOI1 [°ATDC] •Low NOx and PM emissions •High efficiency (50%) •NOx and PRR increase with retarded SOI1 timing •Higher combustion temperatures with retarded SOI1 •Higher local equivalence ratio and reactivity advance combustion and increase NOx emissions •Data from SAE 2010- 01-0864 and Thiesel 2010 -20 -10 0 10 20 0 20 40 60 80 100 120 140 160 Increase Gas % Crank [°ATDC] Pressure [Bar] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 82% 86% AHRR [kJ/°] SOI1 = -58 ° ATDC SOI2 = -37 ° ATDC IVC = -143 89% 0.0 0.1 0.2 0.3 0.000 0.005 0.010 0.015 156 158 160 162 164 0 1 2 3 4 81 82 83 84 85 86 87 88 89 90 0 2 4 6 8 6 9 12 15 NOx [g/kW-hr] PM [g/kW-hr] US EPA 2010 H-D limit US EPA 2010 H-D limit Net ISFC [g/kW-hr] HC [g/kW-hr] CO [g/kW-hr] Gasoline Percentage [% of total fuel ] PRR [bar/deg] • Low NOx and PM emissions - Below EPA 2010 • High thermal efficiency of 53% • PRR drop with additional gasoline due to delayed combustion phasing -25 -20 -15 -10 -5 0 5 10 15 20 25 30 0 20 40 60 80 100 120 140 E-85/Diesel 16.5 IMEPg 43 % EGR Mid and High Load Gasoline/Diesel 9.6 IMEPg 43% EGR Pressure (bar) Crank Angle (° ° ° CA ATDC) NTC Behavior E-85/Diesel 9.6 IMEPg 0% EGR 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 AHRR (kJ/ ° ° ° ° CA) -20 -15 -10 -5 0 0.00 0.01 0.02 0.03 0.04 0.05 AHRR ( kJ/ ° ° ° ° CA ) Crank Angle ( ° °° ° CA ATDC ) 4 6 8 10 12 14 16 18 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 140 150 160 170 180 -2 0 2 4 6 8 10 12 6 8 10 12 14 16 18 20 22 η η η ηg indicated (-) IMEPg (bar) ISFCg gasoline eq.(g/Kw-hr) gasoline/1.75 % DTBP gasoline E-85/diesel gasoline/diesel CA50 ( ° ° ° ° CA ATDC) HTHR Combustion duration 5-90 ( ° ° ° ° CA) High load operation (16.5 bar IMEPg) with Ethanol/Diesel blends was possible EGR not required for 9.6 or 11.5 bar IMEPg with E-85 Longer combustion durations for ethanol blends CA50 linearly increases with load, keeps PRR and peak cylinder pressure within limits Greater than 50% thermal efficiency at nearly all operating conditions Change fuel reactivity by blending fuels in-cylinder. • Increase combustion duration via fuel reactivity gradient. Extend operating range of PCCI combustion. -25 -20 -15 -10 -5 0 5 10 15 20 25 0 20 40 60 80 100 120 140 Pressure (bar) Crank Angle (° ° ° CA ATDC) NTC behavior 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 AHRR (kJ/ ° ° ° ° CA) -25 -20 -15 -10 -5 0 0.00 0.01 0.02 0.03 0.04 0.05 AHRR ( kJ/ ° ° ° ° CA ) Crank Angle ( ° °° ° CA ATDC ) Speed Load Premixed

description

w01

Transcript of W01

Page 1: W01

UNIVERSITY OF WISCONSIN - ENGINE RESEARCH CENTER

Reactivity Controlled Compression Ignition Combustion in a Heavy-Duty EngineR. M. Hanson, R. D. Reitz Funding Sponsor : US Department of Energy

RCCI MotivationInjection Setup

9 bar SOI1 SWEEP

3401E SCOTE Geometry

9.1:1Effective Compression Ratio

StockPiston Bowl Geometry

Articulated Piston Type

0.7Swirl Ratio (stock)

335.00 IVO (deg ATDC)

85.00IVC (deg BTDC) (modified cam)

4Number of Valves

1.57Squish Height (mm)

261.60Connecting Rod Length (mm)

165.10Stroke (mm)

137.20Bore (mm)

16.1:1Geometric Compression Ratio

2.44Displacement (l)

9 Bar Gas % Sweep High Load Ethanol/Diesel Conclusions

Engine experiments showed RCCI combustion to be controlled by SOI timing and/or by the low reactivity-to-high reactivity fuel split.

Thermal efficiencies over 50% were shown to be possible from 9 bar IMEP to 16 bar IMEP

Over the same range, it was possible to achieve NOx and PM emissions below EPA 2010 heavy-duty limits.

High reactivity fuel

Low reactivity fuel

750 [cc/min]Steady Flowrate

3Number of Holes

15°Included Spray Angle

0.5Injection Pressure [MPa]

PortType

BOSCHManufacturer

Low Pressure InjectorHigh Pressure Injector

1500Injection Pressure [bar]

DSLA95PV3387517Nozzle Part Number

1000 Steady Flowrate [cc/30 sec] at 100 bar

250Hole Diameter [µm]

6Number of Holes

145°Included Spray Angle

Gen 2 Common RailBody Type

BOSCH MFG

-30 -20 -10 0 10 20 30 40 500

2

4

6

8

10

12

14

16

Experiment Simulation

Crank [°ATDC]

Pre

ssur

e [M

Pa]

0

200

400

600

800

1000

1200

1400

1600

6258

AH

RR

[J/°

]

SOI1 = SweepSOI2 = -37°ATDC

55

0.0

0.1

0.2

0.3

0.000

0.004

0.008

0.012

0

4

8

12

0

4

8

12

160

170

180

-62 -61 -60 -59 -58 -57 -56 -555

10

15

NO

x[g

/kW

-hr]

soot

[g/k

W-h

r]

2010 HD Limit

HC

[g/k

W-h

r]

CO

[g/k

W-h

r]

Net

ISF

C[g

/kW

-hr]

Experiment Simulation

PR

R[b

ar/d

eg]

SOI1 [°ATDC]

•Low NOx and PM emissions

•High efficiency (50%)

•NOx and PRR increase with retarded SOI1 timing

•Higher combustion temperatures with retarded SOI1

•Higher local equivalence ratio and reactivity advance combustion and increase NOx emissions

•Data from SAE 2010-01-0864 and Thiesel2010

-20 -10 0 10 200

20

40

60

80

100

120

140

160

Increase Gas %

Crank [°ATDC]

Pre

ssur

e [B

ar]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

82%

86%

AH

RR

[kJ/

°]

SOI1 = -58°ATDCSOI2 = -37°ATDCIVC = -143

89%

0.00.10.20.3

0.0000.0050.0100.015

156158160162164

01234

81 82 83 84 85 86 87 88 89 9002468

69

1215

NO

x[g

/kW

-hr]

PM

[g/k

W-h

r] US EPA 2010 H-D limit

US EPA 2010 H-D limit

Net

ISF

C[g

/kW

-hr]

HC

[g/k

W-h

r]

CO

[g/k

W-h

r]

Gasoline Percentage [% of total fuel ]

PR

R[b

ar/d

eg]

• Low NOx and PM emissions

- Below EPA 2010

• High thermal efficiency of 53%

• PRR drop with additional gasoline due to delayed combustion phasing

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

0

20

40

60

80

100

120

140

E-85/Diesel16.5 IMEPg43% EGR

Mid and High Load

Gasoline/Diesel9.6 IMEPg43% EGR

Pre

ssu

re (

bar

)

Crank Angle (°°°° CA ATDC)

NTC Behavior

E-85/Diesel9.6 IMEPg0% EGR 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

AH

RR

(kJ

/ °° °° C

A)-20 -15 -10 -5 0

0.00

0.01

0.02

0.03

0.04

0.05

AH

RR

(kJ

/ °° °° C

A)

Crank Angle (°°°° CA ATDC)

4 6 8 10 12 14 16 18

0.460.480.500.520.540.560.580.60 140

150

160

170

180-202468

1012 6

810121416182022

ηη ηηg in

dic

ated

(-)

IMEPg (bar)

ISF

Cg

gas

olin

e eq

.(g

/Kw

-hr)

gasoline/1.75 % DTBP gasoline E-85/diesel gasoline/diesel

CA

50 (

°° °° C

A A

TD

C)

HT

HR

Co

mb

ust

ion

du

rati

on

5-9

0 ( °° °°

CA

)

• High load operation

(16.5 bar IMEPg) with Ethanol/Diesel blends

was possible

• EGR not required for 9.6 or 11.5 bar IMEPg with

E-85

• Longer combustion

durations for ethanol blends

• CA50 linearly increases

with load, keeps PRR and peak cylinder

pressure within limits

• Greater than 50% thermal efficiency at

nearly all operating

conditions

• Change fuel reactivity by blending fuels in-cylinder.

• Increase combustion duration via fuel reactivity gradient.

• Extend operating range of PCCI combustion.

-25 -20 -15 -10 -5 0 5 10 15 20 25

0

20

40

60

80

100

120

140

Pre

ssu

re (

bar

)

Crank Angle (°°°° CA ATDC)

NTC behavior

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

AH

RR

(kJ

/ °° °° C

A)-25 -20 -15 -10 -5 0

0.000.010.020.030.040.05

AH

RR

(kJ

/ °° °° C

A)

Crank Angle (°°°° CA ATDC)

Speed

Load

Premixed