Volume 8 Number 1 COMPUTING PRESSURE REDUCTION …

4
Volume 8 Number 1 COMPUTING PRESSURE REDUCTION CONSTANTS USING INDICATOR VARIABLES Bernard Augustine (1) Suitland House 4500 Silver Hill Road Suitland, MD 20746 ABSTRACT (b) Cody, Wyoming (COD) (c) Wendover, Utah (ENV) 2. METHODOLOGY 1. INTRODUCTION There are two reasons for writing this paper: (a) To discuss the indicator variable technique for developing models; y TABLE 1 x 1 1 if the station is BPI a otherwise 1 if the station is COD o otherwise r 3) yl is the dependent var iable (reduc- tion constant) The indicator variables Xl and x2 are defined as: 2) Xl and x2 are the indicator var i- abIes 1) T is the independent var iable (12 hour mean temperature) To illustrate the indicator variable pro- cess, consider the data in Table I where: To use this technique to develop a single regression model that can com- pute a reduction constant for more than one weather station. (b) Since computers are an integral part oE a weather station, more standard procedures can be automa- ted. A procedure is now available Eor calculating sea-level pressure Eor manned and unmanned !Wea ther stations. Each weather station has a unique equa- tion that is used to compute reduction cons tan ts. Sea-level pressure is calculated by multiplying station pressure by the reduction constant (2). This paper discusses an alternative method Eor computing reduction constants. The independent var iables used in regres- sion models are quantitative; i.e., they are actual numerical values. However, many var iables cannot be defined numer ic- ally (e.g., marital status, sex, race, color, shape, religion, etc.). These are qualitative variables and serve to identi- fy class membership. It is necessary to examine a method to quantify the levels of a qualitative variable for regression ana- lysis. The qualitative variables are com- monly referred to as indicator variables and take the values 0 and 1. If a quali- tative variable has n levels, it is repre- sented by n-l indicator variables. For example, if three weather stations are grouped geographically, there will be two indicator variables each being assigned the value a or 1. If this rule is viola- ted, a computational difficulty - multi- collinearity - occurs. It is beyond the scope of this paper to discuss multicol- linearity, but its importance cannot be over emphasized. Serious errors will pro- duce unwanted results. 3. EXAMPLE The follOWing three weather stations are grouped geographically: (a) Big piney, wyoming (BPI) - 50 -40 -)0 -20 -10 o 10 20 )0 40 50 60 70 80 90 -50 -40 -)0 -20 -10 o 10 20 )0 40 50 60 70 80 90 100 -)0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o 0.)294 0.)228 0.)168 O. )11) 0.)064 0.)020 0.2977 0.29)6 0.2895 0.2848 0.2810 0.2779 0.2751 0.2727 0.2707 0.2)65 0.2)24 0.2284 0.2250 0.2217 0.2186 0.2157 0.2128 0.2100 0.2070 0.2041 0.2016 0.1995 0.1977 0.1959 0.1950 0.1860 7

Transcript of Volume 8 Number 1 COMPUTING PRESSURE REDUCTION …

Volume 8 Number 1

COMPUTING PRESSURE REDUCTION CONSTANTSUSING INDICATOR VARIABLES

Bernard Augustine (1)Suitland House

4500 Silver Hill RoadSuitland, MD 20746

ABSTRACT (b) Cody, Wyoming (COD)

(c) Wendover, Utah (ENV)

2. METHODOLOGY

1. INTRODUCTION

There are two reasons for writing thispaper:

(a) To discuss the indicator variabletechnique for developing models;

y

TABLE 1

x 1

1 if the station is BPIa otherwise

1 if the station is CODo otherwise

r

3) yl is the dependent var iable (reduc­tion constant)

The indicator variables Xl and x2 aredefined as:

2) Xl and x2 are the indicator var i­abIes

1) T is the independent var iable (12 hourmean temperature)

To illustrate the indicator variable pro­cess, consider the data in Table I where:

To use this technique to develop asingle regression model that can com­pute a reduction constant for morethan one weather station.

(b)

Since computers are an integral part oE a weatherstation, more standard procedures can be automa­ted. A procedure is now available Eor calculatingsea-level pressure Eor manned and unmanned !Wea therstations. Each weather station has a unique equa­tion that is used to compute reduction cons tan ts.Sea-level pressure is calculated by multiplyingstation pressure by the reduction constant (2).This paper discusses an alternative method Eorcomputing reduction constants.

The independent var iables used in regres­sion models are quantitative; i.e., theyare actual numerical values. However,many var iables cannot be defined numer ic­ally (e.g., marital status, sex, race,color, shape, religion, etc.). These arequalitative variables and serve to identi­fy class membership. It is necessary toexamine a method to quantify the levels ofa qualitative variable for regression ana­lysis. The qualitative variables are com­monly referred to as indicator variablesand take the values 0 and 1. I f a quali­tative variable has n levels, it is repre­sented by n-l indicator variables. Forexample, if three weather stations aregrouped geographically, there will be twoindicator variables each being assignedthe value a or 1. If this rule is viola­ted, a computational difficulty - multi­collinearity - occurs. It is beyond thescope of this paper to discuss multicol­linearity, but its importance cannot beover emphasized. Serious errors will pro­duce unwanted results.

3. EXAMPLE

The follOWing three weather stations aregrouped geographically:

(a) Big piney, wyoming (BPI)

- 50-40-)0-20-10

o1020)0405060708090

-50-40-)0-20-10

o1020)0405060708090

100-)0

111111111111111ooooooooooooooooo

ooooooooooooooo1111111111111111o

0.)2940.)2280.)168O. )11)0.)0640.)0200.29770.29)60.28950.28480.28100.27790.27510.27270.27070.2)650.2)240.22840.22500.22170.21860.21570.21280.21000.20700.20410.20160.19950.19770.19590.19500.1860

7

National Weather Digest

-20 0 0 0.1826 x4-10 0 0 0.1797

0 0 0 0.1773 x510 0 0 0.175120 0 0 0.1727 X630 0 0 0.170440 0 0 0.1685 x750 0 0 0.167060 0 0 0.1656 x870 0 0 0.1642SO 0 0 0.1623 x990 0 0 0.1620

100 0 0 0.1('13

Winslow, Ar izona INW

Junction, Texas JCT

Mar fa, Texas MRF

Prescott, Arizona PRC

Truth or Consequences TCS

Caliente, Ar izona P38

page, Arizona PGA

0.18606296

-0.00044666

1.8289148E-06

0.02453614

-0.00635929

-0.01649633

0.02090837

-0.11830744

0.01594893

0.02810267

0.01837490

-0.00278536

0.00011796

0.00017853

0.00020567

Regression Coefficients

0.00013467

0.00035055

0.00012151

0.00014068

0.00013679

0.00016779

-9.4330045";-07

-1.1593344,,-06

-1. 3199238E-06

-1.0491946E-06

-1. 5973964E-06

-7. 8462579E-07

Parameter

Intercept

(1.0) X 5

x6

x 7x8

x9TX 1

rX 2rX

3

(1. J)

CMN

DUG

CAO

CALLLETTERS

TABLE 2

X3 Douglas, Arizona

X2 Deming, New Mexico

Xl Clayton, New Mexico

bO • 0.1772102) b1 • 0.000271 78 b2 • 1.1887078" 10-6

;"0 solve reduction constants ~or station Cl./'J, use,

where'

Xo solve reduction constants (or station • i. use,

b) • 0.12456728 b4 - 0.04114))9 b5

• 0.00019448

b6 • 4.7676655- 10- 5 b7

• 4.06)198911 10-7

It is desired to find the best set of in­dependent variables to predict the reduc­tion constants. Therefore, an interactioneffect must be included in the model. Theinteraction effect involves a cross-prod­uct term between the independent variablesand the indicator variables. In thiscase, the cross-product terms are TXI'TX2' T2 xl , and T2 x2 . If thecross-product terms are not significant,they are not included in the model. Theregression analysis is done by using thestatistical computer package SAS (Statis­tical Analysis System).

ro solve reduction constants for station c"v, use,

y. bo - b11 • b2 r1 because both xl and x2 • 0

INDICATORVARIABLES STATION NAME

Table 2 shows the results of five othergroups of weath~r stations. Included arethe station name, call letters, signifi­cant variables and their regression coef­ficients.

The results of fitting the model are:

rX5

rX6

rX7

h SThe constant bO is the intercept.---------------------1 TX 9

2T xl

2r x 22

T x3

2r x42T x

52

T x6

B

Volume 8 Number 1

r 2x7

-1.2479958E-06 '~x3 0.000083382 ~2

r X8

-1.0407030E-06 ' Xl -0.000000302 ,,2

r x9

-9. 6294037E-07 ..: ..~~ m ~~:.??~~??~~'''''''",,''''.''.I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

ENN

BIG

ANI

COE

FYU

CALLLETTERS

Xs Fort Yukon, Alaska

X3 Cape Decision, Alaska

X4 Nenana, Alaska

Xl Aniak, Alaska

X2 Big Delta, Alaska

INDICATORVARIABLES STATION NAME==~= ~!::f..':c~

INDICATOR CALLVARIABLES STATION NAME LETTERS

Xl Greenville, Maine 6B2

x2 Johnbury, Vermont 9B2

x3 Wor cester , Massachuset ts ORH

Rome, Geor gia RMG

Middleton Island, Alaska MOO

Port Heiden, Alaska PTH

Parameter Regression Coefficient

Intercept 0.00375817

T -5.0274260,';-06

?2 1.6202833;';-08

xl -0.00033310

x 2 0.04926333

x3

-0.00178684

x4 0.01102643

x5

0.01406149

x6 0.06186686

x 70.00262816

x8 -0.00116935

TX2 -0.00010611

TX3

1. 4689853E-06

TX4 -1. 5963286E-05

TX5

-2.0043523E-05

TX6 -0.00012322

TX7 -3. 6784392E-06

'rx8 1. 0552560E-062T x2 2.8712619,,:-072T x4 4.8038654,,-08

9

Parameter Regression Coefficient

Intercept 0.02505938

r -3.8256313E-05

r 2 1.2106106E-07

xl 0.01604374

x2 0.01604374

x3

0.01548032

TX1 -1.7049487E-05

rX2 -2. 2802562E-06

TX3

-1.7665513E-05•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• o••• -••••••••

INDICATOR CALLVARIABLES STATION NAME LETTERS

xl Blue Canyon, California BLU

x2 Meacham, Oregon MEH

x3 Mount Shasta, California MHS

x4 Sandberg, california SDB

Sexton Summit, Oregon SXT

Parameter i{egression Soe:ficient

Intercept 0.16275247

or -0.00030873

T2 0.00000073

xl 0.06578299

Xo 0.00936228L

x3

-0.01417618

x4 0.02709380

TX l -0.00009081

X6 Gulkana, Alaska

X7 Illiama, Alaska

GKN

ILl

National Weather Digest

T2X

56.2099541~-08

.:~ ~O ~:.~.~~~:.~~ ~~.~.~ .

INDICATOR CALLVARIABLES STATION NAME LETTERS

Xl Chamberlain, South Dakota CHB

Xz Warroad, Minnesota D45

x3 Marseilles, Il1inois MMO

x4 poplar Bluff, Missouri POZ

x5 Devils Lake, Nor th Dakota Pll

x6 Roseglen, North Dakota PZ4

x7 Medicine Lodge, Kansas P28

x8 pequot Lake, Minnesota P39

x9 Redig, South Dakota REJ

xlD Sidney, Nebraska SNY

xlI valentine, Nebraska VTN

Elkhart, Kansas IRS

FOOTNOTES AND REFERENCES

1. Bernard Augustine is a gradua te of MarshallUniversity, Huntington, West virginia. He hasbeen with the Communications Division since 1967.Mr. Augustine has a wide variety of experiencewith the National Weather Service. Before comingto the Washington, D.C., area, he worked in weath­er stations at Barter Island and Nome, Alaska;Beckley and Huntington, West Virginia; and Nor­folk, Virginia.

2. Augustine, Bernard G, 1981: "Computer Gener­ated Sea-Level Pressure," National Weather Digest,6:2. p.34.

Parameter

Intercept

X3

x4

x5

x6

x 7x8

x 9x 10x 11

'rX3TX4

Tx 5

TX6

rX7

TX8

Tx 10rX 11

Regression Coefficient

0.12261314

-0.00016899

3. 1476108E-07

-0.05258632

-0.07984645

-0.09382217

-0.10797337

-0.06307131

-0.03947410

-0.06161888

-0.07129986

0.00256523

0.05959343

-0.01600669

6.7954851';;-05

9.9562546~-05

0.00011157

0.00012494

8.0444l90E-05

5.2752462E-05

7. 3588753E-05

8.9498260E-05

-8. 5144597il-05

1. 9748260E-05

10

Moving? If you hillve llloved ilInd not nOtified us, or oUereo to polly forwardingCOSU for millgazines, the NATIONAL W,""THER DIGEST will not reach you.Additionilllly, we ..ust pay the I;OSt for returned Digests as well illSremailing them out again. To save ill lot of work ilInd inconvenience,pleillse notify us illlllled.i.ately of any change of address, ilInd send itto the National Weather Association, ••00 Sta",p Road, Room .U4,Tellple HUls, folD 20748. Thank you very llluCh.

OLD ADDRESS,

---_._-----------_.._------_._-

NEW ADDRESS,