VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity...

13
I i CENTRAL POTENTIALS FOR POLYATOMIC MOLECULES: I A SURVEY OF MGRSE POTENTIALS DETERMINED FROM VISCOSITY AND THE SECOND VIRIAL COEFFICIENT * by Daniel D. Kenowalow The Morse potential function is used to approximzte the pair interaction potential for a wide variety of hydrocarbons. The effects of molecular asymmetry (narrcwing and deepening of the potential well) are most clearly evident in potentials determined from experimental second virial cbefficients. Such potentials are shown t o be more realistic than those potentials determined from experimental viscosities which are much less sensitive to asymmetry. * This research was supported by National Aeronautics and Space Administration Grant NsG-275-62 and the U. S. Air Force Contract AF 33(657) - 7 311. + NATO Fellow 1963. Permanent Address: Istituto di Chimica Fisica, Universita Degli Studi Di Milano, Milano, Italy. https://ntrs.nasa.gov/search.jsp?R=19660003793 2019-08-12T17:31:05+00:00Z

Transcript of VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity...

Page 1: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

I

i

CENTRAL POTENTIALS FOR POLYATOMIC MOLECULES: I A SURVEY OF MGRSE

POTENTIALS DETERMINED FROM VISCOSITY AND THE SECOND

VIRIAL COEFFICIENT *

by

D a n i e l D. Kenowalow

The Morse p o t e n t i a l f u n c t i o n i s used t o approximzte t h e p a i r

i n t e r a c t i o n p o t e n t i a l f o r a wide v a r i e t y of hydrocarbons. The

e f f e c t s of molecular asymmetry (narrcwing and deepening of t h e

p o t e n t i a l w e l l ) are most c l e a r l y e v i d e n t i n p o t e n t i a l s determined

from e x p e r i m e n t a l second v i r i a l c b e f f i c i e n t s . Such p o t e n t i a l s a r e

shown t o be more r e a l i s t i c t h a n those p o t e n t i a l s determined from

e x p e r i m e n t a l v i s c o s i t i e s which a r e much less s e n s i t i v e t o asymmetry.

* T h i s r e s e a r c h w a s suppor ted by N a t i o n a l Aeronaut ics and Space A d m i n i s t r a t i o n Grant NsG-275-62 and t h e U. S . A i r Force C o n t r a c t AF 33(657) - 7 311.

+ NATO Fel low 1963. Permanent Address: I s t i t u t o d i Chimica F i s i c a , U n i v e r s i t a D e g l i S t u d i D i Milano, Milano, I t a l y .

https://ntrs.nasa.gov/search.jsp?R=19660003793 2019-08-12T17:31:05+00:00Z

Page 2: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

t ' ! .' The s t u d y of t h e gas-phase thermal p r o p e r t i e s of polyatomic

molecules has b o t h p r a c t i c a l and t h e o r e t i c a l i n t e r e s t . The

d e s c r i p t i o n of t h e p a i r i n t e r a c t i c o s of po lys tomic molecules has

proved t o be such a f o r n i d a b l e ttisk t h a t t h e p r e s e n t s t a t e of t h e

a r t i s q u i t e rudimentary , Thus, ir_ i s custoinary t o a t t e m p t a rough

d e s c r i p t i o n of t h e p r o p e r t i e s of d i l u t e g a s e s i n terms of model

p o t e n t i a l f u n c t i o n s c o n t a i n i n g a few a d j u s t a b l e c o n s c a n t s which are

f i x e d e m p i r i c a l l y .

Of t h e w i d e v a r i e t y of semi-empir ica l p o t e n t i a l f u n c t i o n s which

have been proposed (5,6,17-19) t o p r e d i c t t h e p r o p e r t i e s of d i l u t e

gases , t h e most wide ly s t u d i e d has been t h e two-parameter Lennard-

J o n e s (12-6) model:

T h i s p o t e n t i a l p r o v i d e s a f a i r compromise between s i m p l i c i t y and

a c c u r a c y i n i t s a p p l i c a t i o n t o s p h e r i c a l molecules ,

e s t a b l i s h e d , however, t h a t the (12-6) model i s i n s u f f i c i e n t l y

f l e x i b l e t o r e p r e s e n t t h e i n t e r a c t i o n o f asymmetrical molecules e

A s shown by P i t z e r (26) and Balescu ( 2 ) t h e p o t e n t i a l w e l l narrows

and deepens as t h e corresponding molecule d e v i a t e s from s p h e r i c a l

symmetry a

It i s now w e l l

These shape e f f e c t s have been demonstrated q u i t e c l e a r l y i n

Some r e c e n t i n v e s t i g a t i o n s of model p o t e n t i a l s deduced l a r g e l y

from e x p e r i m e n t a l second v i r i a l c o e f f i c i e n t d a t a . A t l e a s t i n

1

Page 3: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

2

i p a r t , they a r e b u i l t i n t o t h e Kihara p o t e n t i a l (18) when i t s hard

c o r e i s f ixed on t h e b a s i s of molecular s t r u c t u r e a lone (7,8,12) .

Even when a l l t h e i r parameters are determined from B(T) d a t a

a lone , t he Kihara a s w e l l as o t h e r th ree-parameter p o t e n t i a l s (27,291

e x h i b i t the narrowing and deepening of t h e p o t e n t i a l w e l l w i t h

i n c r ea s ing mo 1 ecu lar as ymme t r y . It i s t h e purpose of t h i s survey t o assess t h e s e n s i t i v i t y t o

molecular shape of p o t e n t i a l s determined from t h e expe r imen ta l

v i s c o s i t i e s f o r a v a r i e t y of hydrocarbons. It i s no e s s e n t i a l

r e s t r i c t i o n t o conf ine t h e s t u d y t o t h e Morse p o t e n t i a l model,

which has proven modera te ly s u c c e s s f u l when a p p l i e d t o s p h e r i c a l

molecules (19,20). The parameters e and 6 have t h e same

s i g n i f i c a n c e as f o r t h e (12-6) model. The t h i r d parameter , c , i s re la ted t o t h e c u r v a t u r e of t h e p o t e n t i a l a t r through t h e

e x p r e s s i o n

m

Thus, l a r g e va lues of c cor respond t o a narrow p o t e n t i a l w e l l ,

w h i l e s m a l l va lues of c correspond t o a wide one. Apparent ly ,

Page 4: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

3

t h i s model h a s t h e r e q u i s i t e r l e x i b i l i t y € o r a p p l i c a t i o n t o n o n - s p h e r i c a l

molecules

To conf i rm t h i s view, the Morse p o t e n t i a l s f o r a few n -a lkanes which

were de termined from B(T) d a t a a lone (21,22), are p r e s e n t e d i n Table I,

There i t i s seen t h a t c / k , c , and Q" i n c r e a s e w i t h t h e i n c r e a s e i n c h a i n

l e n g t h about as expec ted from a c o n s i d e r a t i o n of molecu la r s t r u c t u r e

( 2 , 2 6 ) . Next, Morse p o t e n t i a l s were f i x e d by minimiz ing t h e r m s p e r c e n t a g e

d e v i a t i o n between t h e expe r imen ta l and c a l c u l a t e d

found f r o m t a b l e s of c o l l i s i o n i n t e g r a l s (23) r e c e n t l y developed i n t h i s

l a b o r a t o r y . These "vi scosicy-determined" Morse p o t e n t i a l s are l i s t e d i n

Tab le 11 a long wi th ( 1 2 6 ) p o t e n t i a l s which were a l s o de te rmined from

v i s c o s i t y d a t a ( 1 6 ) , I n view of i t s g r e a t e r f l e x i b i l i t y , i t i s no s u r p r i s e

t h a t t h e Morse por rzn t ia l a f f o r d s apprec i ab ly b e t t e r agreement w i t h t h e

expe r imen ta l ( r > t h a r does t h 2 (12-6) .nodel, However, f o r n e i t h e r model

d o t h e p o t e n t i a l s de te rmined from v i s c o s i t y a f f o r d r easonab le agreement

w i t h t h e expe r imen ta l B ( T ) , The r m s pe rcen tage e r r o r s f o r B(T) are

t y p i c a l l y 40 p e r c e n t o r more, w e l l o u t s i d e t h e range of expe r imen ta l

u n c e r t a i n t y . I n c o n t r a s t , a s shown i n Table I, t h e Morse p o t e n t i a l s

de te rmined from B ( T ) a lone fa re* a p p r e c i a b l y b e t t e r i n r ep roduc ing t h e

expe r imen ta l

under 20 pe r c e n t .

'1 (T), The l a t t e r w e r e

?I

7 ( T ) . I n those c a s e s t h e e r r o r s i n '1 (T) are t y p i c a l l y

For t h e rare gases , which are e s s e n t i a l l y s t r u c t u r e l e s s , s p h e r i c a l

molecules , p o t e n t i a l s deduced f r o m B(T3 a r e u s u a l l y n o t t o o d i f f e r e n t

from those found krom (T) ( 1 7 ) , Fo r t h e n -a lkanes , however, i t i s

e v i d e n t from t h e r e s u l t s t h a t a r e a l dichotomy e x l s t s between t h e Morse

p o t e n t i a l s deduced from each of t h e s e p r o p e r t i e s , An e x p l a n a t i o n

Page 5: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

4

may be found by examining t h e s t r u c ture-dependence of t h e " v i r i a l - d e r i v e d "

and "v i scos i ty -de r ived" p o t e n t i a l s .

P i t z e r ( 2 6 ) and Balescu ( Z ) , t h e a t t r a c t i v e p o r t i o n s of t h e " v i r i a l -

der ived" p o t e n t i a l s deepen and narrow f a i r l y smoothly w i t h i n c r e a s i n g

c h a i n l eng th (which we equa te wi.th i n c r e a s i n g asymmetry) : t hose f o r t h e

I n accord w i t h t h e p r e d i c t i o n s of i

"v i scos i ty -de r ived ' ' p o t e n t i a l s do no t , Although t h e same comparison

canno t be made f o r t h e remain ing hydrocarbons w t r e a t , w e a r e a b l e t o

d i s c e r n l i t t l e connec t ion between molecular s t r u c t u r e and t h e pa rame te r s

of t h e " v i s ~ o s ~ t y der ived" p o t e n t i a l s . I t i s w e l l known t h a t f o r a l l

molecules t h e low- tenL*r . r i t u re B(T) y i e l d s in fo rma t ion on t h e dep th as a

f u n c t i o n of t he W L U L ~ of the p o t e n t i a l w e l l , T t appea r s t h a t t h e B(T)

For dsjmtletriL n l o l e ~ u l e s i s s e n b i t i v e to rrheir s t r u c t u r e i n a way t h a t

s p e c i f i e s t he well shape even more c l o s e l y S i n c e t h i s s e n s i t i v i t y t o

s t r u c t u r e seems t o be l a c k i n g i n the (T) daca, t h e " v i r i a l - d e r i v e d "

p o t e n t i a l s are expec ted t o be more n e a r l y c o r r e c t , T h i s view i s

suppor ted by the d i s c u s s i o n i n the p reced ing paragraph ,

1

It i s n o t s t r i c t l y v a l i d t o compare p o t e n t i a l s de te rmined from t h e s e

p r o p e r t i e s s i n g l y , s i n c e n e i t h e r one i s s u f f i c i e n t t o s p e c i f y t h e

p o t e n t i a l i n t h e f i r s t p l a c e I n an ensu ing work ( 2 2 ) i t w i l l be shown

t h a t i t i s p o s s i b l e t o f i n d compromise Morse p o t e n t i a l s which a d e q u a t e l y

reproduce both B(T) and (T) f o r a number o f hydrocarbons, '1 Acknowledgements

One of u s ( S . c ' , ) wishes t o thank P r o f e s s o r J. 0. H i r s c h f e l d e r f o r

making a v a i l a b l e t h e f a c i l i t i e s of t h e T h e o r e t i c a l Chemis t ry I n s t i t u t e . We

thank Mrs. Merilene McCloud and Mrs. Linda H u l b e r t f o r t h e i r programming

a s s i s t a n c e , and P r o f e s s o r R. B, B e r n s t e i n f o r h i s c r i t i c i s m of t h i s manu-

s c r i p t .

Page 6: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

5

H H

a, rl P (d H

h

W rn PI

C -4

n !n cn W

0 E \

a m 0

m rl

0

m m a

(d a; C 0

N

a Ln

03

d m cr)

E 0

k a 0 - k a a cd

0) a, m -0

.d ; 5 al U a, -0

H

a rl P (d H cv

rl N m *

m co m rl

m rl * m d

b m rl (d m -4 U C a, U 0 a 0 m

0 m

rl 0

Cn a d-

m hl

hl 6v co

N 0

rl co b 6v m

m \o

m * Y \

VI m 0 hl

0 d- a

a a m

m m b

al 0 C (d U

2

?-

(d U C a,

d

a, C (d X a,

C -7

a, k U 0 0

F r r p l

a, C (d U 3

a, C (d c

al c rd a 0

v) P 7 cn

U al E

Ll a (d

Page 7: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

6

I .

H H

aJ 4

(d H

n

; U m TI

h U *rl m 0 0 m

.I4 3 E 0 Ll w -a a, C 4

E aJ U e, '0

m 4 (d

-A U C aJ U 0 a m a, c 0

-a k (d d c

?

2 -a E: (d

aJ m k

2 w 0

C 0 m

.PI

k (d

0 V F

h

W m PI

h

F W

PI

i)

b

3 ;3

cd 4 (d *rl U c a, u 0 PI

0) u c (d U m P 7 CA

m 4

n I 0 m

;f, .\

m 4

c)

0 m I

\T nl

m 4

m

CI

h

-0 1 0 m

m m 9

cv m

4 hl

e N

m 9

aJ w I I 0 m u', 0 m cd m m

m Q O c o m m 4 o m Q Q e m o m 4 m o m m m 4-Q corn 0 4 e m o m b o m a 4 b d a m 4-4 e m 4 a m m e . . . . . . . . . . . . . . . .

hl

4hl m c o N Q dul m a m m m coco 0 4 nlco hlhl a 0 4 0 4 m m a 4 - m a m 4 . . . . a . . . . . . . . . 0 0 0 4 o m 0 4 dr; 0 4 o;?; 0 0 G A

4 0 0 0 0 0 0 0 m . h l . O . m . ~ . o . c o . 4 - . 0 . 0 - c o . 0 . Q . 4 . m . a . el. 0 . . . . . .,. . . . . . . . . m m m G * G * m 4- m

m 4 - coco m m 4 4 . .

. . nla h m h l N

c =

a, C (d c U a,

a 0 o e 4hl

m m . .

. . Q Q m o 4 c d

c 3

x (d a 0 $4 a

m m h l m 00

Q Q . .

ur c o m h a hlN

. .

E 2

aJ C rd U C a,

G a

Page 8: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

7

1 n w W

m

A

W w Fc”

m rJ

. . . . . .

m m

. . D .

. Y

. . . . . . . . . . . .

rn rl

m m m m m Sr) m m m m

. . . D . . . . . . . . . . . . . . . . . . . s . . . . e . - . . . D . e . . . . . . . . . . .

cnco b o nrl 0 0 0 4 m r l q Q m b *a m c n CnN Lnb b b d d rlb O b

0 0 0 0 O d o a 0 0 0 0 0 0 0 0 * . e . . s . . . . . . . . Y .

. . . . . . . . s . . . . . . . m e u3 e m d i! rl

n

?5 a d cow m a

6.103 c o o m m

0 .

coco . .

m m . .

b b . . e a

. . m m

. . I n m

. . m c o c o b rlrl

. . . . . . . . . . r l m c o a rl*

A M

OW

b c n 0 4 m m hlcu

E 2 a, c al

al G al 4

A h u

hl I

a, C a C 0 C

a, c a, d h 5:

4 I al n: al U 3 P

3 P h a

0 U 3 k a a, b

I

Page 9: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

8 . n H m W

n H W

. . . . . .

m c7

.. P

m a, u k 5 0 v3

(d U (d n

n m PI W

n

F” W

PI

n u3 d

c7 m m m

(d U (d a h U -4 m 0 U m -4 3

E M w

a a, c 4 E k a, U a, a m d (d v-! U C a, U 0 a m

0

a k (d c

: 7

i a c (d

a, m $4

w 0

C 0 VJ -4

% 2 0 u

w 0) d W

h U .4 rn

. . . . . . D . . . . . . . . . . . 0

U m -4 3 E 0 k w r - c o

Qal a al C

. . 0 0

!3 0 a

4

k a, U

E

al 5 Q) a

d (d

a 4

U G a, U 0 a VJ

al U 0 z

0 . 0 . a . 0 . 0 . 0 . 0 . 0 3 . b . V

b

24 1

W

(d d (d -4 U G aJ U 0 PI

a, u c (d U m P 3

v3

n a U C 0 u

- W

H H

al d P (d E-I

: 0 9

W a, d

o m d N m a l vrvr . .

0 al m

I -a . .

3 - = J n

a a, N .4 E -4 C

. . . . O N v r d d N

. . n M e/ d

(d -4 U c a, U

4 o ( d m u -A E

0 a Q) m k

2 II

z

h d a, U a, d

ala, u a o x h Fi

a, a, G c h h a c 0 U k a, a

0 m -4 a P u a

Page 10: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

9

Not s t ion

C

k

T

Tc

E

= second v i r i a l c o e f f i c i e n t

= Morse pararr,eter governing width s f p o t e n t i a l w e l l .

= Boltznann3s c o n s t a n t

= s e p a r a t i o n between rmleeu la r c e n t e r s

= s e p a r a t i o n a t the energy minimum

I - r m s percentage d e v i a t i o n s

= rms d e v i a t i o n s

= a b s o l u t e tempera ture

= c r i t i c a l t e a p e r s t u r e

= dep th o f p o t e n t l a ;

= f i n i t e separ3 tPon of molecular c e n t e r s a t

ze ro p o t e n t i a l energy

= pcten tLaP energy f u n c t i o n

Page 11: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

10

L i t e r a t u r e C i t e d

1- Xnd;;l, 3 * i - L J. D . Cox, P a F , G.. Herr ington , and J. F.

- M a < t I G s Y r 6 . t - cai5iday S O C . -- 53 , 1074 (1957).

2. B a l € ~ r . ; , h a d ~ P ~ ~ S L L ~ '22, 224 (1956).

3. BeattLeg I k . , S, K , Levine, and D . R. Dousl in , J. Am. Chem. S O ~ .

7 4 (1778 C l P 5 2 \ \ , I

4. RottcrixIev, G. A 5 G R ~ e v e ~ . : and R . Whytlaw-Gray, Proc . Roy.

S O L " (T-d?ddl) A24(., 501r (1958) .

5 . S O ~ S , S a m 7- r >:id S h a v i t t , Natcre 178, 1340 (1956).

6 .

7 , Corrr ic l ly . I F , and K ~ r a d ~ l i c ~ Phys. F l u i d s 3, 463 (1960).

G a r r a ' , 5 . + e r d 3 E . Kcnc.r.;aIcsp~~ Nuovc Cimento 34, 205 (1964).

8 . Cor11-i~; y . 1. F . Fkiy;, FlhJ Ids - 4 , 1494 (1961).

9. Corlndl y , F _". P h y s ('hem., 6& 1082 (1962).

10 (-cx. .J. C , a-d Fi. ; L A d x , Trans. Faraday SOC. 54, 1625 (1958).

11, Craven , F M. and 2 D o L a m b e r t , Proc. Roy. SOC. (London)

ALP5 433 ( ' L " 5 1 ' ---. 7

12, Danci;, 7 . R S P i t z e z , Chem. Phys. 36, 425 (1962) .

13, D a v i d , H , G , and s' D . Hamapp, "Conference OR Thermodynamic

and 1rars i .w t Pr cPperties of F l u i d s " , The I n s t i t u t e of Mechanical

Erag1ml?ess, L c n d m (1957) .

14. DcJslit-1 3. R . " t ~ ~ g r e s s ip I n t e r n a t i o n a l Research on

rhermudyT;;.ol: L -cj Trm. ;par t P r o p e r t i e s " , The American S o c i e t y

of Mec'rcanir%l E n g ~ r > e f i r * ~ New York, (1962), p . 135.

Page 12: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

11

L i t e r a t u r e C i t e d ( c o c t I d )

l -

15. E v e r h a r t , W . A . , and E . Mack, J. Am. Chem. SOC., 55, 4894 (1933).

16. Flynn, L. W . and George Thodos, A , I. Ch. E . J o u r n a l 8, 362 (1962).

1 7 . H i r s c h f e l d e r , 3. O. , C . F . C u r t i s s , and R . B. B i r d , "Molecular

Theory of Gases and Liquids" , Wiley, New York, (1954) .

18. Kihara, T . , Rev. Mcd. Phys, I 25, 831 (1953).

19. Konowalow, D. D . , M. H. Taylor and J. 0 . H i r s c h f e l d e r , Phys.

F l u i d s 5, 622 (1961).

20. Konowalow, D . D . and 5. 3. H i r s c h f e l d e r , Phys. F l u i d s 4,

629 (1961),

I 21. Konowalow, D . D . and S . Carra U n i v e r s i t y of Wisconsin

T h e o r e t i c a l Chemistry I n s t i t u t e Repor t WIS-TCI-74, 7 Dec. 1964.

22. Konowalow, D . D . , U n i v e r s i t y of Wisconsin T h e o r e t i c a l Chemistry

I n s t i t u t e Report WIS-TCI-104, 3 June, 1965.

23. Lovel l , S . E . , and J. 0. H i r s c h f e l d e r , U n i v e r s i t y of Wisconsin

T h e o r e t i c a l Chemistry I n s t i t u t e Repor ts WIS-AF-19 and

WIS-AF-21 (1962).

24. McGlashan, M. L. and D . J. B. P o t t e r , Proc. Roy, SOC. (London)

A267, 478 (1962).

25. Melaven, R . M . , and E . Mack, J. Am. Chem. SOC. 54, 892 (1932).

26. P i t z e r , K. S . , J. Am. Chem. SOC. 77, 3427 (1955).

27. P r a u s n i t z , J. M. and A . L. Myers, A . I. Ch. E. J o u r n a l 2, 5 (1963) .

28. Schamp, H. W . et. G., Phys. F l u i d s , 1, 329 (1958).

Page 13: VISCOSITY - NASA · Table 11 along with (12 6) potentials which were also determined from viscosity data (16), In view of its greater flexibility, it is no surprise that the Morse

12 ,

4 L i t e r a t u r e C i t e d ( c o n t ' d )

29. Sherwood, A . E . , and J. M. P r a u s n i t z , J. Chem. Phys. 41, 429 (1964).

30. Thermophysical P r o p e r t i e s Research Center , Purdue U n i v e r s i t y ,

Data Book, V o l . I1 :

a . Table 2022, S e p t . 1960.

b . Table 2009, Dec., 1961.

c . Table 2029, Dec., 1961.

d. Tqble 2006, Dec., 1961.

e. Table 2018, June, 1962.

f . Table 2003, June, 1962.

31. Thomaes, G. and R . van Steenwinkel , Nature 187, 229 (1960).

32. T i t a n i , T . , B u l l . Chem. SOC. Japan 4, 433 (1933).

33. T i t a n i , T. , i b i d . , 5, 98 (1930).