VIRTUAL WORK Problems

download VIRTUAL WORK Problems

of 58

Transcript of VIRTUAL WORK Problems

  • 8/18/2019 VIRTUAL WORK Problems

    1/58

    1

    6. Virtual Work

    2142111 Statics, 2011/2

    © Department of Mechanical

    ,

  • 8/18/2019 VIRTUAL WORK Problems

    2/58

    2

    Ob ectives Students must be able to #1 

    Course Objective

     

    frictionless bodies/structures in equilibrium

    Chapter Objectives

    For virtual work

    Describe and determine virtual works and virtual motion

    Determine active forces that maintain systems in

    equilibrium and draw the Active Force Diagram (AFD)

    Determine possible virtual motions and draw the VirtualMotion Diagram (VMD)

    Determine the de ree of freedom DoF and virtual motion

    2

    in terms of independent coordinates

  • 8/18/2019 VIRTUAL WORK Problems

    3/58

    3

    Ob ectives Students must be able to #2 

    For virtual work

     

    analyze for unknown active loads or equilibrium position

    for systems in equilibrium

    For potential energy

     

    Describe and determine the potential energy, potential

    function and independent coordinates in a system

    Describe the conditions for stable/neutral/unstable stability

    of a system in equilibrium by the potential function

    Determine from otential function the stabilit of 1 DoF

    3

    systems in equilibrium

  • 8/18/2019 VIRTUAL WORK Problems

    4/58 4

    Contents

    Virtual Work

     

    Principle of Virtual Work

    Types of Forces

    Degree of Freedom

    o en a nergy

     Applications

    4

  • 8/18/2019 VIRTUAL WORK Problems

    5/58 5

    Work B a Force

    Virtual Work

     

    = ⋅

    =

     

    cos

    dU F dr  

    F dr 

    workdU   =

    force that done the work

    displacement

    dr 

    =

    =

    5

  • 8/18/2019 VIRTUAL WORK Problems

    6/58 6

    Work B a Cou le

    Virtual Work

     

    ( ) ( ) ( )2 2

    r r dU F d F d Fr d  = + =θ θ θ 

    magnitude of couple that do the workM   =

    6

     

    small angle of rotationd    =θ 

  • 8/18/2019 VIRTUAL WORK Problems

    7/58 7

    Virtual Work Utilization

    Virtual Work

    Utilize the principle of virtual work

     

    equilibrium,

    To determine the equilibrium positions,

    To relate the work done by conservative forces withpotential energy.

    7

  • 8/18/2019 VIRTUAL WORK Problems

    8/58 8

    Virtual Work Virtual Movements

    Virtual Work

     

    Imaginary or virtual movements is assumed and does not

    actually exist. Virtual displacement δ r 

     

    Virtual movements are infinitesimally small and does not

    violate physical constraints.

     

    Newton’s laws that can analyze the system inequilibrium under work and energy concepts.

    8

  • 8/18/2019 VIRTUAL WORK Problems

    9/589

    Virtual Work Constraints of Movements

    Virtual Work

     

    δ δ = ⋅

     

    U F r 

    δ δθ = ⋅U M 

    9

  • 8/18/2019 VIRTUAL WORK Problems

    10/5810

    Virtual Work Princi le of Virtual Work

    Virtual Work

     

    Consider an object in equilibrium

    e v r ua wor one y a orces o move e o ec wa virtual displacement

    δ δ = ⋅ 

     

    ( )U F r 

    δ = + + ⋅

     

    1 2 3( )F F F r  

    δ    =In equilibrium, 0U 

    10

  • 8/18/2019 VIRTUAL WORK Problems

    11/5811

    T es of Forces Active and Reaction

    Virtual Work

     

     Active forces generate virtual work.

      – ,

    Internal forces – spring forces, viscous forces

    Reaction and constrain forces do not create virtual work

    11

  • 8/18/2019 VIRTUAL WORK Problems

    12/58

    12

    Conservative Forces Descri tions #1

    Virtual Work

     

    Conservative forces generate virtual work that depends

    ,

    path.

    Conservative forces are active forces.

    Example: weight, elastic spring

    12

  • 8/18/2019 VIRTUAL WORK Problems

    13/58

    13

    Conservative Forces Descri tions #2

    Virtual Work

     

    13

    =   y 

  • 8/18/2019 VIRTUAL WORK Problems

    14/58

    14

    Conservative Forces Descri tions #3

    Virtual Work

     

    = − −2 21 12 1

    2 2

    14

  • 8/18/2019 VIRTUAL WORK Problems

    15/58

    15

    Conservative S stem

    Virtual Work

     A conservative system is a system in which work done by

    Independent of path, i.e. work done by conservative

    force,

    Equal to the difference between the final and initial

    values of the energy function,

    Com letel reversible i.e. no loss.

    15

  • 8/18/2019 VIRTUAL WORK Problems

    16/58

    16

    Frictional Force

    Virtual Work

     

    Friction exerts on a body by surface due to relative motion

    Work done depends on the path; the longer the path, thegreater the work.

      .

    Work done is dissipated from the body in the form of heat.

    16

  • 8/18/2019 VIRTUAL WORK Problems

    17/58

    17

    Virtual Work Advanta es

    Virtual Work

     

    .

    Only active forces cause virtual works.

    If the structure is in equilibrium, or δ U = 0, sum of virtual worksone y a act ve orces are zero.

    For complex structures, all unknown reaction and constraint

    forces are ignored.

    Use the principle of virtual work to determine

     Active forces that maintain the system in equilibrium,

    qu r um pos ons.

    17

  • 8/18/2019 VIRTUAL WORK Problems

    18/58

    18

    AFD Active Force Dia rams

    Virtual Work

     An AFD shows only active forces in the system.

     AFD

    18

    FBD

  • 8/18/2019 VIRTUAL WORK Problems

    19/58

    19

    DOF De rees of Freedom

    Virtual Work

     

    DOFs are independent coordinates used to describe

    .

    Virtual displacements can be derived in terms of DOFs.

    19

  • 8/18/2019 VIRTUAL WORK Problems

    20/58

    20

    Exam le Boresi 12-35 #1 AFD

    Virtual Work

     

     Apply the principle of virtual work to

    , ,

    and W for the magnitude P of theforce required for equilibrium of the

    .

    frictionless. Neglect the weight of

    the bell crank.

    Procedure

     

    Geometric relations ofvirtual movements

    20

    Virtual work equationo t e ro

    1 DOF system

  • 8/18/2019 VIRTUAL WORK Problems

    21/58

    21

    Exam le Boresi 12-35 #2Virtual Motion

    Virtual Work

     

    Virtual movementsC 

    r bδ δθ =

    Virtual Work

     A   =

    [ ]

     

    0

    0 A C 

    P r W r  

    δ 

    δ δ 

    =

    − =

    0a Ans

    Pa WbP bW 

    δθ δθ  − ==

    21

    DIY: Check by FBD

  • 8/18/2019 VIRTUAL WORK Problems

    22/58

    22

    Exam le Hibbeler 11-13 #1

    Virtual Work AFD

     The thin rod of weight W rest against the smooth wall and floor.Determine the ma nitude of force P needed to hold it in e uilibrium

    for a given angle θ .

     AFD of the rod

    1 DOF system

    22

  • 8/18/2019 VIRTUAL WORK Problems

    23/58

    23

    Exam le Hibbeler 11-13 #2

    Virtual WorkVirtual Motion

     

    Virtual movements:

    δ θ δθ  + = +sin( )2C C y y 

    l l 

    δθ δθ δθ  

    =

    → →

    s n s n cos cos s n2 2

    cos 1, sin

    δ δθ θ  = cos2

    C y 

    δ θ δθ  δ θ δθ θ δθ θ  

    + = += − −

    cos( )(cos cos sin sin cos )

     A A

     A

     x x l  x l 

    23

    δθ δθ δθ  

    δ δθ θ θ  

    → →

    = −

    cos 1, sin

    sin (as increase, dec A A x l x  rease)

  • 8/18/2019 VIRTUAL WORK Problems

    24/58

    24

    Exam le Hibbeler 11-13 #3

    Virtual WorkVirtual Work

     

    0 A C P x W y  

    δ δ − =

    s n cos2

    1 cos  AnsP W    θ 

    − =

    =s n

    DIY: Check by FBD

    24

  • 8/18/2019 VIRTUAL WORK Problems

    25/58

    25

    Exam le Hibbeler 11-13 #4

    Virtual WorkVirtual Motion

     

    1 1sin cos

    2 2

    C C 

    dy y l l 

    d θ θ 

    θ = → =

    1cos

    2C y l δ θδθ  → =

    cos sin

    sin

     A

     A

     x l l d 

     x l 

    θ θ θ 

    δ θδθ  

    = → = −

    → = −

    Be careful of the sign!

    25

  • 8/18/2019 VIRTUAL WORK Problems

    26/58

    26

    Exam le Boresi 12-38 #1

    Virtual Work

     Using the principle of virtual work,

    the force P and Q, in terms of a, b,c , and d , for the frictionless

    the position shown. Neglect the

    weights of the bars.

     AFD of the system

    26

      sys em

  • 8/18/2019 VIRTUAL WORK Problems

    27/58

    27

    Exam le Boresi 12-38 #2

    Virtual Work

     

    1 2 3 2

    3 4

    4

    , , ,

     

    d c c a b

    δ δθ δ δθ δ δ δθ  δ    δ 

    δ δθ 

    = = = =

    += → =

    27

  • 8/18/2019 VIRTUAL WORK Problems

    28/58

    28

    Exam le Boresi 12-38 #3

    Virtual Work

     

    [ ] 1 40 0U P Qδ δ δ = − + =

    4

    1

    P a b c  Q a d 

    δ    δθ δ δθ 

    += =

    (1 ) AnsP c b

    Q d a= +

    28

  • 8/18/2019 VIRTUAL WORK Problems

    29/58

    29

    Exam le Boresi 12-36 #1

    Virtual Work

      A pulley-crank mechanism is

    .

    Using the principle of virtualwork, determine the force P .

    29

  • 8/18/2019 VIRTUAL WORK Problems

    30/58

    30

    Exam le Boresi 12-36 #2

    Virtual Work

     

    1

    2

     

    (1 ft)δ δθ 

    δ δ 

    =

    =

    =

    3 2/ 2 (0.5 ft)δ δθ δ    = =

    [ ]

    1 4

    0

    (400 lb) 0

    δ 

    δ δ 

    =

    − =

    (0.5 ft)(400 lb) (2 ft)P 

      δθ 

    δθ =

    30

     

    1 DOF system

     

  • 8/18/2019 VIRTUAL WORK Problems

    31/58

    31

    Exam le Frame & Machine 1 #1

    Virtual Work

     For P = 150 N squeeze on the handles of the pliers,

    .

    31

  • 8/18/2019 VIRTUAL WORK Problems

    32/58

    32

    Exam le Frame & Machine 1 #2

    Virtual Work

    δ δ δ δ = → =1 2 121 DOF system:180 mm 30 mm 6

    32

    δ δ δ δ δ = → = =32 2 13

    60 mm 20 mm 3 18

  • 8/18/2019 VIRTUAL WORK Problems

    33/58

    33

    Exam le Frame & Machine 1 #3

    Virtual Work

     

    1 3

    Symmetry about the horizontal centerline0 2 2 0U P F δ δ δ = − =

    33

    18 2.25 kN AnsF P = =

  • 8/18/2019 VIRTUAL WORK Problems

    34/58

    34

    Exam le Frame & Machine 2 #1

    Virtual Work

    The mechanism is used to weigh

    .

    the weighted pointer to rotate throughan angle α . Neglect the weights of

    counterweight at B, which has a mass

    of 4 kg. If a = 20°, what is the mass of

    34

  • 8/18/2019 VIRTUAL WORK Problems

    35/58

    35

    Exam le Frame & Machine 2 #2

    Virtual Work

    1 DOF system

    ( )2 rotates CCW by .

    (100 mm) cos(20 ) cos20B   δθ δ δθ = ° − − °

    ( )2

    1

    (100 mm)sin20

    (100 mm) sin(10 ) sin10

    δθ 

    δ δ 

    δ 

    θ 

    = °

    = ° + − °

    1(100 mm)cos10  δθ δ   = °

    2 14 0g W δ δ 

    =

    − =

    °

    35

    , . g nscos10

      Ag m= =°

  • 8/18/2019 VIRTUAL WORK Problems

    36/58

    36

    Virtual Work S stems with Friction

    Virtual Work

      Friction forces causes the virtual work on the systems.

     

    of the entire system, appreciable friction in the systemrequires the dismembering and negates this advantage.

    36

  • 8/18/2019 VIRTUAL WORK Problems

    37/58

    37

    Mechanical Efficienc

    Virtual Work

    output workinput work

    e  =

     1

    input work=

    37

  • 8/18/2019 VIRTUAL WORK Problems

    38/58

    38

    Exam le Friction 1 #1

    Virtual Work

     

    Find the mechanical efficiency in

    moving the block of weight W up the

    incline with coefficient of kineticfriction  µ k .

    38

  • 8/18/2019 VIRTUAL WORK Problems

    39/58

    39

    Exam le Friction 1 #2

    Virtual Work

     

    The block moves upwards.

    By equilibrium of force

    39

    k =

  • 8/18/2019 VIRTUAL WORK Problems

    40/58

    40

    Exam le Friction 1 #3

    Virtual Work

     

    [ ]0U δ    =sin 0

    ( cos sin )k 

    T s F s W s

    T W 

    δ δ δ θ  

     µ θ θ 

    − − =

    = +

    sin sinW se

      δ θ θ = =

    40

  • 8/18/2019 VIRTUAL WORK Problems

    41/58

    41

    Potential Ener 

    Potential Energy

      Potential energy

     

    Generated by conservative forces

    Example of potential energy

    Gravitational   V g  = mgh

    as c spr ng e  = .   s

    Torsional spring   V e  = 0.5K θ 2

    Potential function V = V g + V e

    41

  • 8/18/2019 VIRTUAL WORK Problems

    42/58

    42

    E uilibrium 1 DOF

    Potential Energy

      Position from datum is defined by independent

    The displacement of frictionless system is dq   V  = V (q)

      dU  = V (q) − V (q  + dq)

    In equilibrium dU  = −dV  = 0

    = 0

    dV 

    dq

    42

  • 8/18/2019 VIRTUAL WORK Problems

    43/58

    43

    E uilibrium n DOFs

    Potential Energy

      Positions defined by q1, q2, q3, …, qn

      1, 2, 3,

    …, δ qn   V  = V (q1, q2, q3, …, qn )

      dU  = V (q1, …, qn ) − V (q1 + dq1, …, qn  + dqn)

      = − =

    1 2...

    n

    V V V V q q q

    ∂ ∂ ∂= + + +

    ∂ ∂ ∂δ δ δ δ  

    n

    ∂ ∂ ∂= = =0, 0, ..., 0,

    V V V 

    43

    1 2   n

  • 8/18/2019 VIRTUAL WORK Problems

    44/58

    44

    Stabilit

    Potential Energy

    44

  • 8/18/2019 VIRTUAL WORK Problems

    45/58

    45

    Stabilit 1 DOF #1

    Stable EquilibriumPotential Energy

     

    2

    20, 0

    dq   dq

    = >

    45

  • 8/18/2019 VIRTUAL WORK Problems

    46/58

    46

    Stabilit 1 DOF #2

    Neutral EquilibriumPotential Energy

     

    2

    20, 0

    dq   dq

    = =

    46

    P t ti l E

  • 8/18/2019 VIRTUAL WORK Problems

    47/58

    47

    Stabilit 1 DOF #3

    Unstable EquilibriumPotential Energy

     

    2

    20, 0

    dq   dq

    = <

    47

    P t ti l E

  • 8/18/2019 VIRTUAL WORK Problems

    48/58

    48

    Exam le Hibbeler 11-31 #1

    Potential Energy

     Determine the equilibrium position s

    stability at this position. The springis unstretched when s  = 2 in. and

    .

    48

    Potential Energy

  • 8/18/2019 VIRTUAL WORK Problems

    49/58

    49

    Exam le Hibbeler 11-31 #2

    Potential Energy

     

    Equilibrium positionUnstretched position

    49

    Potential Energy

  • 8/18/2019 VIRTUAL WORK Problems

    50/58

    50

    Exam le Hibbeler 11-31 #3

    Potential Energy

     

    2

    Potential function

    1= =

    = −2

    21(3 lb/in.)( 2 in.)

    e g 

    V    s

    − − °=

    2

    (5 lb)( 2 in.)sin30

    1

    V    s

    − −=

      . .2

    (5 lb)( 2 in.)sV 

    [ ]= At equilibrium, / 0(5 lb)

    dV ds

    50

    − − =

    =

      . .2

    2.8333 in.s

    Potential Energy

  • 8/18/2019 VIRTUAL WORK Problems

    51/58

    51

    Exam le Hibbeler 11-31 #4

    Potential Energy

     

    = →

    2

    2Stability consideration: (3 lb/in.) stabled V 

    ds

    51

    =Stable equilibrium position 2.83 in. Anss

    Potential Energy

  • 8/18/2019 VIRTUAL WORK Problems

    52/58

    52

    Exam le Hibbeler 11-45 #1

    Potential Energy

     The 2-lb semi-cylinder supports the block which has a specific

    = 3  .

    which will produce neutral equilibrium in the position shown.

    52

    Potential Energy

  • 8/18/2019 VIRTUAL WORK Problems

    53/58

    53

    Exam le Hibbeler 11-45 #2

    Potential Energy

     

    γ  

    θ θ 

    = + = +

    = + + −

    1 2 1 1 2 2

    3

    3

    80 16 in.( lb/in. )(8 in.)(10 in.) (4 in. cos ) (2 lb)(4 in. cos )

    g g G GV V V V h W h

    V   h

    h

    θ θ = + + − ⋅2

    (14.816 lb) (1.8549 lb / in.) cos (8 3.3953cos )lb in.hV    h

    53

    Potential Energy

  • 8/18/2019 VIRTUAL WORK Problems

    54/58

    54

    Exam le Hibbeler 11-45 #3

    Potential Energy

     

    2dV 

    θ θ θ 

    = − ⋅

    = − + ⋅

    22

    . . . .

    (1.8549 lb / in.) cos (3.3953 lb in.)cos

    d V h

     At equilibrium

    dV θ 

    θ 

    = − ⋅ =

    = ° =

    . n. s n . n. s n

    0 or 1.3529 in.

    h

     At neutral sta

    θ θ 

    = − + ⋅ =

    22

    2

    bility

    0 (1.8549 lb / in.) cos (3.3953 lb in.)cos 0d V 

    h

    54

    θ   = ° = =90 or 1.3529 1.35 in. Ansh

    Potential Energy

  • 8/18/2019 VIRTUAL WORK Problems

    55/58

    55

    Exam le Boresi 12-44 #1

    ote t a e gy

     The uniform slender rods of equal

    .

    rest against a 45° inclined plane andare constrained to remain in a

    .

    Neglect friction, determine the

    smallest nonzero angle θ forw c equ r um s poss e.

    Determine whether or not the

    equilibrium state is stable for this

    configuration.

    55

    Potential Energy

  • 8/18/2019 VIRTUAL WORK Problems

    56/58

    56

    Exam le Boresi 12-44 #2

    gy

      AFD of the system

    1 DOF system

    1

    2 2 sin cos

    45

    h a aα α 

    α θ 

    = +

    = ° +

    1 2

    3 sin cos

    V Wh Wh

    Wa WaV    α α 

    = +

    = +

    2

    (3cos sin )dV 

    Wad  α α θ 

    = −

    56

    2( 3sin cos )Wa

    d α α 

    θ = − −

    Potential Energy

  • 8/18/2019 VIRTUAL WORK Problems

    57/58

    57

    Exam le Boresi 12-44 #3

    gy

    α α = − =

    In equilibrium

    (3cos sin ) 0dV 

    Wa

    α θ = ° = °71.565 , 26.6 Ans

    α   = °

    = − −

    2

    Stability at 71.565

    d V 

    θ 

    = −

    2

      3.1623

    Wa

    57

     

    Review

  • 8/18/2019 VIRTUAL WORK Problems

    58/58

    58

    Conce ts  The virtual work done by all forces to move the object with

    . ,

    sum of virtual works done by all active forces areequal to zero.

    Type of the system equilibrium – stable, neutral and

    unstable, can be determined by the second derivation ofpotential function with the independent coordinate.

    58