Virtual Laboratory for the dissemination of energy management systems: The case of the metropolitan...

18
Virtual Laboratory for the dissemination of energy management systems: The case of the metropolitan transport system A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-Castelló Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-Castelló The case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya 14th IEEE Conference on Emerging Technologies and Factory Automation Palma de Mallorca, September 22-26 ,2009 1 Institut d’Organització i Control de Sistemes Industrials Universitat Politècnica de Catalunya
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    213
  • download

    0

Transcript of Virtual Laboratory for the dissemination of energy management systems: The case of the metropolitan...

Virtual Laboratory for the dissemination of energy management systems: The

case of the metropolitan transport system

A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-Castelló

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 1

Institut d’Organització i Control de Sistemes IndustrialsUniversitat Politècnica de Catalunya

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 2

Outline

•Introduction•The metropolitan railway transport system• Temporary energy storage elements

•System modelling• Train• Temporary energy storage elements• Chopper• Substations

•The virtual laboratory• Virtual laboratory main window• Speed profile editor• Energy storage element window• Output graphics

•Proposed exercises•Conclusions

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 3

Introduction

The increase in industrial activity, and the improvementof population living standards makes that the EuropeanUnion (EU) increases year by year its energy consumption.

Different strategies are developed to search for alternative energies and to rationalize and optimize the energy consumption.

Temporary energy storage elements can be applied to manage the energy consumption of several systems, such as a metropolitan railway transport system.

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 4

Introduction

In order to disseminate the existing problems in keygeneration, processing and energy management virtual laboratories (VL) can serve as platforms for testing and learning different systems and concepts related with them.

Virtual laboratories:•allow students to construct their own mental model•are cheaper than the hands-on laboratories•allow to compare different scenarios and configurations

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 5

The metropolitan railway transport system

•The energy consumption is not uniform (different and noncoordinate speed profiles).•Substations cannot absorve energy.•Considerable distance between subststations makes that the voltage decays in the catenary due to its impedace.•The electrical energy is usually in a DC form.•The use of energy storage elements allows to reduce energy losses and to improve the energy quality.

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 6

The metropolitan railway transport system

Temporary energy storage elements

Batteries• The most common device for storing

electrical energy.• Main drawbacks: low density of

energy, limited absorption capabilities and low “life expectancy”.

Alternative technologies are being introduced, such as...• Flywheel• Ultracapacitor

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 7

The metropolitan railway transport system

Temporary energy storage elements

Flywheel• Mechanical system which stores kinetic

energy.• Advantages: allows a large number of

charges/discharges cycles.• Cons: an electrical machine is required

Ultracapacitors• Consist of two porous electrodes

immersed in an electrolyte solution.• Advantages: high energy storage density• Cons: high economic cost

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 8

System modeling

The mathematical model used to reproduce the system energy exchange consists in:• The train• Temporary energy storage elements• Chopper• Substations• Catenary

All elements are modelled as a variable current/voltage sources, connected to a variable resistor line.

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 9

System modeling

The train is assumed as a mass with a predefined speed profile.

The train power balance considers a damping effect and the disspated energy in the chopper

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 10

System modeling

The energy storage elements are modeled as

The chopper is a controllable resistive element

Flywheel Ultracapacitor

The substation is considered as a unidirectional voltage source

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 11

System modeling

The equivalent circuit depend on the trains position.

The catenary connects all elements.

The equivalent circuit depends on the trains position.

14th IEEE Conference on Emerging Technologies and Factory Automation , Palma de Mallorca

12

Virtual Laboratory for the dissemination of energy management systems. The case of the metropolitan transport system

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

The virtual laboratory

Configurable System

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 13

The virtual laboratory

Speed profile editor

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 14

The virtual laboratory

Energy storage element window

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 15

The virtual laboratory

Output graphics

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 16

The virtual laboratory

Virtual laboratory main window

14th IEEE Conference on Emerging Technologies and Factory Automation , Palma de Mallorca

17

Virtual Laboratory for the dissemination of energy management systems. The case of the metropolitan transport system

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

The virtual laboratory

Virtual laboratory main window

Virtual Laboratory for the dissemination of energy management systems: A. Escolà, F. Babot, A. Dòria-Cerezo, R. Costa-CastellóThe case of the metropolitan transport system IOC- Universitat Politècnica de Catalunya

14th IEEE Conference on Emerging Technologies and Factory AutomationPalma de Mallorca, September 22-26 ,2009 18

Conclusions

An interactive virtual laboratory which allows the simulation of a energy management system for the metropolitan transportation is presented.

This tool has been developed using the Easy Java Simulations software, which lets you create dynamic models with a graphical interface.

The use of energy storage elements allows a considerable energy saving.