Virtual Fabrication of Aluminum Products

12
Virtual Fabrication of Aluminum Products Microstructural Modeling in Industrial Aluminum Production Edited by Jürgen Hirsch WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA

Transcript of Virtual Fabrication of Aluminum Products

Virtual Fabrication of AluminumProducts

Microstructural Modelingin Industrial Aluminum Production

Edited by

Jürgen Hirsch

WILEY-VCH

WILEY-VCH Verlag GmbH & Co. KGaA

Contents

Preface XVII

List of Contributors XIX

Introduction 1Jürgen Hirsch (Editor)

Part I Main Al Alloys & Products 5Industrial Processing and Typical Applications

1 DC Casting 7Microstructure and General SpecificationsWolfgang Schneider and Gerd- Ulrich Grün

1.1 Introduction 71.2 Overview on Microstructure Related Specifications

of As-cast Material 71.3 Structural Parameters in D.C. Casting of Aluminium

and Aluminium Alloys 81.4 Summary 12

References 12

2 Al 99,5 for Packaging and Foil Applications 13EN-AW 1xxx Performance Requirements for Foil Products &Relationship to Microstructure, Alloy Composition and ProcessingRichard Hamerton

2.1 Product Description 132.2 Material Quality Requirements 152.3 Aluminium Alloy Class and Chemical Compositions 152.4 Mechanical Properties at Final Gauge 152.5 Typical Process Route for DC Cast EN-AW 1200 Foil Products 162.6 Relationship of Performance to Microstructure and Processing 162.6.1 Microstructural Features Controlling Product Performance 16

Virtual Fabrication of Aluminum Products. Microstructural Modelingin Industrial Aluminum Production. Edited by Jurgen HirschCopyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN: 3-527-31363-X

VI

2.6.2

3

3.13.23.3

3.3.13.3.23.3.33.3.43.43.5

4

4.14.24.34.44.54.5.14.5.24.5.34.5.44.5.54.6

5

5.15.2

5.35.4

Effect of Composition and Processing on Microstructureof EN-AW 1200 18References 18

Al-Mn Brazing Sheet for Heat Exchangers 19EN AW-3xxx Processing, Microstructure, and PropertiesHans-Erik EkströmProduct Description 19Aluminium Alloy Class and Chemical Compositions 20Material Quality Requirements 20Brazeability 21Mechanical Strength 22Formability 22Corrosion Resistance 22Production Route and Process Details 23Current Status of Knowledge on Microstructure Evolutionand Properties 24References 26

AIMn1 Mgl for Beverage Cans 27EN-AW 3104 Processing, Microstructure, Simulationand Property ControlJürgen HirschProduct Description 27Material Requirements 28Aluminium Alloys Used and Chemical Compositions 28Quality Parameters 29Production Route and Process Details 31DC-ingot Casting 32Homogenization 32Hot Rolling 33Cold Rolling 34Annealing/Paint Baking 34Simulation of Microstructure Evolution and Properties 35References 36

Al-Mg Sheet for Automotive and Architectural Applications 37EN-AW 5xxx Processing, Microstructure, Simulationand Property ControlTim J. Hurd and Menno R. van der WindenProduct Description 37Material Quality Requirement 37Aluminium Alloy Class and Chemical Compositions 39Quality Parameters and Typical Customer Specificationsfor EN-AW 5005 40

Contents VII

5.4.1 Mechanical Properties 405.4.2 Grain Structure 415.4.3 Earing/Texture 415.4.4 Electrical and Thermal Properties 425.4.5 Corrosion Properties 425.4.6 Joining Properties 425.5 Production Route and Process Details 435.5.1 DC-ingot Casting 445.5.2 Preheating/Homogenisation 445.5.3 Hot Rolling 445.5.4 Cold Rolling 445.5.5 Annealing and Interannealing 455.5.6 Further Processing 455.6 Microstructure /Properties Relationships 455.7 Simulation of Microstructure Evolution and Properties 485.8 Summary 48

References 49

6 Al-Mg-Si Sheet Alloys for Autobody Applications 51

EN AW-6xxx Processing, Microstructure and Property Control

Eike Brünger, Olaf Engler and Jürgen Hirsch6.1 Product Description 516.2 Aluminium Alloy Class and Chemical Compositions 536.3 Material Quality Requirements 546.3.1 Stamping and Hemming Performance 546.4 Surface Appearance after Forming 566.5 Strength after Bake Hardening 576.6 Production Route and Process Details 58

References 61

7 Extrusions from Heat Treatable Alloys 65EN AW-6063, EN AW-6082 and EN AW-7108 -Processing, Microstructure, Simulation and Property Control

Tanja Pettersen and Trond Furu7.1 Product Description and Applications 657.2 Material (Quality) Requirements and Typical Customer

Specifications 677.3 Aluminium Alloy Class and Chemical Compositions 677.4 Production Route and Process Details 687.5 Microstructure Effects and Properties 697.5.1 EN-AW6063 697.5.1.1 Thermo-mechanical Processing 707.5.1.2 The As-deformed Material 727.5.1.3 Recrystallized Material 737.5.2 EN-AW 6082 75

VIII Contents

7.5.2.17.5.37.6

Part II

8

8.18.28.2.18.2.28.38.48.4.18.4.1.18.4.1.28.58.68.6.18.6.28.78.88.98.108.11

9

9.19.29.2.19.2.29.2.39.2.49.39.3.1

The As-deformed Material 75EN-AW 7108 78Modelling Flow Stress, Recrystallization, Microstructuresand Textures 79References 81

Material Models 83Integrated Process Simulations

Physical Metallurgy 85Fundamentals of Through-Process ModellingGünter GottsteinThe Problem 85Homogenization 86Thermodynamics 86Diffusion 88Roughing or Break-down Rolling 91Hot Rolling 92Crystal Plasticity 92Dislocations 92Hardening Mechanisms 93Recovery 96Recrystallization 97Introduction 97Influence of Solutes and Particles 100Grain Growth 103Texture 106Cold Rolling 108Back Annealing 109Summary 109References 110

Solidification Microstructures in Aluminium Alloys 111Review of Modelling ApproachesAlain JacotIntroduction 111Modelling of Grain Structures on the Process Scale 112The Deterministic Approach 112The Stochastic Approach 113Modelling the Grain Structure in DC Casting of Aluminium 115The VIRCAST Model 115Modelling of Internal Grain Structures 116The Primary Phase Formation 117

Contents IX

9.3.2 The Phase Field Method 1189.3.3 Level Set and Pseudo-front Tracking Methods9.3.4 The VIRCAST Primary Phase Model 1209.3.5 The Formation of Interdendritic Phases 1219.3.6 The VIRCAST Secondary Phase Model 1229.4 Conclusion 125

Acknowledgments 125References 126

120

10 Work Hardening of Aluminium Alloys 129A Review of Selected Work Hardening ModelsBjorn Holmedal, Erik Nes and Knut MarthinsenAbstract 129

10.1 Introduction 12910.2 Review of Models 13110.2.1 The MTS-model 13110.2.2 The MMP-model 13310.2.3 The 3IV-model 13610.2.4 Other Models 13810.3 Discussion and Application 13910.3.1 The Flow Stress Models 14010.3.2 Athermal Storage of Dislocations 14110.3.3 Dynamic Recovery 14110.3.4 The Different Stages of Work Hardening 14310.3.5 Modelling Work Hardening and Hot Deformation Behaviour

of Aluminium Alloys 14710.4 Summary 253

Acknowledgements 153References 154

11 Recovery, Recrystallization and Grain Growth 157Review of Softening ModelsGunter Gottstein

11.1 Introduction 15711.2 Phenomenological Models 15811.3 Geometrical Microstructure Models 15911.4 Vertex Models 16111.5 Discrete Models 16311.6 Recovery 16711.6.1 Dislocation Rearrangement 16711.6.2 Subgrain Coarsening 16811.7 Texture Models 16911.8 Summary 173

References 173

X Contents

12 Simulation of Deformation Textures 177A Review of Latest Grain-interaction ModelsPaul Van Houtte, Saiyi Li and OlafEnglerAbstract 177

12.1 Introduction 17712.1 Description of Models 17812.3 Model Validation 18312.4 Discussion and Conclusions 185

Acknowledgments 187References 188

13 Simulation of Sheet Anisotropy 189Polycrystal-plasticity Simulation of Earing Profiles from Texture DataOlaf Engler, Jürgen Hirsch and Stefan KalzAbstract 189

13.1 Introduction 18913.2 Polycrystal-plasticity Modelling of Earing Profiles 19113.3 Application of the Earing Model and Assessment

of the Predictions 19313.3.1 VIR[FORM] Sheet Alloys 19313.3.2 EN-AW 3104 Can Body Stock 19413.3.3 PSN Texture with 25°/70° Earing Profiles 19513.4 Discussion and Conclusions 196

Acknowledgments 197References 198

14 Modelling Microchemistry 199Simulation of Alloy Effects in AluminiumAlexis Miroux, Rias (Z.J.) Lok, Erica Anselminoand Sybrand van der Zwaag

14.1 Introduction 19914.2 Microchemistry Interaction with Microstructure

and Mechanical Properties 20014.2.1 Interaction Mechanisms and Important Parameters

to Exchange 20014.2.1.1 Solutes and Precipitates Influence on Work-hardening 20014.2.1.2 Solutes and Precipitates Influence on Recovery

and Recrystallisation 20114.2.1.3 Influence of the Microstructure on Precipitation 20214.2.2 Examples of Systems and Processes where Coupling is Necessary 20314.3 Microchemistry Models 20414.3.1 Thermodynamic Models 20414.3.2 Models at the Atomic Scale 20514.3.3 Classical Analytical Models 20514.3.4 Model with a Mesoscopic Spatial Resolution 208

Contents \ XI

14.4 Integrated Modelling 20814.5 Conclusion 210

References 211

15 Rolling of Aluminium - 1 213Thermomechanical Processing and FEM SimulationJesus Talamantes-Silva, John H. Beynon and Christophe Pinna

15.1 Introduction 21315.1.1 Thermomechanical Processing:

The Need for a Better Understanding 21315.2 Thermomechanical Processing of Aluminium Alloys 21415.2.1 Hot Rolling 21415.2.2 Cold Rolling 21515.2.3 Thermomechanical Processing (TMP) 21515.2.4 Primary Concepts of Hot Rolling 21615.2.4.1 The Arc of Contact and the Angle of Bite 21615.2.4.2 Reduction, Elongation and Spread 21715.2.4.3 Friction and the Neutral Zone 21815.2.4.4 Relative Slip 21815.2.4.5 Pressure and Shear Stress Distribution 21915.2.4.6 Force, Torque, and Power 21915.2.5 Constitutive Equations and Flow Stress for Hot Rolling 22215.2.5.1 Determination of Flow Curves 22215.2.5.2 The Influence of Temperature and Strain Rate 22315.2.5.3 Common Relationships for Flow Stress During Rolling 22415.2.5.4 A Simple Relationship to Evaluate the Stress During Rolling 22515.3 The Tool-stock Interface 22515.3.1 Introduction 22515.3.2 Friction 22615.3.2.1 The Influence of Friction 22615.3.2.2 Friction Theories 22615.3.2.3 Importance of Lubrication 22715.3.3 Heat Transfer Phenomena 22815.3.3.1 Heat Generation During Rolling 22915.3.3.2 Heat Conduction within the Stock 22915.3.3.3 Heat Lost Through Free Surfaces During Rolling 23015.3.3.4 Thermal Resistance at the Interface 23015.3.3.5 Process and Material Parameters Affecting the Thermal Interface 23215.4 Thermomechanical Processing Using the Finite Element Method 23215.4.1 Introduction 23215.4.2 Numerical Methods in Continuum Mechanics 23315.4.2.1 The Finite Difference Method (FD) 23315.4.2.2 The Boundary Element Approach (BE) 23415.4.2.3 The Finite Element Approach (FE) 23415.4.3 Basics of Finite Element Theory 235

XII Contents

15.4.3.1 Background to the Finite Element Method 23515.4.3.2 Basic Steps in the Finite Element Analysis 23515.4.3.3 Linear FE Analysis 23715.4.3.4 Non-linear FE Analysis 23715.4.3.5 Finite Element Formulations 23815.4.3.6 Origin of Non-linearity 23915.4.3.7 The Integration Scheme: Implicit vs Explicit 24115.4.3.8 Friction Contact 24215.4.4 Finite Element Formulation for Heat Transfer 24315.4.5 The Need for Thermo-mechanical Coupling 24415.4.6 Closing Remarks 244

References 245

16 Rolling of Aluminium - 2 247Practical Aspects for Finite Element Model DevelopmentJesus Talamantes-Silva and John H. Beynon

16.1 Introduction 24716.1.1 Thermo-mechanicalCoupling 24716.2 Selecting an Appropriate Finite Element Code 24816.2.1 Codes Available for this Study 24816.3 The Finite Element Code 24816.4 Modelling Approach to Hot Rolling 24916.4.1 Modelling a Multi-pass Rolling Mill: An Industrial Example 24916.4.2 Modelling a Multi-pass Research Mill: Experimental Trials 26016.4.3 Modelling Breakdown and Finishing Rolling: Industrial Case 26816.5 Closing Remarks 274

17 Forming Simulation 275Numerical Simulation and Material Modelsof Aluminium Sheet FormingDorel Banabic and A. Erman TekkayaAbstract 275

17.1 Introduction 27517.2 History of Numerical Simulation Methods 27617.3 Industrial Requirements to Simulation of Sheet Metal Forming 27817.4 Various Approaches of Approximate Analysis 28017.4.I Element Types 28017.4.2 Quasi-static Implicit Approach 28117.4.3 Dynamic Explicit Approach 28117.4.4 Inverse Approach (One-Step-Methods) 28317.5 Current State 28317.6 Material Models 28617.6.1 BBC Yield Criteria 28817.6.2 Yld2000-2d Yield Criterion 28917.6.3 Cazacu-Barlat Yield Criterion (CB2001) 290

Contents XIII

17.6.4 Validation of the Phenomenological Yield Criteriaor two Aluminium Alloys 290

17.7 Prediction of Forming Limit 29217.7.1 Swift Model 29317.7.2 Hill Model 29317.7.3 Marciniak-Kuczynski Model 29417.7.4 Linear Perturbation Theory 29617.7.5 Empirical Models for the FLC Calculation 29617.8 Expected Future Developments 29717.9 Conclusions 298

References 299

Part III Model Application and Simulation ExercisesThe "VIRFABTPM Trials"

303

18

18.118.218.218.218.218.3

.1

.2

.3

The VI R[*] Projects 305

A European EAA R&D Initiative 2000-2004

Menno R. van der Winden, Gerd- Ulrich Grtin, Trond Furuand Kolstein AsboellIntroduction 305The VIR[*] Projects 305VIR[CAST] 306VIR[FAB] 308VIR[FORM] 309Conclusions 310Acknowledgments 310References 311

19 Challenges for Through Process Modelling 315Property Simulation Requirements for Conventional Aluminium Alloysand ProductsKai F. Karhausen and Jürgen Hirsch

19.1 Challenges for Integrated Process and Microstructure Simulation 31519.2 Modelling of Resulting Properties 318

20 Through Process Simulation of EN AW-5182 Sheet Production 323Integrated Simulation of Microstructure and Resulting PropertiesKai F. Karhausen, Mischa Crumhach, Luc Neumann, Jürgen Hirsch,Matthias Goerdeler, Gunter Gottstein and Reiner KoppAbstract 323

20.1 Introduction 32320.2 Background and Coupling of Sub-models for Through Process

Modelling (TPM) 324

XIV Contents

20.2.1 Thermal/Mechanical Models(Larstran/Shape, RoseRoll and RoseTem) 324

20.2.2 Models for Work Hardening and Dynamic Softening(3IVM and 4IVM) 326

20.2.3 Tracing of State Variables (Strucsim) 32720.2.4 Full Constraints Taylor Texture Model 32720.2.5 Grain Interaction Texture Model (GIA) 32820.2.6 Static Recrystallisation Texture Model (StaRT)

with Nucleation Texture Model (ReNuc) 32920.3 Vertical Macro-micro Model Integration 32920.4 Integrated Thermo-mechanical Simulation

of Sheet Fabrication Proesses 33020.5 Simulation of Microstructure, Texture and Resulting Properties 33420.6 Conclusions 340

Acknowledgments 341References 341

21 Through Process Simulation of EN AW-3103 Sheet Production 343Modelling the Evolution of Microstructure, Texture, Microchemistryand Mechanical Properties

Knut Marthinsen, Shariar Abtahi, Bjorn Holmedal, Erik Nes, ArveJohansen, Trond Furu, Olaf Engler, ZachariasJ. Lok, Alexis Miroux andJesus Talamantes-SilvaAbstract 343

21.1 Introduction 34321.2 Presentation of Sub-models 34521.2.1 Solidification and Homogenization 34521.2.2 Deformation Sub-structure and Work Hardening 34521.2.3 Recovery and Recrystallization 34621.2.4 Microchemistry 34621.2.5 Deformation and Recrystallization Textures 34721.2.6 FEM and Coupling of Sub-models 34821.3 Through Process Modelling 34821.3.1 Casting, Homogenization and Preheating 34921.3.2 Multi-pass Hot Rolling 34921.3.3 Coil Cooling and Cold Rolling 35421.3.4 Final Annealing 35621.3.5 Mechanical Properties 35821.3.6 Forming and Formability 35921.4 Discussion and Conclusions 359

Acknowledgments 361References 361

Contents XV

22 Through Process Simulation of Extrusion 363Modelling the Evolution of Microstructure and Mechanical Propertiesthrough the Process ChainTrond Furu, Anne Lise Dons, Torodd Berstad, Bjorn Holmedaland Knut MarthinsenAbstract 363

22.1 Introduction 36322.2 Modelling Approach 36422.3 Through Process Modelling (TPM), Application and Discussion 36522.3.1 As Cast Microstructure 36622.3.2 As Homogenised Microstructure 36722.3.3 Flow Stress and Substructure during and after Extrusion 36922.3.4 Deformation Texture after Extrusion 37122.3.5 Recrystallization Grain Structure after Extrusion 37122.3.6 Forming of the Extruded Profiles 37322.4 Concluding Remarks 375

Acknowledgments 375References 376

Subject Index 377