VIC$MODEL$CALIBRATION…wwa.colorado.edu/climate/Wood_UTDWR_Report_2015.pdf ·...

31
VIC MODEL CALIBRATION AND FUTURE HYDROCLIMATE ANALYSIS IN SELECTED UTAH WATERSHEDS Report to the Utah Division of Water Resources (source: http://upload.wikimedia.org/wikipedia/commons/2/2c/Usa_Utah_Brighton_Peaks.jpg) Prepared by Andy Wood, NCAR Research Applications Laboratory, Boulder, CO with assistance from Tim Bardsley, NOAA Western Water Assessment, Salt Lake City, UT February 24, 2015

Transcript of VIC$MODEL$CALIBRATION…wwa.colorado.edu/climate/Wood_UTDWR_Report_2015.pdf ·...

 

VIC  MODEL  CALIBRATION  AND  FUTURE  HYDROCLIMATE  ANALYSIS  IN  SELECTED  UTAH  WATERSHEDS  

 

Report  to  the  Utah  Division  of  Water  Resources    

 (source:    http://upload.wikimedia.org/wikipedia/commons/2/2c/Usa_Utah_Brighton_Peaks.jpg)  

 

Prepared  by  

Andy  Wood,  NCAR  Research  Applications  Laboratory,  Boulder,  CO  

with  assistance  from  

Tim  Bardsley,  NOAA  Western  Water  Assessment,  Salt  Lake  City,  UT  

 

February  24,  2015  

 

  1  

1.    BACKGROUND  AND  OBJECTIVES

The  Utah  Division  of  Water  Resources  (UTDWR)   is   interested   in   improving  the  quality  of  the   hydrological   model   results   for   climate   change   scenario   analysis   based   on   the   BCSD  downscaled  CMIP5  climate  and  hydrology  projections  (termed  the  ‘BCSD5’  dataset)1.    The  hydrology   models   used   to   generate   the   BCSD5   runoff   projections   were   not   explicitly  calibrated   for   the   basins   of   interest   to   UTDWR,   nor   were   streamflow   routing   models  implemented  to  provide  daily  streamflow  estimates  at  the  gage  locations  for  the  basins.    As  a   result,   the   runoff   simulations   for   both   the   current   and   future   climate   periods   contain  systematic,   substantial   biases   that   can   hamper   their   interpretation   for   watershed-­‐scale  planning  studies.      

The  project  described   in  this  report  was  designed  to   improve  the  quality  and  usability  of  streamflow  projections  in  the  eight  river  basins  listed  in  Table  1.    Three  primary  activities  were  undertaken.      

1. Implementation  of  a  daily  streamflow  routing  models  in  each  of  the  basins.  2. Model   parameter   estimation   (ie,   calibration)   to   achieve   improved   daily   and/or  

monthly  streamflow  simulation  for  the  historical  period.    3. Simulations   of   the   97   available   BCSD5   climate   scenarios   using   the   calibrated  

models,  yielding  daily  and  monthly  streamflow  projections.      

 

Table  1.    Study  Watersheds  

NWS  Handbook  5  ID   USGS  ID   Location  Name  

OAWU1   10128500   Weber  River  near  Oakley  

WOOU1   10154200   Provo  River  near  Woodland  

LGNU1   10109001   Combined  Flow  Logan  River  

SFSU1   N/A   Scofield  Reservoir  inflow  

HATU1   10174500   Sevier  River  at  Hatch  

BEVU1   10234500   Beaver  River  at  Beaver  

WTRU1   09299500   Whiterocks  River  near  Whiterocks  

BCTU1     10168500   Big  Cottonwood  Creek  near  Salt  Lake  City  

                                                                                                               1  The  BCSD5  projections  are  available  online  at  http://gdo-dcp.ucllnl.org/      

 

  2  

The   models   used   in   the   project   are   the   Variable   Infiltration   Capacity   (VIC)   hydrologic  model   of   Liang   et   al.   (1999)   (version   4.1.2.h)   and   unit   hydrograph   based   streamflow  routing  model  of  Lohmann  et  al   (1996,  1998).    Both  models  were  used   in  generating   the  original  BCSD5  dataset.    All  models  and  data  used  in  the  study  are  publicly  available.      

2.    TASK  DESCRIPTION  

The  project  involved  three  major  tasks,  other  than  compiling  this  report:    (1)  implementing  the  VIC  and  routing  models  for  the  8  study  basins;    (2)  calibrating  the  VIC  models;  and  (3)  running  and  analyzing  the  BCSD5  climate  simulations.    

2.1    IMPLEMENTING  THE  VIC  AND  ROUTING  MODELS  

The  default  VIC  parameter  and  forcing  inputs  and  model  code  were  taken  from  the  BCSD5  effort  described  in  Reclamation  (2013).    Several  GIS  datasets  were  obtained  and  processed  for   the  watershed   areas,   including   the   basin   boundaries   (from   the   Colorado   Basin   River  Forecast  Center,  CBRFC)  and  a  streamline  coverage  (from  the  USGS  NHDPlus  dataset).    The  1/8th   degree   VIC  model   grid  was   clipped   using   the   basin   boundaries,   and   the   fractional  contributing  areas  for  each  grid  cell  were  determined.    The  river  basin  routing  model  plots  shown  in  Appendix  7.1  were  used  to  verify  the  model  configuration  and  correct  for  routing  network  errors.    The  model  drainage  areas  were  compared  with  USGS  drainage  areas  and  confirmed  to  be  within  5%  of  the  USGS  estimates.      

Observed   streamflow  data   for   the   catchments  were  obtained   from   the  USGS,  CBRFC,   and  the   Salt   Lake   City   Department   of   Public   Utilities   (for   BCTU1).     The   CBRFC   flow   record  period  was  1981-­‐2010,  whereas  the  other  sources  had  records  extending  back  at   least  to  1950,  with  the  exception  of  WOOU1,  where  the  data  began  in  1964.    The  only  SFSU1  flow  records  were  from  CBRFC,  and  were  estimated  from  reservoir  changes  and  partial  inflows.  

2.2    CALIBRATING  THE  VIC  WATERSHED  MODELS  

The   VIC   models   and   routing   were   run   with   the   default   calibration   and   the   historical  observed  gridded  forcing  dataset  of  Maurer  et  al.  (2002),  for  the  period  1950-­‐2010  (which  is  also  the  base  period  for  bias-­‐correction  in  the  BCSD  scenarios).    Because  at  least  one  of  the  watersheds   (SFSU1)  had   flow  data  only   for   the  1981-­‐2010  period,  however,   this  was  chosen  to  be  the  calibration  period  for  the  models.    The  simulated  streamflows  with  default  VIC   parameters,   which   are   shown   by   the   blue   lines   in   the   model   calibration   figures   of  Appendix  7.2,  were  found  to  exhibit  substantial  biases.    

The  automated  multi-­‐objective  optimization  calibration  software  (‘MOCOM-­‐UA’  of  Yapo  et  al,  1998)  was  implemented  to  calibrate  each  watershed  separately.    The  objective  function  of   the   calibration   included   three   objective  metrics:  maximize   the  Nash   Sutcliff   Efficiency  

 

  3  

(NSE)  of  simulated  flow  and  log  simulated  flow,  and  minimize  the  maximum  bias  in  mean  monthly  log  flow.    The  model  calibration  parameters  included  the  six  VIC  soil  parameters  (layer  2  and  3  depth,  the  b  infiltration  parameter  (Bi),  and  the  Ws,  Ds,  and  Dsmax  baseflow  parameters)  that  are  commonly  adjusted  in  VIC  model  calibration  efforts.      

Each  parameter  optimization  run  returned  a  pareto-­‐optimal  set  of  16  equifinal  (also  called  ‘non-­‐dominated’)   acceptable  parameter   solutions,   from  which  one  was   selected  by  visual  evaluation  of  daily  and  monthly  hydrograph  time  series.      

2.3    RUNNING  AND  ANALYZING  THE  BCSD5  CLIMATE  SIMULATIONS  

When   the   calibrated   parameter   set   for   each   basin   was   determined,   the   97   BCSD5  projection   forcings   (daily   precipitation,   maximum   and  minimum   temperature,   and  wind  speed)  were  used  to  produce  daily  flow  simulations  from  January  1,  1950  to  December  12,  2099.     The   BCSD5   projections   are   extensively   documented   in   Reclamation   (2013),   and  details   of   the  BCSD5   ensemble   are   not   repeated  here.     The   simulated   flow  outputs  were  aggregated  to  a  monthly  timestep  and  converted  from  model  output  units  of  cubic  feet  per  second  (CFS)  to  acre-­‐feet  (AF).    Monthly  streamflow  outputs  were  further  averaged  for  six  periods:    calendar  years  1950-­‐1999,  and  water  years  1981-­‐2010,  2010-­‐2039,  2040-­‐2069,  2045-­‐2074,  and  2070-­‐2099.    In  addition,  the  day  of  year  and  date  of  the  centroid  of  water  year  flow  (or  ‘center  timing’)  was  calculated.    The  timing  and  monthly  average  flow  results  were  tabulated  to  facilitate  further  analysis.    

3.    RESULTS  

For  each  of  the  study  watersheds,  the  individual  VIC  and  routing  model  domains  are  shown  in  the  figures  of  Appendix  7.1.    Most  of  the  watersheds  were  encompassed  by  fewer  than  10  VIC   1/8th   degree   grid   cells,   although   the   number   of   computation   units   is   higher   because  each  grid  cell  contains  multiple  elevation  bands  and  vegetation  types,  each  permutation  of  which  is  individually  simulated  before  being  re-­‐combined  (without  routing)  to  output  grid  cell  average  moisture  fluxes  (eg,  runoff  and  baseflow).    

The  default  model   calibrations   for   all   locations  were   generally  poor,  with   a   tendency   for  under-­‐simulated   low   flow  periods   and   over-­‐simulated   high   flow  periods.     The   automatic  calibration  routine  required  between  a  few  hundred  and  approximately  1000  iterations  in  each   watershed   to   yield   acceptable   calibrations   for   the   purpose   of   this   study,   and   one  calibration   parameter   set   was   selected   for   each   basin.   The   default   and   final   model  calibration  results  are  shown  for  each  location  are  shown  in  Appendix  7.2.      

Several  of   the  watersheds   (WTRU1,  SFSU1,  OAWU1)  were  difficult   to   calibrate,   requiring  relatively  more  iterations  to  come  to  a  final  solution.    In  some  cases,  the  BCSD5  base  period  simulation  results  revealed  a  bias  relative  to  the  historical  model  simulation  for  the  same  

 

  4  

period.    Typically,  BCSD5  base  case  flows  in  April,  May  and  June  were  biased  low,  despite  matching  the  historical  simulation  in  other  months.    Because  a  major  objective  of  this  effort  is   to   reduce   the   overall   bias   in   BCSD5   base   period   flows   to   inspire   confidence   in   future  BCSD5   flow   projections,   the   selection   of   the   final   model   calibration   parameters   also  considered,  and  attempted   to  offset,   the  BCSD5  base  case   flow  bias   tendencies.     In  effect,  the   resulting   watershed   models   are   calibrated   to   reproduce   the   observed   streamflow  climatology   given   the   BCSD5   base   case   meteorological   climatology,   over   the   1950-­‐1999  base  case  period.    This  base  period  was  used  training  the  BCSD5  climate  downscaling.      

Figures  1-­‐8  show  mean  monthly  streamflow  hydrographs  for  the  8  study  locations.    The  top  panel  of  each  figure  compares  the  observed  historical  flow  for  a  base  period  of  1950-­‐1999  (in  solid  black),  the  VIC  model  simulated  flow  for  the  same  base  period  (in  red),  and  the  BCSD5   ensemble   mean   flow   for   the   base   period   (dashed   black   line).     The  uncalibrated/default   parameter   simulations   shown   (in   blue)   in   the   calibration   plots   of  Appendix  7.2  are  not  included  here.    For  the  WOOU1  and  SFSU1  locations,  the  base  period  flows  were  not  available,  and  an  alternate  period   is  shown  (WY1964-­‐1999  and  WY1981-­‐2010,  respectively)  instead.      

The  bottom  panel  of  each  plot  shows  the  BCSD5  ensemble  means  for  the  base  period  and  for   four   other   periods   often   used   in   climate   and  water   studies:     1981-­‐2010,   2010-­‐2039,  2040-­‐2069,  and  2070-­‐2099  (using  water  years).    The  base  period  BCSD5  results  from  the  top  plot   (dashed   black   line)   are  also   shown   in   this  plot   for   comparison  with   the   future  runs.    

The   model   calibration   effort   was   effective   in   reducing   the   hydrology   model   and  downscaling  biases   so   that   the  BCSD  base   case  ensemble  means   reproduce   the  observed  monthly  mean  hydrograph.    In  cases  such  as  LGNU1,  the  BCSD  base  case  for  this  metric  is  almost   completely   unbiased.     For   several   cases   such   as  WTRU1,   however,   biases   remain  that   may   need   to   be   removed   through   a   additional   steps   to   interpret   the   projected  streamflow  changes  in  the  context  of  the  observed  flow  climatology.    In  all  cases,  the  model  performance  and  resulting  BCSD5  simulations  are  greatly   improved  relative  to  those  that  would  have  been  achievable  with  the  uncalibrated  BCSD5  results.    

The  BCSD5   flow  results   for  ensemble  means  show  clearly   the  projected  mean  changes   in  hydrology  for  the  study  locations.    Table  2  summarizes  quantiles  of  the  BCSD5  ensemble  distribution  for  the  different  periods  listed  above.    At  most  locations,  median  flow  volumes  increase  in  the  future  periods  relative  to  1950-­‐1999,  with  only  HATU1  and  SFSU1  showing  decreases,  and  BEVU1  remaining  about   the  same.    All  projections  show   increased  spread  (ie,   lower   quantiles   decrease   and   upper   quantiles   increase)   in   the   future,   relative   ot   the  past       In   general,   the   shift   of   flow   timing   toward   an   earlier   peak   runoff   that   has   been  documented  elsewhere  in  the  western  US  is  evident  at  all  sites  (Table  3).      

 

  5  

 Figure  1.    Mean  monthly  hydrographs  at  BCTU1  for  (top)  observed  flow,  simulated  flow,  and  ensemble  mean  BCSD5  simulated  flow,  for  the  base  period  of  1950-­‐1999;  and  (bottom)  ensemble  mean  BCSD5  simulated  flows  for  the  base  period  and  four  additional  periods.      

 

 

  6  

 Figure  2.    Mean  monthly  hydrographs  at  BEVU1  for  (top)  observed  flow,  simulated  flow,  and  ensemble  mean  BCSD5  simulated  flow,  for  the  base  period  of  1950-­‐1999;  and  (bottom)  ensemble  mean  BCSD5  simulated  flows  for  the  base  period  and  four  additional  periods.      

 

  7  

 Figure  3.    Mean  monthly  hydrographs  at  HATU1  for  (top)  observed  flow,  simulated  flow,  and  ensemble  mean  BCSD5  simulated  flow,  for  the  base  period  of  1950-­‐1999;  and  (bottom)  ensemble  mean  BCSD5  simulated  flows  for  the  base  period  and  four  additional  periods.      

 

  8  

 Figure  4.    Mean  monthly  hydrographs  at  LGNU1  for  (top)  observed  flow,  simulated  flow,  and  ensemble  mean  BCSD5  simulated  flow,  for  the  base  period  of  1950-­‐1999;  and  (bottom)  ensemble  mean  BCSD5  simulated  flows  for  the  base  period  and  four  additional  periods.      

 

 

 

  9  

Figure  5.    Mean  monthly  hydrographs  at  OAWU1  for  (top)  observed  flow,  simulated  flow,  and  ensemble  mean  BCSD5  simulated  flow,  for  the  base  period  of  1950-­‐1999;  and  (bottom)  ensemble  mean  BCSD5  simulated  flows  for  the  base  period  and  four  additional  periods.      

 

  10  

 Figure   6.    Mean  monthly  hydrographs  at  SFSU1   for   (top)  observed   flow,   simulated   flow,  and  ensemble  mean  BCSD5  simulated  flow,  for  the  base  period  of  1981-­‐2010;  and  (bottom)  ensemble  mean  BCSD5  simulated  flows  for  the  base  period  and  four  additional  periods.      

 

  11  

 Figure   7.    Mean  monthly  hydrographs  at  WOOU1   for   (top)  observed   flow  and  simulated  flows   for   for   WY   1964-­‐1999,   and   ensemble   mean   BCSD5   simulated   flows   for   the   base  period   of   1950-­‐1999;   and   (bottom)   ensemble  mean  BCSD5   simulated   flows   for   the   base  period  and  four  additional  periods.      

 

  12  

 Figure  8.    Mean  monthly  hydrographs  at  WTRU1  for  (top)  observed  flow,  simulated  flow,  and  ensemble  mean  BCSD5  simulated  flow,  for  the  base  period  of  1951-­‐1999;  and  (bottom)  ensemble  mean  BCSD5  simulated  flows  for  the  base  period  and  four  additional  periods.      

 

Tables  2  and  3  (following  two  pages).    Percentiles  of  BCSD5  ensembles  for  annual  flow  (KAF)  and  center  timing  (day  of  water  year,  DWY)  averaged  over  different  periods.        

 

  13  

KAF   period   p0.10   p0.25   p0.50   p0.75   p0.90  BCTU1  

1950-­‐1999   57.9   58.0   58.3   58.6   58.8  1981-­‐2010   54.8   55.6   57.5   59.7   63.0  2010-­‐2039   53.8   56.8   60.1   63.8   66.9  2040-­‐2069   54.6   57.5   61.5   67.1   70.3  2070-­‐2099   54.1   58.8   64.2   68.3   72.9  

BEVU1  

1950-­‐1999   36.8   37.2   37.5   38.0   38.4  1981-­‐2010   33.3   34.7   36.4   39.0   41.2  2010-­‐2039   31.4   34.3   37.3   40.5   44.6  2040-­‐2069   29.5   32.9   37.3   41.2   45.1  2070-­‐2099   29.9   34.1   37.2   42.9   46.3  

HATU1  

1950-­‐1999   77.1   77.8   78.6   80.2   81.8  1981-­‐2010   65.4   69.7   76.8   83.4   87.9  2010-­‐2039   60.9   69.5   77.6   88.5   100.2  2040-­‐2069   54.9   64.8   75.2   89.1   98.3  2070-­‐2099   54.3   64.6   76.2   90.8   103.4  

LGNU1  

1950-­‐1999   186.3   187.2   188.5   189.6   190.6  1981-­‐2010   174.3   179.5   186.5   192.2   206.1  2010-­‐2039   174.2   181.7   193.9   206.8   215.1  2040-­‐2069   175.9   184.6   196.6   216.7   231.1  2070-­‐2099   175.7   189.7   207.5   221.6   232.4  

OAW

U1  

1950-­‐1999   180.2   180.6   181.3   181.9   182.3  1981-­‐2010   171.1   174.5   179.4   186.4   194.8  2010-­‐2039   170.8   176.4   187.8   199.4   206.7  2040-­‐2069   171.0   179.5   192.9   209.1   220.9  2070-­‐2099   169.7   183.0   199.4   213.3   224.0  

SFSU1  

1950-­‐1999   58.7   59.4   60.1   60.7   61.3  1981-­‐2010   52.8   54.9   58.1   62.2   68.2  2010-­‐2039   47.7   51.2   58.6   64.6   72.4  2040-­‐2069   43.1   48.4   57.2   64.4   71.9  2070-­‐2099   42.0   47.7   56.0   66.2   76.3  

WOOU1  

1950-­‐1999   153.0   153.6   154.5   155.1   155.6  1981-­‐2010   145.6   148.4   152.6   158.9   167.2  2010-­‐2039   144.1   150.2   160.3   170.2   176.5  2040-­‐2069   144.6   152.9   164.0   178.3   189.4  2070-­‐2099   143.3   155.5   169.4   183.4   191.5  

WTRU1  

1950-­‐1999   81.3   81.6   82.3   82.8   83.1  1981-­‐2010   75.1   76.8   79.9   84.5   90.3  2010-­‐2039   74.6   78.8   85.6   92.4   97.3  2040-­‐2069   72.8   78.6   87.9   99.6   108.2  2070-­‐2099   72.2   81.0   91.6   101.8   111.1  

 

  14  

DWY   period   p0.10   p0.25   p0.50   p0.75   p0.90  BCTU1  

1950-­‐1999   230   231   231   232   233  1981-­‐2010   230   232   234   235   236  2010-­‐2039   218   222   224   228   230  2040-­‐2069   206   212   217   221   227  2070-­‐2099   193   203   210   219   225  

BEVU1  

1950-­‐1999   224   225   226   227   227  1981-­‐2010   225   227   228   230   232  2010-­‐2039   218   221   223   225   228  2040-­‐2069   209   212   217   221   225  2070-­‐2099   198   206   213   219   225  

HATU1  

1950-­‐1999   208   209   210   210   211  1981-­‐2010   208   210   211   213   215  2010-­‐2039   200   203   207   209   213  2040-­‐2069   193   197   201   205   208  2070-­‐2099   184   190   197   203   209  

LGNU1  

1950-­‐1999   230   230   231   231   232  1981-­‐2010   231   232   234   235   236  2010-­‐2039   221   224   227   230   231  2040-­‐2069   211   216   221   225   229  2070-­‐2099   200   207   215   223   227  

OAW

U1  

1950-­‐1999   234   235   235   236   236  1981-­‐2010   234   235   237   238   240  2010-­‐2039   220   225   228   232   235  2040-­‐2069   207   213   221   226   230  2070-­‐2099   190   202   214   224   230  

SFSU1  

1950-­‐1999   218   219   220   221   221  1981-­‐2010   218   220   222   223   225  2010-­‐2039   207   211   215   218   221  2040-­‐2069   192   202   208   213   217  2070-­‐2099   181   190   203   211   216  

WOOU1  

1950-­‐1999   229   230   230   230   231  1981-­‐2010   229   231   232   234   235  2010-­‐2039   217   221   224   228   230  2040-­‐2069   202   211   218   223   226  2070-­‐2099   191   199   212   220   225  

WTRU1  

1950-­‐1999   241   242   243   244   244  1981-­‐2010   243   244   246   248   249  2010-­‐2039   236   239   241   244   246  2040-­‐2069   228   232   237   241   243  2070-­‐2099   221   226   233   238   242  

 

  15  

4.    DELIVERABLES  DESCRIPTION  

The  following  deliverables  have  been  prepared  to  accompany  this  report.      

1. All  model  code,  parameters,  input  and  output  data  used  in  the  study.  2. The  original  historical  (1),  calibrated  historical  (1),  and  calibrated  future  projection  

(97)  streamflows  for  each  basin,  in  CSV  format.      3. Analyzed  outputs  in  various  forms,  including  period  flow  averages  and  center  timing  

timeseries.    

The  files  associated  with  these  deliverables  are  described  in  Table  4.  

Table  4.    Description  of  the  data  files  provided  with  this  report.

Filename     Description  models.tgz   Tarred   and   gzipped   collection   of   model   code,  

parameters,   historical   forcing   input   and   run   scripts.    Full   documentation   and   instructions   for   model   use   is  beyond  the  scope  of  this  report.    

BASIN.all.month.PERIOD.AF.csv   Monthly   averages   for   the   BASIN   and   PERIOD   in   acre-­‐feet,   for   for  periods  CY1950-­‐1999  and  WY  1981-­‐2010,  2010-­‐2039,  2040-­‐2069,  2045-­‐2074,  and  2070-­‐2099.  

BASIN.all.doy.csv,  BASIN.all.date.csv  

Annual   time   series   of   center   timing   of   each  WY   from  1951-­‐2010,  as  day  of  water  year  and  date  

bcsd5.RUN.tgz   Tarred  and  gzipped  bundles  of  files  for  97  BCSD5  RUNs,  containing   center   timing   files,   routing   model   output  flow   files   (BASIN.year,   BASIN.month   and   BASIN.day)  space-­‐delimited   in   CFS   units;   and   directories   named  fluxes.BASIN/   that   contain   grid   cell   water   balance  output   timeseries   (daily),  with   the   following  variables:    surface   runoff,   baseflow,   evapotranspiration   (ET),   soil  moisture   (3   layers),   snow   water   equivalent,   net  radiation,   relative   humidity,   and   potential   ET   for   tall  and  short  crops  and  a  free  water  surface.    Units  are  mm,  W/sq-­‐m,  and  %.      

BASIN.RUN.CT_date.csv   Annual   time   series   of   center   timing   of   each  WY   from  1951-­‐2099,  including  day  of  water  year  and  date  

BASIN.RUN.month.AF.csv,  BASIN.RUN.day.AF.csv  

Monthly   and   daily   timeseries,   in   acre-­‐feet,   for   each  BASIN  and  BCSD5  RUN,  spanning  1950-­‐99.    

forcing.BCSD5.tgz   Model   forcing   files   for   the   97   BCSD5   projections.    Tarred  and  gzipped.  

 

 

  16  

5.    DISCUSSION  

The   statistical   downscaling   approach,   BCSD,   has   been   used   in   numerous   research   and  planning   studies   over   the   last   decade   to   translate   projected   climate   outputs   from   global  climate  models  (GCMs)  to   local  watershed  scales.    Like  most  downscaling  methods,   it  has  strengths   and  weaknesses   that   are   by   now   fairly  well   documented   in   study   reports   and  academic   literature   (see,   e.g.,   Harding   et   al,   2012).     Among   the   strengths,   the   method  corrects  monthly  biases  in  GCM  precipitation  and  temperature  for  a  historical  base  period  so   that   weather   inputs   generated   from   the   GCM   projections   can   be   used   in   subsequent  analyses   (such   as   hydrologic   modeling)   without   creating   prohibitive   biases   in   those  analyses   for   the   base   period.     As   a   result,   the   GCM-­‐based   downscaled   historical   period  climate  and  associated  analyses  such  as  streamflow  should  by  design  reproduce  observed  climate  and   flow  well,   reducing  concerns  about  systematic  biases   in   future  projections  of  climate  and  flow  at  the  watershed  scale.      

Relative   to   other   methods   such   as   dynamical   downscaling,   which   is   not   statistically  constrained,   BCSD   is   relatively   successful   at   this   objective.     Yet   BCSD   base   period  simulations   nonetheless   often   do   exhibit   residual   bias   relative   to   observations.     This  residual  bias  arises  primarily  from  two  components:    (1)  hydrology  model  bias  and  (2)  bias  in  the  downscaled  forcings.    Poorly  measured  observed  flow  records  can  be  another  source  of  bias.      Hydrology  model  calibration  is  applied  in  this  study  to  reduce  the  model  bias.      

The  downscaling  bias  arises  occurs  because  the  BCSD  corrections  do  not  comprehensively  adjust  all  features  of  the  GCM  climate  outputs  to  bring  them  fully  into  line  with  historically  observed  climate  values.    Working  only  on  a  monthly  level,  the  corrections  do  not  directly  force  agreement  of  features  such  as  seasonal  or  annual  climate  distributions,  or  observed  cross-­‐correlation  between  precipitation  and   temperature,   or   auto-­‐correlation   in  each.     In  addition,  and  particularly  in  relatively  dry  locations,  the  weather  generation  aspect  of  BCSD  can   lead   to   differences   in   the   downscaled   climatology   of   daily   precipitationa   and  temperature,   from   the   observed   climatology.     As   a   result,   the   historical   period   analyses  from  BCSD  typically  do  contain  some  degree  of  bias  that  is  associated  with  the  un-­‐corrected  aspects  of   the  downscaled  GCM  forcings.     In   this  study,   it  was   found  that   the  base  period  (1950-­‐1999)   discharge   values   had   a   tendency   to   be   biased   low   relative   to   the   observed  climatology  (ie,  monthly  averages),  particularly  during  the  peak  runoff  period  (April-­‐June).      

The   presence   of   bias   in   the   downscaled   BCSD5   base   period   can   be   problematic   for  interpretation  of  the  future  projections.    Ideally,  a  faithful  simulation  of  the  base  period  by  the  BCSD5  projection  provides  confidence   that   the  multi-­‐step  analysis  sequence  captures  the   basins’   observed   water   balance,   and   hence   the   future   climate   period   water   balance  sensitivity.    For  this  reason,  an  effort  was  made  in  this  study  to  choose  model  calibrations  that,  when   combined  with   BCSD5   base   period  weather   inputs,   provided  minimal   bias   in  BCSD5  ensemble  average   flows  bias  during   the  base  period.    That   is,   the  calibrations  are  

 

  17  

chosen   to   accommodate   both   hydrology   model   bias   and   BCSD   downscaling   bias.     As   a  result,   the   final   calibrations  selected   in  some   locations   (eg  BEVU1)  produces  base  period  historical   model   simulations   (forced   with   observed   meteorology)   that   are   more   biased  than  would   likely  be  selected   for  a  different  model  application,  but  should  best  serve   the  intercomparison  and  interpretation  of  past  and  future  BCSD5  hydrologic  projections.      

 6.    REFERENCES  

Harding,  BL,  Wood,  AW,  and  Prairie,  JR,  2012.    The  implications  of  climate  change  scenario  selection   for   future   streamflow  projection   in   the  Upper  Colorado  River  Basin,  Hydrol.  Earth  Syst.  Sci.,  16,  3989-­‐4007,  doi:10.5194/hess-­‐16-­‐3989-­‐2012.  

Liang  X.,  D.  P.  Lettenmaier,  E.  F.  Wood,  and  S.  J.  Burges,  1994.  A  Simple  Hydrologically  Based  Model   of   Land-­‐Surface   Water   And   Energy   Fluxes   For   General-­‐Circulation   Models.  Journal  Of  Geophysical  Research-­‐Atmospheres  99  (D7):  14415-­‐14428.  

Lohmann  D.,  E.  Raschke,  B.  Nijssen  and  D.  P.  Lettenmaier,  1998.  Regional  scale  hydrology:  I.  Formulation   of   the   VIC-­‐2L  model   coupled   to   a   routing  model.   Hydrological   Sciences.  43(1):  131-­‐142.  

Lohmann,  D.,  R.  Nolte-­‐Holube,  and  E.  Raschke,  1996.  A  large  Scale  horizontal  routing  model  to  be  coupled  to  land  surface  parametrization  schemes.  Tellus  48A:  708-­‐721.  

Maurer,   E.P.,   AW  Wood,   J.C.   Adam,   D.P.   Lettenmaier   and   B.   Nijssen,   2002.     A   long-­‐term  hydrologically-­‐based  data  set  of  land  surface  fluxes  and  states  for  conterminous  United  States,  J.  Clim.  15(22),  3237-­‐51.  

Reclamation,   2013.   Downscaled   CMIP3   and   CMIP5   Climate   Projections:   Release   of  Downscaled  CMIP5  Climate  Projections,   Comparison  with  Preceding   Information,   and  Summary   of   User   Needs.     U.S.   Department   of   the   Interior,   Bureau   of   Reclamation,  Technical   Service   Center,   Denver,   Colorado,   116   p.,   available   at:  http://gdodcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf  

Wood,  AW,  L.R.   Leung,  V.   Sridhar   and  D.P.   Lettenmaier,   2004,  Hydrologic   implications  of  dynamical   and   statistical   approaches   to   downscaling   climate   model   outputs,   Clim.  Change  Vol.  62,  1-­‐3,  189-­‐216.  

Wood,  AW,  Maurer,  E.P.,  Kumar,  A.  and  D.P.  Lettenmaier,  2002.    Long  Range  Experimental  Hydrologic   Forecasting   for   the   Eastern   U.S.,   J.   Geophys.   Res.,   107(D20),  doi:10.1029/2001JD000659.  

 

  18  

Yapo,  PO,  HV  Gupta,   and  S  Sorooshian,  Multi-­‐objective  global  optimization   for  hydrologic  models,   Journal  of  Hydrology,  Volume  204,   Issues  1–4,  30   January  1998,  Pages  83-­‐97,  ISSN  0022-­‐1694,  http://dx.doi.org/10.1016/S0022-­‐1694(97)00107-­‐8.  

 

 

7.    APPENDICES  

7.1    VIC  AND  ROUTING  MODEL  SETUP  

The   following   8   figures   show   the   configuration   of   the   VIC   model   grid   cells   and   routing  networks.     In   each   figure,   the   star   symbol   shows   the   routing  model   cell   that   is   the  basin  outlet,   the   orange   circle   shows   the   gage   location,   and   the   major   basin   streams   and  boundary  are  also  plotted.    The  figures  do  not  have  individual  captions.      

   

 

  19  

   

 

 

  20  

   

 

 

  21  

   

 

 

  22  

   

7.2    CALIBRATION  RESULTS  

The  following  8  figures  show  the  results  of  the  VIC  model  calibration,  for  each  of  the  study  basins.     The   observed   flow   is   plotted   in  black.     The   simulated  VIC  model   flow  using   the  Maurer   et   al   (2002)   forcings  with  default  VIC  model   calibration  parameters   is   plotted   in  blue.    The  simulated  VIC  model   flow  using   the  calibrated  model  parameters   is  plotted   in  red.    Daily  flows  for  a  short  period  of  a  few  years  are  shown  in  the  top  panel,   illustrating  the   daily   features   (such   as   event   recession   and   flashiness)   of   the   simulation.     These   are  followed  by   longer   annual   timeseries   of  monthly   flows   (middle   two  panels)   to   show   the  interannual  characteristics  of  the  simulations.    The  bottom  panel  then  shows  the  long  term  monthly   average   flows,   which   reflect   the  mean  water   balance.     Units   are   cubic   feet   per  second,  which  is  the  model  output  unit.    The  figures  do  not  have  individual  captions.  

These   plots   show   only   the   30-­‐year   calibration   period   for   each   plot,   although   the   longer  period   (1950-­‐2010)   flows   were   generated   and   included   in   the   data   deliverables.     The  calibration   was   found   to   be   sufficient   to   estimate   model   parameters.     A   split-­‐sample  calibration  and  validation  was  not  used,  but   the  good  performance  of   the  simulations   for  the  1950-­‐1999  base  period   (shown   in   Figures  1-­‐8),  which  has  20   additional   years,   gives  some  insight  into  the  stability  of  the  calibration.      

 

  23  

 

 

  24  

   

 

  25  

 

 

 

  26  

   

 

  27  

 

 

 

  28  

 

 

  29  

   

 

  30