Vibrations & Shock

download Vibrations & Shock

of 34

Transcript of Vibrations & Shock

  • 8/18/2019 Vibrations & Shock

    1/34

    MACHINE DESIGN EXCEL SPREAD SHEETS  

    Damped Vibrations With or!in" #n!tionThe inertia forces of rotating and oscillating machinery cause elastic supports to vibrate.

    Vibration amplitudes can be reduced by installing vibration damping mounting pads or springs.

    Simp$e Vibratin" S%stemsExternal forcing function F(t) varies with time and is externally applied to the mass M.

    Fm is the maximum applied force.

    M is the mass of the vibration obect that is e!ual to "#g.

    g is the gravitational constant$ %&.& ft#sec'&.

    is the displacement from the e!uilibrium position.

    is the damping constant force per second velocity

    and is proportional to velocity.

    * is the spring stiffness force per inch.

    &ndamped Vibrations+f the mass M shown above is displaced through distance x and released it will vibrate freely.

    ,ndamped vibrations are called free vibrations. -oth x and g are measured in inch units.

    Inp#t

    "eight$ " & lb

    /pring stiffness$ 0 12 lb#in

    Ca$!#$ation

    Gra'itationa$ Content( " ) *+,+ -t.se!/+

    0 ) *,12+Stati! De-$e!tion( 3 ) W . 4

    ) 5,+5 in  

    Mass( M ) W . 6"71+8

     ) 5,559 $bm:se!/+.in

    Nat#ra$ re;#en!%( -n ) 61.+7087647.M8/,9 H<

    ) =>,59 H<

    An"#$ar -re;#en!%( ? ) +707-n

    ) 2*2 radn.se!

     

    opy write$ 3 Machine 4esign /preadsheet alculations by 5ohn 6 7ndrew$ 8 5uly &228

    "e will assume$ F(t) Fm9/in(:t)

    ;mega$ : is the angular fre!uency as defined below.

    4isplacement vsTime

  • 8/18/2019 Vibrations & Shock

    2/34

     

    or!ed &ndamped Vibrations Inp#tMotor weight$ " =2 lb

    Motor speed$ > 11=2 rpm

    1B=2 rpm

    ,2 H

  • 8/18/2019 Vibrations & Shock

    3/34

    Dist#rbin" -or!e -re;#en!%( - ) N . =5 H<

     ) +>,1 H<

    Dist#rbin" -or!e an"#$ar -re;#en!%( -a ) +707- rad.se!) 1*,* rad.se!

    #t o- ba$an!e -or!e d#e to rotatin" mass

    ) Wi7-a/+7e . "

     ) 9+1= $b-  

    or!in" -re;#en!% . Nat#ra$ -re;#en!% ) r ) - . -n

    ) 1,22

    Amp$it#de ma"ni-i!ation -a!tor( M ) 1.6 61 :r/+8 6+7Cr8/+8

     ) 5,=1

    Vibration amp$it#de( 3 ) 6M876 . 48 in

    ) 5,1>= in

    Transmissibi$it%( TR ) 6M8761 6+7r7C8/+8/,9 ) 5,2

    Transmissibi$it% or!e( tr ) 6TR87

     ) 2=11 $b-  

    Criti!a$ Dampin"Criti!a$ dampin" o!!#rs Fhen the 'ibration amp$it#de is stab$e

    C ) Dampin" Coe--i!ient

    C!rit ) Criti!a$ Dampin" Coe--,

    C!rit ) +767M8/,9

    ) S%stem sti--ness

    M ) Vibratin" Mass

  • 8/18/2019 Vibrations & Shock

    4/34

    Transmissibi$it% 6TR8Transmissibility is the ratio of the force

    transmitted to a machineDs supports

    due to a periodic imbalance in an engine$

    pump$ compressor$ pulverier$ motor$ etc.

    The amplitude of vibrations in machinery

    mountings can be reduced with resilient

    pads or springs called isolators.

    The isolated system must have a natural

    fre!uency less than 2.B2B x the disturbing

    periodic imbalance force.

    The vibration amplitude will increase if the

    isolated system has a natural fre!uency

    higher than 2.B2B x the disturbing fre!uency.

    Transmissibility ratio is e!ual to the$ mass displacement amplitude # base displacement amplitude.

    TR ) X+ . X1

    The transmissibility ratio T6$ is the vibration amplitude reduction.

    Inp#t

    4isturbing force fre!uency$ fd 18.2 G

    ,ndamped natural fre!uency$ fn 1&.2 G

    Ca$!#$ation

    Transmissibi$it%( TR ) 1.61:6-d.-n8/+8

    TR ) :1,+= C

    I- mo#ntin" damper pad nat#ra$ -re;#en!% is 4noFn

    Inp#t

    Transmissibility$ T6 2.= C

    4isturbing force fre!uency$ fd 1@ G

    Ca$!#$ations

    S%stem nat#ra$ -re;#en!%( -n ) -d . 6161.TR88/5,9

    AnsFer -n ) ,1 G

    /prings are employed as vibration isolators.

    Series Sprin"s Combined Sti--ness Inp#t01 12 lbf#in

    0& 1= lbf#in

    Ca$!#$ation

    1 . 4 ) 1 . 41 1 . 4+

    4 ) 64174+8 . 641 4+8

  • 8/18/2019 Vibrations & Shock

    5/34

    AnsFer 4 ) = lbf#in

    Para$$e$ Sprin"s Combined Sti--nessInp#t

    01 1& lbf# in

    0& &@ lbf# in

    Ca$!#$ation

    AnsFer 4 ) 41 4+

    4 ) *= $b-. in

    Criti!a$ Speed o- Rotatin" Sha-tThe critical speed of a shaft is itsnatural fre!uency. The amplitude of 

    any vibrating system will increase

    if an applied periodic force has the

    same or nearly same fre!uency.

    6esonance occurs at the critical

    speed.

    Inp#t

    Flywheel mass$ " =2 lbm/haft diameter$ 4 1.222 in

    /teel /haft$ E &H222222 lb#s! in

    -earing center distance$ I& &2 in

    Flywheel overhang$ I1 ? in

    1 in/2

    The ba$$ bearin"s a!t as pi'otin" s#pports

    $%Fhee$ stati! de-$e!tion is

    3 ) W7L1/+76L1L+8 .*7E7I in

     ) 5,5+1 in

    Nat#ra$ -re;#en!%( - ) 61 . +70876" . 38/,9 H<

    ) +1,= H

  • 8/18/2019 Vibrations & Shock

    6/34

     

    Beam Sti--ness 648( De-$e!tion 638( and Nat#ra$ re;#en!% 6 - 8Canti$e'er( $oad W at ree End Inp#t

    Ioad at Free End$ " 822 lbf  

    Iength$ I %2 in

    JoungDs Modulus$ E &H222222 lb#s! in

    Moment of +nertia$ + @.222 in'@

    Ca$!#$ation

    De-$e!tion( 3 ) W7L/* . 6*7E7I8 in

    AnsFer 3 ) 5,52 in

    Sti--ness( 4 ) *7E7I.L/* $b-.in

    AnsFer 4 ) 1+> $b-.in

    Nat#ra$ -re;#en!%( - ) 61.+0876" . 38/5,9

    - ) 1*+1 H<

    Canti$e'er( &ni-orm Load F Inp#t

    ,niform Ioad$ w @=2 lbf#in

    Iength$ I @ in

    JoungDs Modulus$ E &H222222 lb#s! in

    Moment of +nertia$ + &.222 in'@

    Ca$!#$ation

    De-$e!tion( 3 ) F7L/2 . 67E7I8 in

    AnsFer 3 ) 5,551 in

    Sti--ness( 4 ) 7E7I.L/* $b-.in

    Nat#ra$ -re;#en!%( - ) 61.+0876" . 38/5,9

    - ) >+ H<

    Beam( Pinned ends( W at Mid Span Inp#t

    Ioad at Mid /pan$ " @22 lbf

    Iength$ I 82 in

    JoungDs Modulus$ E &H222222 lb#s! in

    Moment of +nertia$ + %.222 in'@

    Ca$!#$ation

    De-$e!tion( 3 ) W7L/* . 627E7I8 in

    AnsFer 3 ) 5,5+1 in

    Sti--ness( 4 ) 27E7I.L/* $b-.in

    AnsFer 4 ) 1>***,********** $b-.inNat#ra$ -re;#en!%( - ) 61.+0876" . 38/5,9

    - ) +>+ H<

    Beam( Pinned ends( &ni-orm Load F Inp#t

    ,niform Ioad$ w =22 lbf#in  

    Iength$ I @2 in

    JoungDs Modulus$ E &H222222 lb#s! in

    Moment of +nertia$ + &.222 in'@

    Ca$!#$ation

  • 8/18/2019 Vibrations & Shock

    7/34

    De-$e!tion( 3 ) 97F7L/2 . 6*27E7I8 in

    AnsFer 3 ) 5,+ in

    Sti--ness( 4 ) *27E7I.697L/*8 $b-.in

    AnsFer 4 ) =>=55 $b-.in

    Nat#ra$ -re;#en!%( - ) 61.+0876" . 38/5,9

    - ) +12 H<

    Beam( i3ed Ends( Load W at Mid Span Inp#t

    Ioad at Mid /pan$ " B22 lbf  

    Iength$ I ?2 in

    JoungDs Modulus$ E &H222222 lb#s! in

    Moment of +nertia$ + &.222 in'@

    Ca$!#$ation

    De-$e!tion( 3 ) W7L/* . 61>+7E7I8 in

    AnsFer 3 ) 5,5*+ in

    Sti--ness( 4 ) 1>+7E7I.L/* $b-.in

    AnsFer 4 ) +195 $b-.in

    Nat#ra$ -re;#en!%( - ) 61.+0876" . 38/5,9- ) 1>11 H<

    Beam( i3ed ends( &ni-orm Load F Inp#t

    ,niform Ioad$ w 822 lbf#in

    Iength$ I =2 in

    JoungDs Modulus$ E &H222222 lb#s! in

    Moment of +nertia$ + &.222 in'@

    Ca$!#$ation

    De-$e!tion( 3 ) F7L/2 . 6*27E7I8 in

    AnsFer 3 ) 5,1= in

    Sti--ness( 4 ) *27E7I.6L/*8 $b-.in

    AnsFer 4 ) 11= $b-.in

    Nat#ra$ -re;#en!%( - ) 61.+0876" . 38/5,9

    - ) *=9 H<

    P$ate Nat#ra$ re;#en!% 6-8Re!tan"#$ar p$ate nat#ra$ -re;#en!%( - ) 6 . +708766D7"8.6F7a/288

    6ectangular Alate$ simply supported edges ( ss

    6ectangular Alate$ fixed edges ( -i3ed

    Vibration Coe--i!ients

    a . b ( ss ( -i3ed

    1,5 1>, *=,5

    5, 1=,+ +>,>

    5,= 1*,2 +9,>5,2 11,9 +*,=

    5,+ 15,* ++,=

    5,5 >, ++,2

    Re!tan"#$ar P$ate Nat#ra$ re;#en!% 6-8Inp#t

    Modulus of elasticity$ E &.H2EK2B lbf#in'&

    Alate thic0ness$ t 2.= in  

    Cir!#$ar Sti--ness a!torsircular Alate$ simply supportededges$ * @.HH.

    ircular Alate$ fixed supported edges$* 12.&.

  • 8/18/2019 Vibrations & Shock

    8/34

    AoissonDs ratio$ v 2.%

    Alate short side$ a %8 in

    Alate long side$ b @=.2 in

    From the table above$ *$ss or *fixed 18.&

    Ioad per unit area$ w =2 lb#in'&

    Ca$!#$ation

    AnsFer a . b ) 5,5

    D ) E7t/* . 61+761 : J/+88

    AnsFer D ) **1>=5

    0 ) *,12+

    Gra'itationa$ a!!e$eration( " ) *=,2 in.se!/+

    Re!tan"#$ar P$ates( - ) 6 . +708766D7"8.6F7a/288

    AnsFer - ) *,>* H<

    Cir!#$ar P$ate Nat#ra$ re;#en!% 6-8 Inp#tIoad per unit area$ w =2 lb#in'&

    Modulus of elasticity$ E &.H2EK2B lb#in'&

    Alate thic0ness$ t 2.=

    AoissonDs ratio$ v 2.%

    Alate radius$ r %8 in

    From the table above$ *$ss @.HH

    *fixed 12.&

    Ca$!#$ation

    0 ) *,12+

      " ) *=,2 in.se!/+

    D ) E7t/* . 61+761 : J/+88

    AnsFer D ) **1>=5

    Simp$% s#pported ed"es( - ) 6 . +708766D7"8.6F7r/288

    AnsFer - ) 1,+1* H<

    i3ed ed"es( - ) 6 . +708766D7"8.6F7r/288

    AnsFer - ) +,2> H<

    Ba$an!in" Rotatin" Sha-ts

    Masses in the Same P$aneFor static balanceL

    Two masses$ M1 and M& must be in the

    same plane and 1?2 degrees out of

    phase and moments must balanceL

    Kmi7Ri ) 5

  • 8/18/2019 Vibrations & Shock

    9/34

    M17R1 M+7R+ ) 5

     

    Masses in Di--erent P$anesFor static and dynamic balance there must

    be no unbalanced moments and couples.

    "hen the masses are in the same plane

    static and dynamic balance occurs whenL

    Kmi7Ri7Xi ) 5

    M+7R+7X+ M*7R*7X* M27R27X2 ) 5

    The cran0 (Mc) is statically and dynamically

    balanced by two counter weights$ M1 M&$

    all three masses are in the same plane.

    Find the masses of the two counterweights.

    Inp#t Example only 

    Mass 1 .

  • 8/18/2019 Vibrations & Shock

    10/34

    M!7E7X1 ) M+7R+76X1X+8

    M+ ) M!7E7X1 . R+76X1X+8

    AnsFer M+ ) +,>95*1599> $bm

    Condition -or stati! ba$an!e

    Kmi7Ri ) 5

    5 ) M17R1M+7R+:M!7E

    Mass re;#ired to ba$an!e M!( M1 ) 6:M+7R+M!7E8 . R1AnsFer M1 ) *,*=>9=9+12 $bm

     

    or!ed( Stead% State Vibration E3amp$e

    alculate the two spring support stiffness

    (0) if the horiontal vibration amplitude is to

    be no more than 2.&= inches.

    Estimated friction is =N of the critical

    damping factor (c).

    Inp#t

    Motor speed$ > %82 rpm

    MotorKompressorKTable Mass$ " ?2 lbm

    ritical damping coefficient c

    Friction damping coefficient f

    (Friction# ritical) damping factor ratio$ 46 f # c

    2.2=

     7llowable vibration amplitude$ J 2.&= in

    Ca$!#$ation

    Motor speed( ? ) +707N . =5

    AnsFer ? ) *,52 rad . se!

    " ) *=,2 in.se!/+

    M ) W . "

    AnsFer M ) 5,+55 m:se!/+.in

    Tota$ sprin" s#pport sti--ness( t ) +7

    t ) M7?/+

    AnsFer t ) +>2,* $b- . in

    ) t . +

    AnsFer ) 12,+ $b- . in

    Criti!a$ 'a$#e o- dampin" -a!tor( C! ) +76t7M8/,9

    AnsFer C! ) 19,=1

    ri!tion dampin" -a!tor( C- ) C!7DR

  • 8/18/2019 Vibrations & Shock

    11/34

    AnsFer C- ) 5,1

    The motor periodi! imba$an!e -or!e( ) o7Sin6?7t8 $b-  

    The motor pea4 imba$an!e -or!e( o ) C-7?7 $b-  

    At resonan!e( ) o . C!7? in

    o ) C-7?7

    AnsFer o ) ,*= $b-    

    Verti!a$ Vibration Damper Se$e!tion 7 metal tumbling drum driven by an electric

    motorCgear$ right$ rotates at 12?2 rpm causing

    a disturbing vibration to the floor on which it is

    mounted.

     

    The loaded drum$ motor$ and support base .

    weigh @22 lbm.

    Vibration Iso$ator Se$e!tionSe$e!t 2 'ibration iso$ators that Fi$$ pro'ide

    5 'ibration red#!tion app$ied to the -$oor, Inp#t

    /ystem weight$ " &22 lbm

    >umber of isolators$ > @Vibration reduction$ V6 2.?2

    4isturbing fre!uency$ Fd 12?2 rpm

    Ca$!#$ation

    Wei"ht per iso$ator( F ) W . N $bm

    AnsFer F ) 95

    Transmissibi$it%( T ) 1 : VR

    AnsFer T ) 5,+5

    AnsFer d ) 1 rps

    Transmissibi$it%( T ) 61 . 61:6d . n8/,98S%stem nat#ra$ -re;#en!%( n ) d . 61 61.T88/,9

    AnsFer n ) ,*9 H<

    " ) *=,2 -t . se!/+

    Sti--ness( ) W . 3

    De-$e!tion( 3 ) W .

    &ndamped nat#ra$ -re;#en!%( n ) 61 . +08767" . W8/,9 H<

    n ) 61 . +0876" . 38/,9

  • 8/18/2019 Vibrations & Shock

    12/34

    n ) *,1+761 . 38/,9

    So$'in" -or de-$e!tion in the abo'e( 3 ) 6*,1+8/+ . 6n8/+

    AnsFer 3 ) 5,11 in

     

    S#""ested ma3 transmissibi$it%( Tma3 ) 15

    Re-, @En"ineered So$#tions@ a Barr% Contro$s p#b$i!ation,

    At resonan!e transmissibi$it%( T ) 1. 6+7C . C!rit8

    C . C!rit ) 1. 6+7T8

    AnsFer C . C!rit ) 5,59

    Iso$ator Se$e!ted

  • 8/18/2019 Vibrations & Shock

    13/34

     

    The O-arry ontrolsO information presented here may be found on the web atL

    O-arry 8%%7 /eries Mounts are medium weight mounts normally

    used for vertically applied loads to prevent transmission of noise

    and vibration caused by rotation of imbalanced e!uipment

    (i.e. generators$ blowers$ pumps$ etc...)

    IowCprofile$ low fre!uency elastomeric noise and vibration

    www.barrycontrols.com

    http://www.barrycontrols.com/http://www.barrycontrols.com/

  • 8/18/2019 Vibrations & Shock

    14/34

     isolators for medium weight industrial e!uipment.O

    The above graph shows a static load of 122 lbs produces a deflection of 2.&B= inches.

     

  • 8/18/2019 Vibrations & Shock

    15/34

    This is the end o- this spread sheet,

  • 8/18/2019 Vibrations & Shock

    16/34

    8H.2=&==

  • 8/18/2019 Vibrations & Shock

    17/34

  • 8/18/2019 Vibrations & Shock

    18/34

  • 8/18/2019 Vibrations & Shock

    19/34

  • 8/18/2019 Vibrations & Shock

    20/34

  • 8/18/2019 Vibrations & Shock

    21/34

  • 8/18/2019 Vibrations & Shock

    22/34

     

  • 8/18/2019 Vibrations & Shock

    23/34

  • 8/18/2019 Vibrations & Shock

    24/34

  • 8/18/2019 Vibrations & Shock

    25/34

  • 8/18/2019 Vibrations & Shock

    26/34

  • 8/18/2019 Vibrations & Shock

    27/34

  • 8/18/2019 Vibrations & Shock

    28/34

  • 8/18/2019 Vibrations & Shock

    29/34

  • 8/18/2019 Vibrations & Shock

    30/34

  • 8/18/2019 Vibrations & Shock

    31/34

    MACHINE DESIGN EXCEL SPREAD SHEETS

    Sho!4 Loads 7 shoc0 load is caused by a nearly instantaneous

    rise and fall of acceleration.

    /hoc0 input pulse is normally

     expressed in gDs.

    ree a$$ Impa!t Sho!4

     7 typical free fall shoc0 test is an 11

    millisecond second half sine waveform

    with a pea0 acceleration of 1= g.

    The above graph shows a static load of 122 lbs produces a natural fre!uency of B.& G.

    Sho!4 Imp#$se De-$e!tion

     

     7n electronic device is to be subected to a

    1=g half sine shoc0 lasting 11 milliseconds.

    The unit is mounted on a 12 G naturalfre!uency isolation system.

    4etermine the maximum shoc0 transmission

    Inp#t

    Galf sine shoc0 acceleration$ a 1& g

    /hoc0 pulse time$ t 2.21? sec

    g %?8.@ in# sec'&

    +solator natural fre!uency$ Fn &2 G

    opy write$ 3 Machine 4esign /preadsheet alculations by 5ohn 6 7ndrew$ 8 5uly &228

  • 8/18/2019 Vibrations & Shock

    32/34

  • 8/18/2019 Vibrations & Shock

    33/34

    information shown here may be found atL

    *orfund division of -aldor Motor corp.

    and at the direct lin0 above.

    OEffective vibration control for loads up to

    . /tatic deflections up to 1.%8O. 7vailablewith$ or without adustable snubbing.O

    O7pplications includeL /tationary e!uipment$

    GV7$ ompressors$ Aumps$ Motor

    , H<

    Ha$- Sine Sho!4 P#$se re;#en!%( p ) 1. 6+ 7 t8AnsFer p ) 1==, H<

    Sho!4 Absorber Se$e!tion

    Ma3 Verti!a$ Sho!4 Transmitted( G' ) Wi 76+707n8. "  

    AnsFer G' ) >,5 "

    Re;#ired A'era"e Sprin" Rate( s ) 6+707n8/+76W."8

    AnsFer s ) 1** $b.in

    Combined Iso$ator Verti!a$ re;#en!%( ! ) *,1*76s . Wi8

    AnsFer ! ) 1>, H<

    Ma3im#m D%nami! Tra'e$( Dt ) G'7" . 6+707s8/+

    AnsFer Dt ) 5,++ in

    Ma3 Ha$- Sine P#$se Ve$o!it%( V' ) +7"7G'7t . 0

    AnsFer V' ) *=,> in.se!

     

    httpL##www.baldor.com

    http://www.baldor.com/http://www.baldor.com/

  • 8/18/2019 Vibrations & Shock

    34/34

     7boveL *orfund division of -aldor Motor corp.

    This is the end o- this spread sheet,