vibration of cables

17
 1 Chapter 9 Mathematical Models of Continuous Systems Vibration of Strings(Cables) Ref: “Anaytical Methods in Vibr ations,” L Meirovitch 2ed, 196 7, §5-6( pp. 143-144) Figure 5.2 2 2 2 2 ) , ( ) (  ) , ( ) ( ) , ( ) , ( ) , ( ) ( ) ( t t x y dx x x t x y x T dx t x p dx x t x y x t x y dx x x T x T = + + + ρ  2 2 ) , ( ) ( ) , ( ) , ( ) ( t t x y x t x p x t x y x T x = + ρ (5.59) Partial differential equation T wo boundary conditions and two initial conditions are required for solution Boundary Conditions end free forced t x p e = 0 ) , (  end fixed t x y e 0 ) , ( =  

Transcript of vibration of cables

Page 1: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 1/17

  1

Chapter 9 Mathematical Models of Continuous Systems

• Vibration of Strings(Cables)

Ref: “Anaytical Methods in Vibrations,” L Meirovitch 2ed, 1967,

§5-6( pp. 143-144)

Figure 5.2

2

2

2

2

),()( 

),()(),(),(),()()(

t x ydx x 

x t x yx T dx t x pdx 

x t x y

x t x ydx 

x x T x T 

∂=

∂−+

∂+∂

∂ ∂

∂+

ρ

 

2

2),(

)(),(),(

)(t 

t x yx t x p

t x yx T 

x  ∂

∂=+

∂ρ (5.59)

Partial differential equation

Two boundary conditions and two initial conditions are required

for solution

•Boundary Conditions

end freeforced t x pe

−= 0),(  

end fixed t x y e 0),( =  

Page 2: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 2/17

  2

end freex 

yx T 

ex 0)( =

∂ 

•Initial Conditions

)0,(),0,( x yx y &  

Change Notation

),(),( t x vt x y →  

• Vibration of Taut Cable with Damper 

Non-dimensionalized Equation of Motion

The motion of the taut cable in the linear range is described by the

following partial differential equation

)x x ( t 

vc

vm

v)x ( T  c−

∂+

∂=

∂δ

2

2

2  

v=lateral displacement from static position.

x=coordinate along the cable chord line,xc = location of the damper , t=time, and

T=initial static tension force in the cable,

m=mass per unit length of cable,

c=damper coefficient,

δ  = Dirac’s delta function,

The inherent damping of the cable is assumed to be negligible.

§9.1 Longitudinal Vibration of Bars (Rods, Truss Members)

Page 3: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 3/17

  3

),( t x u

),( t x p

y  

x t x p ∆),(

),( t x p

 

),( t x x p ∆+

)( x x A ∆+)(x A

 

Figure 9.1. Member undergoing axial deformation. (a) portion of a

member undergoing axial deformation. (b) Freebody diagram

u

∂=ε (9.1)

εσ E = (9.2)

σAP = (9.3)

∑ ∆=+x x 

amF  )( (9.4)

2

2

),(),(t 

ux At x P t x x P x p∂

∂∆=−∆++∆ ρ (9.5)

2

2

0

),(),(lim

uAp

t x P t x x P 

x  ∂

∂=+

−∆+

→∆

ρ  

2

2

uAp

∂=+

∂ρ (9.6)

2

2

uAp

uAE 

x  ∂

∂=+

∂ρ (9.7)

x   x ∆

Page 4: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 4/17

  4

•Boundary Conditions

end freeforced t x P e

−= 0),( (9.8a)

end fixed t x ue

0),( = (9.8b)

end freex 

uex 

0=∂

∂(9.8c)

Example 9.1 Boundary Conditions

Determine the appropriate axial deformation boundary conditions at

x=0 for the two members shown below.

Solution

02

2

),0( =∂

∂=

x t 

umt P  (1)

0),0( =∂

∂=

x x 

uAE t P  (2)

02

2

0 == ∂

∂=

∂x x 

um

uAE  (3)

k  

m  

m  ),0( t P 

Page 5: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 5/17

Page 6: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 6/17

  6

 

§9.2 Transverse Vibration of Beams (Bernoulli-Euler Theory)

Figure 9.2. Member undergoing transverse vibration

R

y−

=ε (9.9)

R

EI t x M  =),( (9.10)

+↑∑ ∆=yy

amF  )( (9.11)

∑ ∆=+ α)(G G 

I M  (9.12)

∑ = 0G 

M  (9.13)

2

2

),(),(),(t 

vx Ax t x pt x x S t x S ∂

∂∆=∆+∆+− ρ (9.14)

2

2

),(t 

vAt x p

∂=+

∂− ρ (9.15)

M S 

∂= (9.16)

2

2

),(

vEI t x M 

∂=   (9.17)

Page 7: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 7/17

  7

 

),(2

2

2

2

2

2

t x pt 

v

Ax 

v

EI x  =∂

+

ρ (9.18)

•Boundary Conditions

a. Fixed end:

0),( =t x ve

(9.19a)

0=∂

∂= ex x 

v(9.19b)

b. Simply supported*

end:

0),( =t x ve

(9.20a)

0),( =t x M e

(9.20b)

02

2

=

∂= ex x 

v(9.20c)

c. Force-free end:

0),( =t x S e

(9.21a)

0),( =t x M e

(9.21b)

02

2

=

∂= ex x 

vEI x  (9.22a)

02

2

=∂

∂= ex x 

v(9.22b)

Page 8: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 8/17

  8

 

Example 9.2 Boundary Conditions

Determine the appropriate boundary conditions if a point mass m is

attached at the end of the beam at x =L 

Solution

+↑

∑ =yy maF  (1)

Lx t 

vmt LS  =∂

∂=

2

2

),( (2)

Lx Lx t 

vm

vEI 

x == ∂

∂=

∂2

2

2

2

(3)

∑ = 0G 

M  (4)

0),( =t LM  (5)

02

2

=∂

∂= Lx 

vm (6)

m

L  

),( t LS 

),( t LM   m

Page 9: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 9/17

  9

 

Example 9.3 Compressive Load  

Determine the equation of motion for a beam that is subjected to a

compressive load N , which remains parallel to the x-axis. Neglect axial 

strain. (Note: Coupled axial-bending motion will be considered in

Problem 9.1.)

Solution

+↑∑ ∆= yymaF  (1)

+∑ = 0G 

M  (2)

2

2

),(t 

vAt x p

∂=+

∂− ρ (3)

0),(

)],(),([),(),(

=∆∆+−

−∆++−∆+

x t x x S 

t x vt x x vN t x M t x x M (4)

Page 10: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 10/17

  10

S x 

vN 

M =

∂+

∂(5)

),(2

2

2

2

2

2

t x pt vA

x vN 

x M  =∂∂+∂∂+∂∂

ρ (6)

),(2

2

2

2

2

2

2

2

t x pt 

vA

vN 

vEI 

x =

∂+

∂+

∂ρ (7)

Page 11: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 11/17

  11

 

●Torsional Vibration of Bars: Newton’s Laws

Ref: “Anaytical Methods in Vibrations,” L Meirovitch 2ed, 1967,

§5-9( pp.156-157)

Figure 5.6

t x x GJ t x M 

∂=

),()(),(

θ(5.125)

)(x GJ  : torsional stiffness.

2

2),(

)(),(),(),(

),(x 

t x dx x I t x M dx t x mdx 

t x M t x M 

T T 

T ∂

∂=−+

∂+

θρ  

(5.126)

2

2),(

)(),(

),(

t x 

x I t x mx 

t x M T 

=+∂

∂ θ

ρ (5.127)

Page 12: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 12/17

  12

2

2),(

)(),(),(

)(t 

t x x I t x m

t x x GJ 

x T 

∂=+

∂ θρ

θ(5.128)

•Boundary Conditions

0),0( =t θ Fixed end (5.130)

0),(

)( =∂

=Lx x 

t x x GJ 

θFree end (5.131)

§9.3 Torsional Vibration of Bars: Hamilton’s Principle:

Figure 9.3. Rod undergoing torsional deformation

∫∫ =+−2

1

2

1

0)(t 

t  nc

t dt W dt V T  δδ (9.23)

2

4

2 RdAr J I 

p

π=== ∫∫ (9.25)

∫ ′=L

dx GJ V 0

2)(

2

1θ (9.26)

∫=L

pdx I T 

0

2)(

2

1θρ & (9.27)

Page 13: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 13/17

  13

∂∂=

∂=′

• )()(

)()(

 

),()(),(),(0

t Lt T dx t x t x t W L

L

ncδθδθδ += ∫ (9.28)

[ ] 0),()(),(),(

)(2

1)(

2

1

2

1

2

1

0

0

2

0

2

=++

′−

∫ ∫

∫ ∫∫

dt t Lt T dx t x t x t 

dt dx GJ dx I t t 

t  L

L

LL

p

δθδθ

θθρδ &

(9.29)

∫ ′′=L

dx GJ V 0

θδθδ (9.30)

∫=L

pdx I T 

0θδθρδ && (9.31)

[ ]dt dx GJ GJ 

dxdt GJ Vdt 

LL

Lt 

∫ ∫

∫ ∫∫

′′−′=

′′=

2

1

2

1

2

1

00

0

)()( δθθδθθ

θδθδ

(9.32)

[ ]dx dt I I 

dtdx I Tdt 

L t 

t  p

t p

L t 

t  p

∫ ∫

∫ ∫∫

−=

=

0

0

2

1

2

1

2

1

2

1

)( δθθρδθθρ

θδθρδ

&&&

&&

(9.33)

Since ),(1

t x θ and ),(2

t x θ are known, ),(1

t x δθ = ),(2

t x δθ =0

[ ] [ ]{ }

[ ] 0)(

)()(

2

1

2

1

0

0

=+−′′+

−′−′

∫ ∫

∫ ==

dxdt t I GJ 

dt T GJ GJ 

L

p

t  Lx Lx 

δθθρθ

δθθδθθ

&& (9.34)

00==x 

δθ and 0≠=Lx δθ  

)()( t T GJ LLx 

=′=θ   natural boundary condition (9.35)

θρθ &&

pI t x t GJ  =+′′ ),()( Euler equation  (9.36) 

Page 14: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 14/17

Page 15: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 15/17

  15

∫∫ +=LL

dx I dx vAT 0

2

0

2)(

2

1)(

2

1αρρ && (9.42)

dx t x vt x pW  Lnc ∫= 0

),(),( δδ (9.43)

0

])()([2

1

2

1

2

1

0

0

2222

=+

′−−′−+

∫ ∫

∫ ∫t 

L

L

vdx p

dx vGAEI I vA

δ

ακααρρδ &&

(9.44)

0])([])([

)]()([

}])([{

00

0

0

2

1

2

1

2

1

2

1

=′−′−+

′−−′′+−+

+′′−−−

∫∫∫ ∫

∫ ∫

dt EI dt vvGA

dt dx vGAEI I 

dt dx vpvGAvA

Lt 

Lt 

L

L

δααδακ

δαακααρ

δακρ

&&

&&

(9.45)

),(])([ t x pvAvGA =+′′− &&ρακ (9.46a)

0)()( =+′′−′− αραακ &&I EI vGA (9.46b)

0,0)( == x at vGA δβκ (9.47a)

Lx at vGA == ,0)( δβκ (9.47b)

0,0)( ==′ x at EI  δαα (9.47c)

Lx at EI  ==′ ,0)( δαα (9.47d)

)(1

vApGA

v &&ρκ

α −

+′′=′ (9.48)

Page 16: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 16/17

  16

02

2

2

2

2

2

2

2

22

4

2

2

4

4

=

∂−

∂−

∂−

∂+

∂∂

∂−

∂−−

vAp

t GA

vAp

x GA

EI 

t x 

vI 

vAp

vEI 

ρκ

ρρ

κ

ρρ

  (9.49) 

●Vibration of Membranes

Ref: “Anaytical Methods in Vibrations,” L Meirovitch

●Vibration of Membranes 

Ref: “Anaytical Methods in Vibrations,” L Meirovitch 2ed, 1967,

§5-11( pp.166-167)

2

2

2

t w pw T 

∂∂=+∇ ρ (5.171)

2∇ : Laplace operator 

w: displacement 

T: uniform tension

p: external pressure

ρ : mass per unit area

•Boundary Conditions

( )11

,at0 baw = fixed points (5.173)

( )22

,at0 ban

w T  =

∂free (5.174)

Bernoulli-Euler theory Principle rotary inertia term

Principle shear

deformation term

Combined rotary inertia

and shear deformation

Page 17: vibration of cables

8/7/2019 vibration of cables

http://slidepdf.com/reader/full/vibration-of-cables 17/17

  17

 

●Vibration of Plates 

Ref: “Anaytical Methods in Vibrations,” L Meirovitch 2ed, 1967,

§5-12( pp.170-171)

( )2

3

2

2

4

112,

v

EhD

w pw D

E E −

=∂

∂=+∇− ρ (5.236)

224 ∇∇=∇ : biharmonic operator  

E D : plate flexural rigidity. 

h: plate thickness

ν : poisson’s ratio

•Boundary Conditions

n and s : the coordinates in the directions normal and tangential to

the boundary

0and0 =∂∂=

n

w w    clamped edge (5.238)

which are both geometric boundary conditions.

0and0 ==n

M w    simply supported edge (5.239)

nM  : bending moment per unit length associated with the cross

section whose normal is n .

0and0 =∂

∂−==s

M QV M  ns

nnn  free edge (5.240)