VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf ·...

18
VI. REFERENCES

Transcript of VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf ·...

Page 1: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

VI. REFERENCES

Page 2: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

146

Section V

References

Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi associated with

Pinussylvestris seedlings respond differently to increased carbon and nitrogen

availability: implications for ecosystem responses to global change. Glob.

Change Biol. 15: 166-175.

Allen, A.M. and King, R.D. 1978. Occlusion, carbon dioxide, and fungal skin

infections. Lancet. 1: 360-362

Andrew, C.J. and Lilleskov, E.A. 2009. Productivity and community structure of

ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3.

Ecol. Let. 12: 813-822.

Ansolabehere, S., Beer, J., Deutch, J., Ellerman, D., Herzog, H., Jacoby, H.D.,

Joskow, P.L., McRae, G., Lester, R., Moniz, E.J., Steinfold, E. and Katzer,

J. 2007. MIT study on the future of coal, Massachusetts Institute of

Technology, pp. ix.

Aya, I., Yamane, K. and Nariai, H. 1997. Solubility of CO2 and density of CO2

hydrate at 30 MPa. Energy 22: 263-271.

Bago, B., Pfeffer, P.E. and Shachar-Hill, Y. 2000. Carbon metabolism and transport

in arbuscular mycorrhizas. Plant Physiol. 124: 949-958.

Bahn, Y. S. and Mühlschlegel, F. A. 2006. CO2 sensing in fungi and beyond. Curr.

Opin. Microbiol. 9 :572-578.

Bahn, Y. S., Cox, G. M., Perfect, J. R. and Heitman, J. 2005. Carbonic anhydrase

and CO2 sensing during Cryptococcus neoformans growth, differentiation, and

virulence. Curr. Biol. 15: 2013-2020.

Barry, R.G. and Charley, R.J. 1992. Atmosphere, weather and climate. Routledge,

London, sixth edition.

Beman, J., Chow, C.E., Popp, B.N., Fuhrman, J.A., Feng, Y. and Hutchins, D.A.

2008. Alteration of oceanic nitrification under elevated carbon dioxide

Page 3: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

147

concentrations. American Geophysical Union, Fall Meeting 2008, abstract

#OS21A-1161.

Boelen, P., de Poll, W.H, van der Strate, H.J., Neven, I.A., Beardall, J. and

Buma, A.G.J. 2011. Neither elevated nor reduced CO2 affects the

photophysiological performance of the marine Antarctic diatom

Chaetocerosbrevis. J. Exp. Mar. Biol. Ecol. 406: 38-45.

Boncyk, L.H., Millstein, C.H. and Kalter S.S. 1976. Use of CO2 for more rapid

growth of the Nocardiaspecies. J. Clin. Microbiol. 3: 463-464.

Bond, G. M., Stringer, J., Donald, K., Brandvold, F., Simsek, A., Medina, M. G.

and Egeland G. 2001. Development of integrated system for biomimetic

CO2 sequestration using the enzyme Carbonic anhydrase. Energ. & Fuel.15:

309-316.

Bowatte, S., Asakawa, S., Okada, M., Kobayashi, K. and Kimura, M. 2007.Effect

of elevated atmospheric CO2 concentration on ammonia oxidizing bacteria

communities inhabiting in rice roots.Soil Sci. Plant Nutr. 53(1): 32-39.

Brown, J.L., Li, S.H. and Bhagabati, N. 1999. Long-Term Trend Toward Earlier

Breeding in an American Bird: A Response to Global Warming? Proc. Natl.

Acad. Sci. USA. 96(10): 5565-5569.

Burkhardt, S., Amoroso, G., Riebesell, U. and Sultemeyer, D. 2001. CO2 and

HCO3- uptake in marine diatoms acclimated to different CO2 concentrations.

Limnol. and Oceanogr. 46: 1378-1391.

Bury-Moné, S., Kaakoush, N.O., Asencio, C., Mégraud, F., Thibonnier, M., De

Reuse, H. and Mendz, G.L. 2006. "Is Helicobacter pylori a true

microaerophile?". Helicobacter 11 (4): 296-303.

Cannon, G.C., Heinhorst, S. and Kerfeld, C.A. 2010. Carboxysomal carbonic

anhydrases: Structure and role in microbial CO2 fixation. Biochim. .Biophys.

.Acta 1804: 382-92.

Chakraborty, S. and Datta,S. 2003. How will plant pathogens adapt to host plant

resistance at elevated CO2 under a changing climate? New Phytol. 159: 733-42.

Page 4: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

148

Chakraborty, S., Pangga, I.B., Lupton, J., Hart, L., Room, P.M. and Yates, D.

2000. Production and dispersal of Colletotrichumgloeosporioides spores on

Stylosanthesscabra under elevated CO2. Environ. Pollut. 108: 381-387.

Charles H.P. and Roberts G.A. 1968. Carbon dioxide as a growth factor for mutants

of Escherichia coli. J. Gen. Microbiol. 51: 211-224.

Clarke, T. 2001. Taming Africa’s killer lake. Nature. 409: 54-55.

Cleves, A.E., Cooper, D.N., Barondes, S.H. and Kelly, R.B. 1996. A new pathway

for protein export in Saccharomyces cerevisiae. J. Cell Biol. 133: 1017-1026.

Collins, L. 1998. Renewable energy from wood and paper: technological and cultural

implications. Technol. Soc. 20: 157-177.

Cot, S.S., So, A.K., and Espie, G.S. 2008. A multiprotein bicarbonate dehydration

complex essential to carboxysome function in cyanobacteria. J. Bacteriol. 190:

936–945.

Crabbe, M.J.C. 2007. Global warming and coral reefs: Modelling the effect of

temperature on Acroporapalmatacolony growth. Comput. Biol. Chem. 31: 294-

297.

Curley, G., Contreras, M., Nichol, A.D., Higgins, B.D., and Laffey, J.G. 2010.

Hypercapnia and acidosis in sepsis: a double-edged sword? Anesthesiology

112(2): 462-72.

Davison J., Freund P. and Smith A. 2001. Putting carbon back into the ground; IEA

Greenhouse Gas R&D Programme.

Department of Energy (DOE). 1999. Report on carbon sequestration research and

development. Washington, D.C., USA.

Dighton, J. 2003. Fungi in Ecosystem Processes; Marcel Dekker: New York, NY,

USA.

Dixon, N.M., and Kell, D.B. 1989.The inhibition by CO2 of the growth and

metabolism of micro-organisms. J. Appl. Bacteriol. 67: 109-36.

Page 5: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

149

Donner, S.D., Skirving,W.J., Little, C.M., Oppenheimer, M., and Hoegh-

Guldberg, O. 2005.Global assessment of coral bleaching and required rates of

adaptation under climate change. Glob. Change Biol. 11: 2251-2265.

Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Fangmeier, A., and

Kuzyakov, Y. 2009. Stimulation of r- vs. K-selected microorganisms by

elevated atmospheric CO2 depends on soil aggregate size. FEMS Microbiol.

Ecol. 69: 43-52.

Dudoladova, M.V., Kupriyanova, E.V., Markelova, A.G., Sinetova, M.P.,

Allakhverdiev, S.I., and Pronina, N.A. 2007. The thylakoid carbonic

anhydrase associated with photosystem II is the component of inorganic carbon

accumulating system in cells of halo- and alkaliphilic cyanobacterium

Rhabdodermalineare. Biochem. Biophys. .Acta. 1767: 616-23.

Dudoladova, M.V., Markelova, A.G., Lebedeva, N.V., and Pronina, N.A. 2004.

Compartmentation of α- and β-carbonic anhydrases in cells of halo- and

alkalophilic cyanobacteria Rhabdodermalineare. Russ. J. Plant Physiol. 51:

806–814.

Dyurgerov, M.B., and Meier, M.F. 2000. Twentieth century climate change:

Evidence from small glaciers. Proc. Natl. Acad. Sci. USA. 97(4): 1406-1411.

Elleuche, S., and Pöggeler, S. 2009a. Evolution of carbonic anhydrases in fungi.

Curr. Genet. 55: 211-222.

Elleuche, S., and Pöggeler, S. 2009b. β-Carbonic anhydrases play a role in fruiting

body development and ascospore germination in the filamentous fungus

Sordariamacrospora. PlosOne 4: 5177.

Elleuche, S., and Pöggeler, S. 2010.Carbonic anhydrases in fungi. Microbiol. 156:

23-9.

Faergemann, J., Aly, R., Wilson, D.R. and Maibach, H.I. 1983. Skin occlusion:

effect on Pityrosporumorbiculare, skin PCO2, pH, transepidermal water loss, and

water content. Arch. Dermatol. Res. 275: 383-387.

Page 6: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

150

Falkowski, P.G. and Oliver, M.J. 2007. Mix and match: how climate selects

phytoplankton. Nature Reviews Microbiology 5: 813-819.

Farnoodian, M., Yazdanparast, S.A. and Sadri,M.F. 2009. Effects of

environmental factors and selected antifungal agents on arthroconidia

production in common species of Trichophyton genus and

Epidermophytonfloccosum. J. Biol. Sci. 9: 561-566.

Feng, Y., Lin, X., Mao T., and Zhu J. 2010. Diversity of aerobic anoxygenic

phototrophic bacteria in paddy soil and their response to elevated atmospheric

CO2. Microb Biotechnol. 4: 74-81.

Feng, Y., Lin, X., Wang, Y., Zhang, J., Mao, T., Yin, R., and Zhu, J. 2009. Free-

air CO2 enrichment (FACE) enhances the biodiversity of purple phototrophic

bacteria in flooded paddy soil. Plant & Soil 324: 317–328.

Field, M.F., and Lichstein.H.C. 1958. Growth stimulating effect of autoclaved

glucose media and its relationship to the CO2 requirement of propionibacteria.J.

Bacteriol. 76: 485–490.

Fortuna, P., Avio, L., Morini, S. and Giovannetti, M. 2010. Fungal biomass

production in response to elevated atmospheric CO2 in a Glomusmosseae–

Prunuscerasifera model system. Mycol. Progress. Online first.

Fox, D.L. 1981. Presumed carbaminoproteinequilibria and free energy exchanges in

reversible carbon dioxide narcosis of protoplasm.J. Theor. Biol. 90(3): 441-3.

Francis, C.A., Beman, J.M., and Kuypers, M.M.M. 2007. New processes and

players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal

ammonia oxidation. The ISME Journal 1: 19-27.

Fransson, P.M.A., Anderson I.C., and Alexander, I.J. 2007a. Does carbon

partitioning in ectomycorrhizal pine seedlings under elevated CO2 vary with

fungal species? Plant & Soil 291: 323-333.

Fransson, P.M.A., Anderson I.C., and Alexander, I.J. 2007b. Ectomycorrhizal

fungi in culture respond differently to increased carbon availability. FEMS

Microbiol. Ecol. 61: 246–257.

Page 7: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

151

Fukuzawa, H., Suzuki, E., Komukai, Y., and Miyachi, S. 1992. A gene

homologous to chloroplast carbonic-anhydrase (icfa) is essential to

photosynthetic carbon-dioxide fixation by Synechococcus PCC7942. Proc. Natl.

Acad. Sci. USA 89: 4437–4441.

Gale, J. 2004. Geological storage of CO2: What do we know, where are the gaps and

what more needs to be done? Energy 29: 1329-1338.

Gavito, M.E., Bruhn, D. and Jakobsen, I. 2002. Phosphorus uptake by

arbuscularmycorrhizal hyphae does not increase when the host plant grows

under atmospheric CO2 enrichment. New Phytol. 154: 751-760.

Gavito, M.E., Schweiger, P. and Jakobsen, I. 2003. P uptake by mycorrhizal

hyphae: effect of soil temperature and atmospheric CO2 enrichment. Glob.

Change Biol. 9: 106-116.

Gomes, C.M., Kletzin, A., and Teixeira, M. 2002. An archaeal β-type cytochrome

containing a nonfunctional carbonic anhydrase-like domain.J. Biol. Inorg.

Chem. 7: 483-489.

Götz, R., Gnann, A., and Zimmermann, F. K. 1999. Deletion of the carbonic

anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an

oxygen-sensitive growth defect. Yeast 15 :855-864.

Gubler, M., Park, S.M., Jetten, M., Stephanopoulos G. and Sinskey, A.J. 1994.

Effects of phosphoenol pyruvate carboxylase deficiency on metabolism and

lysine production in Corynebacteriumglutamicum. Appl. Microbiol. Biotechnol.

40: 857-863.

Gupta, A.K., Ahmad,I., Porretta, M. and Summerbell, R.C. 2003.Arthroconidial

formation in Trichophytonraubitschekii. Mycoses. 46: 322-328.

Gutknecht, J., Bisson, M.A., and Tosteson, F.C. 1977. Diffusion of carbon dioxide

through lipid bilayer membranes: Effects of carbonic anhydrase, bicarbonate,

and unstirred layers. J. Gen. Physiol. 69: 779-794.

Page 8: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

152

Håkansson, K., Carlsson, M., Svensson, L.A., and Liljas, A. 1992. Structure of

native and apo carbonic anhydrase II and structure of some of its anion-ligand

complexes, J. Mol. Biol. 227: 1192−1204.

Halmann, M.M., and Steinberg, M. 1999. Greenhouse gas carbon dioxide

mitigation: Science and technology. Lewis publishers, Boca Raton, Florida. pp.

1-3

Han, K. H., Chun, Y. H., Figueiredo. Bde, C., Soriani, F. M., Savoldi. M.,

Almeida, A., Rodrigues, F., Cairns, C. T., Bignell, E., Tobal, J. M.,

Goldman, M. H., Kim, J. H., Bahn, Y. S., Goldman, G. H. and Ferreira, M.

E. 2010. The conserved and divergent roles of carbonic anhydrases in the

filamentous fungi Aspergillusfumigatus and Aspergillusnidulans. Mol.

Microbiol. 75: 1372-1388.

Harmsen, H., Prieur, D., and Jeanthon C. 1997. Distribution of microorganisms in

deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization

and enrichment culture of thermophilic subpopulations. Appl. Env. Microbiol.

63: 2876–2883.

Harrington, L. and Foster, R. 1999. Australian residential building sector

greenhouse gas emissions 1990-2010. Final Report, Energy Efficient

Strategies.Australian Greenhouse Office.

Hein, M. and Sand-Jensen, K. 1997. CO2 increases oceanic primary production.

Nature 388: 526-527.

Held, I.M., and Soden, B.J. 2006. Robust responses of the hydrological cycle to

global warming. J. Clim. 19: 5686-5699.

Hodge, A., Campbell, C.D. and Fitter, A.H. 2001. An arbuscularmycorrhizal fungus

accelerates decomposition and acquires nitrogen directly from organic material.

Nature 413: 297-299.

House, K.Z., Schrag D.P., Harvey,C.F., and Lackner K.S. 2006. Permanent carbon

dioxide storage in deep-sea sediments, Proc. Natl. Acad. Sci. USA. 103 (33):

12291-12295.

Page 9: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

153

Hu, H., and Gao, K. 2008. Impacts of CO2 enrichment on growth and photosynthesis

in freshwater and marine diatoms. Chin. J. Oceanol. Limnol. 26: 407-414.

Humphreys, C.P., Franks, P.J., Rees, M., Bidartondo, M.I., Leake, J.R., and

Beerling, D.J. 2010. Mutualistic mycorrhiza-like symbiosis in the most ancient

group of land plants. Nature Communications 1: 103.

Innocenti, A., Leewattanapasuk, W., Muhlschlegel, F.A., Mastrolorenzo, A., and

Supuran, C.T. 2009. Carbonic anhydrase inhibitors.Inhibition of the beta-class

enzyme from the pathogenic yeast Candida glabrata with anions. Bioorg. Med.

Chem. Lett. 19: 4802-4805.

Intergovernmental Panel on Climate Change. 2005. IPCC Special Report on

Carbon Dioxide Capture and Storage. http://www.ipcc.ch/ (accessed on

December 15th, 2007).

Jahnke, L.S., Lyman, C., and Hooper, A.B. 1984. Carbonic anhydrase, carbon

dioxide levels and growth of Nitrosomonas. Arch. Microbiol. 140: 291-293.

Jetten, M.S.M., Pitoc, G.A., Follettie, M.T., and Sinskey, A.J. 1994. Regulation of

phospho(enol)-pyruvate and oxaloacetate-converting enzymes in

Corynebacteriumglutamicum. Appl. Microbiol. Biotechnol. 41: 47-52.

Johnson, N.C., Wolf, J., Reyes, M.A., Panter, A., Koch, G.W., and Redman, A.

2005. Species of plants and associated AM fungi mediate mycorrhizal responses

to CO2 enrichment. Glob. Change Biol. 11: 1156-1166.

Jones, R.P., and Greenfield, P.F. 1982. Effect of carbon dioxide on yeast growth

and fermentation. Enz. Microb. Technol. 4: 210-223.

Kantartzi, S.G. Vaiopoulou, E. Kapagiannidis, A., and Aivasidis, A. 2006. Kinetic

characterization of nitrifying pure cultures in chemostate. Global NEST Journal

8: 43-51.

Kaplan, A., and Reinhold, L. 1999. CO2 concentrating mechanisms in

photosynthetic microorganisms. Annu. Rev. Plant Physiol .Plant Mol. Biol, 50:

539-570.

Page 10: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

154

Kim, M. S., Ko, Y. J., Maeng, S., Floyd, A., Heitman, J., and Bahn, Y. S. 2010.

Comparative transcriptome analysis of the CO2 sensing pathway via differential

expression of carbonic anhydrase in Cryptococcus neoformans. Genetics. 185:

1207-19.

Klengel, T., Liang, W.J., Chaloupka, J., Ruoff, C., Schröppel, K., Naglik, J.R.,

Eckert, S.E., Mogensen, E.G., Haynes, K. Tuite, M.F., Levin, L.R., Buck, J.,

and Mühlschlegel, F.A. 2005. Fungal adenylyl cyclase integrates CO2 sensing

with cAMP signaling and virulence. Curr.Biol. 15: 2021-2026.]

Klironomos, J.N., Allen, M.F., Rillig, M.C., Piotrowski, J.S., Makvandi-Nejad, S.,

Wolfe, B.E., and Powell, J.R. 2005. Abrupt rise in atmospheric CO2

overestimates community response in a model plant-soil system. Nature 433:

621-624.

Kowalchuk, G.A., and Stephen, J.R. 2001. Ammonia-oxidizing bacteria: a model

for molecular microbial ecology. Ann. Rev. Microbiol. 55: 485-529.

Kupriyanova, E., Villarejo, A., Markelova, A., Gerasimenko, L., Zavarzin, G.,

Samuelsson, G., Los, D.A., and Pronina, N. 2007. Extracellular carbonic

anhydrases of the stromatolite-forming cyanobacterium Microcoleus

chthonoplastes. Microbiol. 153: 1149-56.

Kupriyanova, E.V., Sinetova, M.A., Markelova, A.G., Allakhverdiev, S.I., Los,

D.A., and Pronina, N.A. 2011. Extracellular β-class carbonic anhydrase of the

alkaliphilic cyanobacterium Microcoleus chthonoplastes. J. Photochem.

Photobiol.B. 103: 78-86.

Lami, R., Cottrell, M.T., Ras, J., Ulloa, O., Obernosterer, I., Claustre, H.,

Kirchman, D.L., and Lebaron, P. 2007. High abundances of aerobic

anoxygenic photosynthetic bacteria in the South Pacific Ocean. Applied and

Environmental Microbiology 73(13): 4198-4205.

Li, W., Zhou, P.P., Jia, L.P., Yu, L.J., Li, X.L., and Zhu, M. 2009. Limestone

dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase

from fungi. Mycopathologia 167: 37-46.

Page 11: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

155

Liu, N., Bond, G.M., Abel, A., McPherson, B. J. and Stringer, J. 2005.

Biomimetic sequestration of CO2 in carbonate form: Role of produced waters

and other brines. Fuel Process. Technol. 86: 1615-1625.

Liu, P. 1954. Carbon dioxide requirement of group F and minute colony G hemolytic

streptococci. J. Bacteriol. 68:282–288.

Low-Décarie, E., Fussmann, G.F., and Bell, G. 2011.The effect of elevated CO2 on

growth and competition in experimental phytoplankton communities. Glob.

Change Biol. 17: 2525-2535.

Marsh, G.E. 2002.A global warming primer, The National Centre for Public Policy

Research,USA. 420: 4-5.

Martin, W., Baross, J., Kelley, D., and Russell, M.J. 2008. Hydrothermal vents and

the origin of life. Nat. Rev. Microbiol. 6: 805-814.

Maupin, C.M., and Voth, G.A. 2007.Preferred orientations of His64 in human

carbonic anhydrase II. Biochem. 46: 2938-2947.

Mcelrone, A.J., Reid, C.D., Hoye, K.A., Hart, E., and Jackson, R.B. 2005.

Elevated CO2 reduces disease incidence and severity of a red maple fungal

pathogen via changes in host physiology and leaf chemistry. Glob. Change Biol.

11: 1828-1836.

McMichael, A., and Woodruff, R. 2004. Climate change and risk to health: The risk

is complex, and more than a sum of risks due to individual climatic factors. Brit.

Med. J. 329(7480): 1416-1417.

Medina, M. G., Bond, G. M., and Stringer, J. 2001. An overview of carbon dioxide

sequestration.The Electrochemical Society Interface, pp. 26-30.

Meier, M.F., and Wahr, J.M. 2002. Sea level is rising: Do we know why? Proc.

Natl. Acad. Sci. USA. 99(10): 6524–6526.

Melloy, P., Hollaway, G., Luck, J., Norton, R.,Aitken, E. and Chakraborty S.

2010. Production and fitness of Fusariumpseudograminearum inoculum at

elevated carbon dioxide in FACE. Glob. Change Biol. 16: 3363-3373

Page 12: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

156

Minic, Z., and Thongbam, P.D. 2011. The biological deep-sea hydrothermal vent as

a model to study carbon dioxide capturing enzymes. Mar. Drugs 9: 719-738.

Mirza, M.M.Q. 2002. Global warming and changes in the probability of occurrence

of floods in Bangladesh and implications. Glob. Env. Change 12: 127-138.

Miyachi, S., Iwasaki, I. and Shiraiwa, Y. 2003. Historical perspective on microalgal

and cyanobacterial acclimation to low- and extremely high-CO2 conditions.

Photosynth. Res. 77: 139-153.

Mori, H., Kobayashi, T., and Shimizu, S. 1983. Effect of carbon dioxide on growth

of microorganisms in fed-batch cultures. J. Ferment. Technol. 61: 211-213.

Nordbotten, J.M., Celia, M.A., and Bachu S. 2005. Injection and storage of CO2 in

deep saline aquifers: analytical solution for CO2 plume evolution during

injection. Transport Porous Med. 58: 339-360.

Norici, A. and Giordano, M. 2002.Anaplerosis in microalgae. Recent Research and

Development in Plant Physiology 3:153-164.

Ogawa, T., and Kaplan, A. 2003. Inorganic carbon acquisition systems in

cyanobacteria. Photosynth. Res. 77: 105-115.

Olsson, P.A., Van Aarle, I.M., Gavito, M.E., Bengtson, P., and Bengtsson, G.

2005. 13C incorporation into signature fatty acids as an assay for carbon

allocation in arbuscular mycorrhiza. Appl. Environ. Microbiol. 71: 2592-2599.

Ortiz, R., Sayre, K.D., Govaerts, B., Gupta, R., Subbarao, G.V., Ban, T., Hodson,

D., Dixon, J.M., Ortiz-Monasterio, J.I., and Reynolds, M. 2008. Climate

change: Can wheat beat the heat? Agric. Ecosyst. Environ. 126: 46-58.

Park, S. A., Ko, A., and Lee, N. G. 2011. Stimulation of growth of the human gastric

pathogen Helicobacter pylori by atmospheric level of oxygen under high carbon

dioxide tension. BMC Microbiol. 11: 96.

Parniske, M. 2008.Arbuscularmycorrhiza: the mother of plant root endosymbioses.

Nat. Rev. Microbiol. 6: 763-775.

Page 13: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

157

Parrent, J.L., andVilgalys, R. 2007. Biomass and compositional responses of

ectomycorrhizal fungal hyphae to elevated. CO2 and nitrogen fertilization. New

Phytol. 176: 164-174.

Parrent, J.L., Morris, W.F., and Vilgalys, R. 2006. CO2 enrichment and nutrient

availability alter ectomycorrhizal fungal communities. Ecology 87: 2278-2287.

Peña, K.L., Castel, S.E., de Araujo, C., Espie, G.S., and Kimber, M.S. 2010.

Structural basis of the oxidative activation of the carboxysomal γ-carbonic

anhydrase, CcmM. Proc. Natl. Acad Sci.107: 2455-2460.

Phillips, D. A., Fox, T. C., and Six, J. 2006. Root exudation (net efflux of amino

acids) may increase rhizodeposition under elevated CO2. Glob. Change Biol. 12:

1-7.

Price, G.D., Howitt, S.M., Harrison, K., and Badger, M.R. 1993. Analysis of a

genomic DNA region from the cyanobacteriumSynechococcus sp. strain

PCC7942 involved in carboxysome assembly and function. J. Bacteriol. 175:

2871–2879.

Raven, J. A., and Falkowski, P. G. 1999. Oceanic sinks for atmospheric CO2. Plant

Cell and Environment 22: 741-755.

Riding, R. 2006. Cyanobacterial calcification, carbon dioxide concentrating

mechanisms, and Proterozoic-Cambrian changes in atmospheric

composition.Geobiol.. 4: 299-316.

Riebesell, U., Wolf-Gladrow, D.A., and Smetacek, V.S. 1993. Carbon dioxide

limitation of marine phytoplankton growth rates. Nature 361: 249-251.

Riesbesell, U. 2004. Effects of CO2 enrichment on marine phytoplankton. Journal of

Oceanography 60: 719-729.

Sanders, F.E., and Tinker, P.B. 1971. Mechanism of absorption of phosphate from

soil by Endogonemycorrhizas. Nature 233: 278-279.

Sanders, I.R. 2010. 'Designer' mycorrhizas?: Using natural genetic variation in AM

fungi to increase plant growth. ISME J. 4: 1081-1083.

Page 14: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

158

Sanders, I.R., Streitwolf-Engel R., van der Heijden, M.G.A., Boller T. and

Wiemken A. 1998. Increased allocation to external hyphae of

arbuscularmycorrhizal fungi under CO2 enrichment.Oecologia 117: 496-503.

Sauer, U., and Eikmanns, B.J. 2005. The PEP–pyruvate–oxaloacetate node as the

switch point for carbon flux distribution in bacteria.FEMS Microbiol. Rev. 29:

765-794.

Sawaya, M.R., Cannon, G.C., Heinhorst, S., Tanaka, S., Williams, E.B., Yeates,

T.O., and Kerfeld, C.A. 2006. The structure of beta-carbonic anhydrase from

the carboxysomal shell reveals a distinct subclass with one active site for the

price of two. J. Biol. Chem. 281: 7546–7555.

Schnur, R. 2002. The investment forecast. Nature 415: 483-484.

Scott, J.L., Kraemer, D.G., and Keller.R.J. 2009. Occupational hazards of carbon

dioxide exposure.Journal of Chemical Health and Safety. 16(2): 18-22.

Sheth C.C., Johnson, E., Baker, M.E., Haynes. K., Muhlschlegel, F.A. 2005.

Phenotypic identification of Candida albicans by growth on chocolate agar.

Med. Mycol. 43: 735-738.

Shirayama, Y. 1997. Biodiversity and biological impact of ocean disposal of carbon

dioxide. Waste Management 17: 381-384.

Smith, K.S., and Ferry, J.G. 1999. A plant type β class carbonic anhydrase from the

thermophilic methanoarchaeon Methanobacterium thermoautotrophicum. J.

Bacteriol. 181: 6247-6253.

So, A.K., and Espie, G.S. 1998. Cloning, characterization and expression of carbonic

anhydrase from the cyanobacterium SynechocystisPCC6803. Plant Mol. Biol.

37: 205-15.

So, A.K., Espie, G.S., Williams, E.B., Shively, J.M., Heinhorst, S., and Cannon,

G.C. 2004. A novel evolutionary lineage of carbonic anhydrase (ε Class) is a

component of the carboxysome shell. J. Bacteriol. 186: 623-30.

Sobrino, C., Ward, M.L., and Neale, P.J. 2008. Acclimation to elevated carbon

dioxide and ultraviolet radiation in the diatom Thalassiosirapseudonana:

Page 15: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

159

Effects on growth, photosynthesis, and spectral sensitivity of photoinhibition.

Limnol..Oceanogr. 53: 494-505.

Soltes-Rak, E., Mulligan, M.E., and Coleman, J.R. 1997.Identification and

characterization of a gene encoding a vertebrate-type carbonic anhydrase in

cyanobacteria.J. Bacteriol. 179: 769–774.

Spieck, E., and Bock, E. 2005.The lithoautotrophic nitrite-oxidizing bacteria. In

Garrity et al. (ed.), Bergey´s manual of systematic bacteriology. Springer

Science+Business Media, New York 2: 149-153.

Staddon, P.L. and Fitter, A.H. 1998. Does elevated atmospheric carbon dioxide

affect arbuscularmycorrhizas? Tree 13 (11): 455-458.

Staddon, P.L., Fitter, A.H. and Graves, J.D. 1999. Effect of elevated atmospheric

CO2 on mycorrhizal colonization, external mycorrhizalhyphal production and

phosphorus inflow in Plantagolanceolata and Trifoliumrepens in association

with the arbuscularmycorrhizal fungus Glomusmosseae. Glob. Change Biol. 5:

347-358.

Staddon, P.L., Gregersen, R., and Jakobsen, I. 2004. The response of two

Glomusmycorrhizal fungi and a fine endophyte to elevated atmospheric CO2.

Glob. Change Biol. 10: 1909-1921.

Starkenburg, S. R., Arp, D. J., and Bottomley, P. J. 2008. D-Lactate metabolism

and the obligate requirement for CO2 during growth on nitrite by the facultative

lithoautotroph Nitrobacter hamburgensis. Microbiol. 154: 2473-2481.

Stevenson, B. S., Eichorst, S. A., Wertz, J. T., Schmidt, T. M., and Breznak J. A.

2004. New strategies for cultivation and detection of previously uncultured

microbes. Appl. Env. Microbiol.. 70 (8): 4748–4755.

Stroot, P. G., Blandon, L. P., and Morris, R. A. 2008. Carbon dioxide stimulation

of nitrification in activated sludge reactors. US Patent 7820420.

Sutherland, P., Patterson, J. T., Gibbs, P .A., and Murray, J. G. 1977. The effect

of several gaseous environments on the multiplication of organisms isolated

from vacuum-packed beef. J. Food Technol. 12: 249-255.

Page 16: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

160

Sutherst, R. W. 2004. Global change and human vulnerability to vector-borne

diseases. Clinical Microbiol. Rev.17(1): 136-173.

Sydeman, W. J., Hester, M. M., Thayer, J. A., Gress, F., Martin, P., and Buffa, J.

2001. Climate change, reproductive performance and diet composition of

marine birds in the southern California Current system, 1969–1997. Prog.

Oceanograph. 49: 309–329.

Tan, G., and Shibasaki, R. 2003. Global estimation of crop productivity and the

impacts of global warming by GIS and EPIC integration. Eco. Model. 168: 357-

370.

Terrier, P., and Douglas, D. J. 2010.Carbamino group formation with peptides and

proteins studied by mass spectrometry. J. Am. Soc. Mass. Spectrom. 21: 1500-

1505.

Thompson, G.B. and Drake, B.G. 1994. Insects and fungi on a C3 sedge and a C4

grass exposed to elevated atmospheric CO2 concentrations in open-top

chambers in the field. Plant Cell Environ. 17: 1161-1167

Treseder, K. K. 2004. A meta-analysis of mycorrhizal responses to nitrogen,

phosphorus, and atmospheric CO2 in field studies. New Phytol.164: 347-355.

Tripp, B.C., and Ferry, J.G. 2000. A structure–function study of a proton transport

pathway in the gamma-class carbonic anhydrase from Methanosarcina

thermophila. Biochem. 39: 9232–9240.

Tuttle, D. M., and H. W. Scherp. 1952. Studies on the carbon dioxide requirement

of Neisseria meningitidis. J. Bacteriol. 64:171–182.

Ueda, K., Tagami, Y., Kamihara, Y., Shiratori, H., Takano, H., and Beppu, T.

2008. Isolation of bacteria whose growth is dependent on high levels of CO2

and implications of their potential diversity. Applied and Environmental

Microbiology 74 (14): 4535–4538.

Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C. L., Mulvaney,

R., Hodgson, D. A., King, J. C., Pudsey, C. J. and Turner, J. 2003. Recent

Page 17: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

References

161

rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60:

243–274.

Wallander, H., Nilsson, L. O., Hagerberg, D., and Baath, E. 2001. Estimation of

the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi

in the field. New Phytol. 151: 753–760.

Wells, A.W., Diehl, J. R., Bromhal, G., Strazisar, B. R., Wilson, T. H., and White

C. M. 2007. The use of tracers to assess leakage from the sequestration of CO2

in a depleted oil reservoir, New Mexico, USA. Appl. Geochem. 22: 996-1016.

Wood, H.G., Werkman, C.H., Hemingway, A., and Nier, A.O. 1941. Heavy

Carbon as a tracer in heterotrophic carbon dioxide assimilation. J. Biol. Chem.

139: 365–376.

Wormworth, J., and Mallon, K. 2007. Bird Species and Climate Change: The

Global Status Report. Climate Risk Pty Limited, Australia.

Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., and Morel, F.M.M. 2008. Structure and

metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature

452: 56-61.

Yazdanparast, S.A. and Barton, R.C. 2006. Arthroconidia production in

Trichophytonrubrum and a new ex vivo model of onychomycosis. J. Med.

Microbiol.. 55: 1577-1581.

Page 18: VI. REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/26649/12/12_refrences.pdf · 146 Section V References Alberton, O. and Kuyper, T.W. 2009. Ectomycorrhizal fungi

162

LIST OF PUBLICATIONS

(i) Research papers Prabhu, C., Wanjari, S., Gawande, S., Labhsetwar, N., Kotwal, S., Puri, A. K., Satyanarayana, T. and Rayalu, S. 2009. Immobilization of carbonic anhydrase enriched microorganism on biopolymer based material. Journal of Molecular Catalysis B: Enzymatic. 60: 13-21.

Prabhu, C., Wanjari, S., Puri, A. K., Bhattacharya, A., Pujari, R., Yadav, R., Das, S., Labhsetwar, N., Sharma, A., Satyanarayana, T. and Rayalu, S. 2011. Region-specific bacterial carbonic anhydrase for biomimetic sequestration of carbon dioxide. Energy and Fuels. 25: 1327-1332.

Puri, A. K. and Satyanarayana, T. 2012. Thermo-alkali-stable carbonic anhydrase from Bacillus pumilus TS1: Characteristics and its applicability in biomimetic carbon sequestration (submitted to Process Biochemistry).

(ii) Book chapters Puri, A. K. and Satyanarayana, T. 2009. Global warming: Disastrous effects and possible solutions. Newsletter of North East India Research Forum 3 (1): 28-37.

Puri, A. K. and Satyanarayana, T. 2009. Utility of microbes in carbon sequestration. In: Climate Change and Sustainable Livelihood (Ed. D.B. Sahu) [In Press].

Puri, A. K. and Satyanarayana, T. 2010. Enzyme and microbe mediated carbon sequestration. In: CO2 Sequestration Technologies for Clean Energy: Awareness and Capacity Building. (Eds. Syed Zahoor Qasim and Malti Goel). pp. 67- 89.

Puri, A. K. and Satyanarayana, T. 2010. Carbon sequestration for mitigating disastrous effects of global warming. In: Natural and man made disasters: Vulnerability, preparedness and Mitigation. (Editors: K.K. Singh and A.K. Singh). pp. 229-252.

Satyanarayana, T., Sharma, A. Mehta, D., Puri, A. K., Kumar, V. Nisha, M. and Joshi, S. 2012. Biotechnological applications of biocatalysts from the firmicutes Bacillus and Geobacillus species. In: Microorganisms in Sustainable Agriculture and Biotechnology. (Editors: T. Satyanarayana et al.) pp. 343-379.

(iii) Conferences and seminars Puri, A. K. and Satyanarayana, T. 2011. Production of carbonic anhydrase from Bacillus pumilus TS1 and its application in bio-sequestration of carbon dioxide. International conference on microorganisms in Environmental management and Biotechnology. July 1-3, 2011.