VI. Introduction to the Fourier...

58
08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series (FS) review [p. 8] Limiting behavior of FS to non periodic signals [p. 10] Fourier transform (FT) applied to non periodic signals [p. 13] FT applied to periodic signals [p. 23] Frequency response [p. 25] Basic FT properties [p. 28] Uncertainty principle [p. 29] FT examples [p. 34] Convolution property [p. 46] Parseval’s relation [p. 48] using MATLAB to compute the FT [p. 49] AM modulation applications [p. 55] Frequency division multiplexing [p. 57] Quadrature modulation VI. Introduction to the Fourier Transform

Transcript of VI. Introduction to the Fourier...

Page 1: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1

[p. 4] Fourier series (FS) review[p. 8] Limiting behavior of FS to non periodic signals[p. 10] Fourier transform (FT) applied to non periodic signals[p. 13] FT applied to periodic signals[p. 23] Frequency response[p. 25] Basic FT properties[p. 28] Uncertainty principle[p. 29] FT examples[p. 34] Convolution property[p. 46] Parseval’s relation[p. 48] using MATLAB to compute the FT[p. 49] AM modulation applications[p. 55] Frequency division multiplexing[p. 57] Quadrature modulation

VI. Introduction to the Fourier Transform

Page 2: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 3

Everything = Sum of Sinusoids

One Square Pulse = Sum of Sinusoids

Non periodic signal can be viewed as the limit of a periodic signal with period = infinityWe are going to take derivations done for Fourier series and extend them …..

Page 3: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 4

Fourier Series: Periodic x(t)

x ( t ) = a k e j ω 0 k t

k = −∞

a k =1T0

x ( t ) e − jω 0 kt dt− T 0 / 2

T0 / 2

0 0 0

0

F u n d a m e n t a l F r e q .2 / 2 ( r d / s )

( H z )T f

fω π π= =

Fourier Synthesis

Fourier Analysis

Page 4: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 5

Recall: Square Wave Signal FS decomposition

ka =

∫−

−=4/

4/0

0

0

0)1(1 T

T

tkjk dte

Ta ω

Page 5: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 6

Spectrum from Fourier Series

⎪⎩

⎪⎨⎧

±±=

±±=≠==

,4,20

,3,1,00)2/sin(k

k

kkak π

π

Page 6: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 7

What if x(t) is not periodic?

Sum of Sinusoids?Non-harmonically related sinusoids Would not be periodic, but would probably be non-zero for all t.

Fourier transformgives a “sum” (actually an integralintegral) that involves ALLALLfrequenciescan represent signals that are not periodic

Page 7: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 8

Limiting Behavior of FS

0Plot ( )kT a

Page 8: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 9

FS in the LIMIT (long period)( ) ( )0

0 0

2102

12

( )

( ) ( )

j k tT k T

k

j t

x t T a e

x t X j e d

ω ππ

ωπ ω ω

= − ∞

− ∞

=

=

∫∫∞

∞−

− == dtetxjXdtetxaT tjT

T

tkjTk

ωω ω )()()(2/

2/0

0

0

0

0

0 0

0

0 0

0

2 2l i m l i m

l i m ( )

T T

kT

d kT T

T a X j

π πω ω

ω

→ ∞ → ∞

→ ∞

= =

=

Page 9: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 10

Fourier TransformFor non-periodic signals Fourier Synthesis

Fourier Analysis

{ }( ) ( ) ( ) j tTF x t X j x t e d tωω

∞−

− ∞

= = ∫

∫∞

∞−

= ωω ωπ dejXtx tj)()( 21

Page 10: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 11

Example:x (t ) = e − at u (t )

Page 11: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 12

Example:

T-T

x(t)

t

Page 12: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 13

If x(t) is periodic with period T0 ,0

0 0

0 0

1( ) ( )T

jk t jk tk k

kx t a e a x t e d t

Tω ω

∞−

= − ∞

= =∑ ∫

FT For periodic signals

02

( ) ( )

=

=

j t

jkf t j tk

k

X j x t e dt

a e e dt

ω

π ω

ω∞

−∞

∞ ∞−

=−∞−∞

= =

⎛ ⎞⎜ ⎟⎝ ⎠

∑∫

Page 13: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 14

We need to compute

( )jatTF e =

Turns out it is very complicated to compute directlyWe’ll use a shortcut

It turns out:{ } ( ) ( ) 2 ( )jat

Tx t e F x t aπδ ω= ⇔ = −

Page 14: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 15

Example: Compute the FT of the cosine and sine functions

Page 15: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 16

Page 16: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 17

Example: Compute the FT of the delta function δ(t)

Page 17: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 18

If x(t) is periodic with period T0 ,00 0

0 0

1( ) ( )T

jk t jk tk k

kx t a e a x t e d t

Tω ω

∞−

= − ∞

= =∑ ∫0

0W e s h o w e d 2 ( )j k te kω π δ ω ω⇔ −

{ }

{ }

0

0

( )

=

=

jk tT T k

k

jk tT k

k

F x t F a e

F a e

ω

ω

=−∞

=−∞

⎧ ⎫= ⎨ ⎬

⎩ ⎭∑

Summary FT for generic periodic signals

Page 18: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 19

Example: Compute the FT of the square wave signal x(t)

sin( / 2), 0, 1, 3, (i.e., k odd)Recall:

0, k even k

k ka

π = ± ±⎧= ⎨

( )X jω =

Page 19: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 20

Take advantage of FT linear properties, rewritex(t) in terms of y(t)

2y(t)

y(t)=

How are the FS coefficients of x(t) related to the FS coefficients of y(t)?

Example: Take advantage of FT properties

Page 20: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 21

Compute FS coefficients of y(t) and derive those for x(t)

Use the FS Coefficients to derive the FT of x(t)

Page 21: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 22

Square Wave Fourier Transform con’t

Page 22: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 23

Frequency Response

Fourier Transform of h(t) is called the Frequency Response

ωω

jjHtueth t

+=⇔= −

11)()()(

)()( tueth t−=

Magnitude and Phase Plots for H(jω)

Page 23: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 24

ωω

jajH

+=

1)(

Page 24: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 25

Basic Fourier Transform Properties

( )

( ) ( )( )

( ) ( )( ) ( )

0

0

2

0

0 0 0

0 0 0

00

-

0

/ 2

11 2 ( )

2sgn(t)

1/

2

cos( )

sin( ) [ ]

( ), a>0 1/( )

1 sin( ) 0 otherwise

( ) 2 ( )

j t

at

j D

j t

t

t

ju t j

e

t

t j

e u t a j

tt

t D ee

e

ω

ω

ω

δπδ ω

ωπδ ω ω

πδ ω ω

ω πδ ω ω πδ ω ω

ω πδ ω ω πδ ω ω

ω

ω ωωπ

δ

πδ ω ω

→ +

→ −

→ − + +

→ + − −

→ +

⎧ <→ ⎨

⎩− →

→ −2 / 2 2 e ωπ −→

1 11

2 sin2 sinc T TT ω ωπ ω

⎛ ⎞→ =⎜ ⎟⎝ ⎠

−T1

1

T1

−T1

1

T1

21

1 sinc2

TT ωπ

⎡ ⎤⎛ ⎞→ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Page 25: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 26

( ) ( ) ( ) ( )( ) ( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

0

0

1 2 1 1 1 2

0

0

( )* *

1 0

1

2

( ) ( ( ))1( ). ( ) ( )* ( )

2( )* ( ) ( ). ( )

j t

nn

n

t

j t

ax t bx t a X j b X j

x t t X j e

x t X jd x t j X jdtd x t

j X jdt

x d X j X jj

jx at Xa a

X t x j

x t e X j

x t g t X j G j

x t g t X j G j

ω

ω

ω ω

ω

ω

ω ω

ω ω

τ τ ω π δ ωω

ω

π ω

ω ω

ω ωπ

ω ω

−∞

+ → +

− →

→ −

→ +

⎛ ⎞→ ⎜ ⎟⎝ ⎠

→ −

→ −

Basic Fourier Transform Properties

Page 26: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 27

x(t) X(jω)Real Imaginary Complex Even Odd

real

Real & even

Real & odd

Imaginary

Imaginary & even

Imaginary & odd

Fourier Transform Properties Summary

[from Karris]

Page 27: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 28

Scaling Property

1| |( ) shrinks ( ) expandsa ax at X j ω⇒

)()( 1aa jXatx ω⇔

Consequence Uncertainty Principle

Try to make x(t) shorterThen X(jω) will get widerNarrow pulses have wide bandwidth

Try to make X(jω) narrowerThen x(t) will have longer duration

Cannot simultaneously reduce time duration and bandwidth

Page 28: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 29

Example: x (t ) =1 t < T / 20 t > T / 2

⎧ ⎨ ⎩

( )X jω =Recall:

Page 29: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 30

Example:⎪⎩

⎪⎨⎧

>

<=

b

bjX

ωω

ωωω

0

1)(

( )x t =

Page 30: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 31

Page 31: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 32

Example:( )X jω =

)()( 0tttx −= δ

Example: X( jω) =2πδ(ω −ω0)

Page 32: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 33

( ) ( )k

x t t kTδ+∞

= −∞

= −∑

Example: impulse train

Page 33: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 34

Convolution Property

Convolution in the time-domain corresponds to MULTIPLICATIONMULTIPLICATION in the frequency-domain

y(t) = h(t) ∗ x(t) = h(τ )−∞

∞∫ x(t − τ )dτ

Y ( jω ) = H ( jω ) X ( jω )

System Sx(t) y(t)

h(t)

Page 34: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 35

Proof: see textbook

Page 35: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 36

Convolution: Example 1Convolving two band-limited signals leads to a band-limited signal Input Signal x(t) : “sinc” functionIdeal LPF (Lowpass Filter) h(t) is a “sinc”Output y(t) is bandlimited

Page 36: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 37

Examples

1 3 t

1

a(t)=cos(3t) -2<t<2, =0 owy(t)=2/(5+2jt)z(t)=2/πtv(t)=2δ(t+3)-4δ(t-3)

3 42 t

w(t)

−w1

1

w1

ω

X(ω)

b(t)

( ) ( ), ( ) ( ), ( ) ( )* ( )

at btx t e u t h t e u tc t x t h t

− −= ==

w1 =5

Page 37: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 38

Page 38: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 39

Page 39: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 40

Page 40: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 41

Page 41: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 42

Example: Compute the FT for x(t)

( ) ( ) ( )at btx t e u t e u t−= + −

Page 42: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 43

Example: Compute the inverse FT of Y(jω)

sin(2 ) sin( )( )( / 2) ( / 2)

Y j ω ωωω ω

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

Page 43: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 44

Example: Use FT properties to compute the FT of the signals shown below

2 4

( ) ( ) 2 ( ) ( 2 )sin(400 ( 0.1))( ) 10

( 0.1)( ) 10 ( ) 2 ( 3)t t

x t t t T t Tty t

tz t e u t e u t

δ δ δπ

π− −

= − + − − −−

=−

= − −

Page 44: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 45

Page 45: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 46

Parseval’s Relation for non periodic signals (conservation of energy)

For non periodic signals, the relationship becomes

( ) 2 21x kT

kP x t dt a

T= = ∑∫

( ) ( )2 212xE x t dt X j dω ωπ

+∞ +∞

−∞ −∞= =∫ ∫

Recall Parseval’s relation for periodic signal with period T

Signal Power

Signal Energy

Page 46: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 47

Proof:

Page 47: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 48

Using MATLAB to find Fourier Transforms

MATLAB has the functions fourier.m and ifourier.m

Example: compute the FT of exp(-t2/2)syms t v w xft=exp(-t^2/2);FW=fourier(ft)pretty(FW)

>FW =exp(-1/2*w^2)*2^(1/2)*pi^(1/2)

2 1/2 1/2exp(- 1/2 w ) 2 pi

Compute the Fourier transform of –e-tu(t)+3δ(t)syms t v w xft=sym('(-exp(-t)*Heaviside(t))+3*Dirac(t)');Fw=fourier(ft)

Page 48: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 49

Application of the modulation property to AM modulation

( ) ( ) ( )0cos ?y t s t t Y jω ω= ⋅ → =

Page 49: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 50

• Applications: communication systems; Amplitude modulation (AM) systems.

• Speech exist in the range 300Hz~5KHz

• Atmosphere attenuates signals rapidly in the range 10Hz-->20KHz, and propagates much better at high frequencies

shift speech to higher frequency range where signal propagates better

Page 50: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 51

( ) ( ) ( )cos 4 0 cos 400x t t tπ π= ⋅

Overall period of signal x(t) ?

( ) ( ) ( )

4 4 0 4 4 0 3 6 0 3 6 0

1 c o s 4 4 0 c o s 3 6 0214

j t j t j t j t

x t t t

e e e eπ π π π

π π

− − −

= +⎡ ⎤⎣ ⎦

⎡ ⎤= + + +⎣ ⎦

60 70 80 1009010 20 30 40 500

60 70 80 1009010 20 30 40 500

x(t)

Time t (msec)

envelope

• What does the AM signal look like ?Example:

Page 51: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 52

Spectrum of x(t):

( ) 0jk tk

kx t a e ω⇒ = ∑

Page 52: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 53

Spectrum of x(t) for generic frequencies:

Note:

Change ω2

you change where the frequency’s components are for a constant ω1

( ) ( ) ( )

( ) ( )

( ) ( ){( ) ( )

1 2 2 1

1 2 1 2

1 2 1 2

1 2 1 2

co s co s1 co s co s21 ex p ex p4

ex p ex p

y t t t

t t

j t j t

j t j t

ω ω ω ω

ω ω ω ω

ω ω ω ω

ω ω ω ω

=

= + + −⎡ ⎤⎣ ⎦

= + + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

−(ω2 +ω1 ) −(ω2 −ω1 ) ω2 −ω1 ω1 +ω2

ω2ω

ω2

1/4

called carrier frequency

Page 53: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 54

How to recover the original speech signal ?

Demodulate….

Page 54: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 55

Application to Frequency Division Multiplexing

x1 (t)

cos(ωa t)

x2 (t)

cos(ωc t)

x3 (t)

cos(ωc t)

y(t)

Y(ω)

Page 55: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 56

Demodulation

Page 56: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 57

Quadrature Modulator

Compute Y(jω)

Page 57: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 58

Quadrature Demodulator

Page 58: VI. Introduction to the Fourier Transformfaculty.nps.edu/fargues/teaching/ec2410/Section6MPF-SuFY10.pdf · 08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 1 [p. 4] Fourier series

08/24/10 2003rws/jMc-modif SuFY10(MPF)-Section 11 59

References[Karris] Signals & Systems, 3rd ed. Orchard Publications, 2007[McClellan] Signal Processing First, J. McClellan, R. Schafer, M. Yoder, 2006, Prentice Hall.