Vertex09Jurriaan Schmitz - chip post- processing 1 GridPix – chip post processing Jurriaan...

35
Vertex09 Jurriaan Schmitz - chip post-processing 1 GridPix – chip post processing Jurriaan Schmitz

Transcript of Vertex09Jurriaan Schmitz - chip post- processing 1 GridPix – chip post processing Jurriaan...

Vertex09 Jurriaan Schmitz - chip post-processing

1

GridPix – chip post processingJurriaan Schmitz

Vertex09Jurriaan Schmitz - chip post-processing 2

About Jurriaan Schmitz

Ph.D. experimental physics 1994

Universiteit van Amsterdam/NIKHEF

Full professor at University of Twente2002-present

Senior Scientist at Philips Research1994-2002

Vertex09Jurriaan Schmitz - chip post-processing 3

Outline

The concept of wafer post-processing Successes of wafer post-processing Recent results Perspective for radiation imaging

Vertex09Jurriaan Schmitz - chip post-processing 4

The More than Moore domain of microtechnology

“Moore’s Law” (but not exactly)

Fe

atu

re s

ize

Year of first mass production

Vertex09Jurriaan Schmitz - chip post-processing 5

The More than Moore domain of microtechnology

Source: ENIAC

Industry Industry &

academia

Industry &

academia

Vertex09Jurriaan Schmitz - chip post-processing 6

More than Moore: new functions

Traditional IC: Computing Data Storage Electrical Communication

Possible extensions: High quality passives Wireless communication Optical communication Sensing and Actuating

What’s 20*2.1?

Forty-two

Vertex09Jurriaan Schmitz - chip post-processing 7

The fabrication challenge

How to combine electronics with sensors, actuators, optical components, …?

Hybrid (solder/bump the components together) 3-D integration by die stacking (e.g. 3D MAPS) Pre-CMOS: Make component, then make CMOS on the

same wafer Intermediate: Mix the component and CMOS processes … or post-CMOS: add components on top of a finished

CMOS chip

Majority @Vertex ’09

Vertex09Jurriaan Schmitz - chip post-processing 8

MEMS-first monolithic integration:Sandia 3-D accelerometer

Vertex09Jurriaan Schmitz - chip post-processing 9

Intermediate processing:mix the MEMS and CMOS fabrication

NIST gas sensor

Twente: Kovalgin, J. Electrochem. Soc. 153 (9) H181

Vertex09Jurriaan Schmitz - chip post-processing 10

Wafer post-processing

a. Chip fabrication

b. Wafer dicing

Vertex09Jurriaan Schmitz - chip post-processing 11

Wafer post-processing

a. Chip fabrication

b. Post-processing

c. Wafer dicing

Vertex09Jurriaan Schmitz - chip post-processing 12

Logistics

Chip fabrication: standard, at any regular (CMOS) fab

Post-processing: special,in a custom CR laboratory

Wafer dicing, packaging: specialized work like MEMS packaging, e.g. Amkor, Boschman

a. Chip fabrication

b. Post-processing

c. Wafer dicing

Vertex09Jurriaan Schmitz - chip post-processing 13

Pros and cons

We do not interfere with the (CMOS) fab process

We can buy good quality chips

We can use any lab for this

Excellent alignment and contacts

Cheap mass-manufacturing

We must keep the CMOS intact

We have to think the final stages through very carefully! (Standard solutions may fail)

a. Chip fabrication

b. Post-processing

c. Wafer dicing

Vertex09Jurriaan Schmitz - chip post-processing 14

Outline

The concept of wafer post-processing Successes of wafer post-processing

Active pixel sensors LCoS Digital MicroMirrors

Recent results Perspective for radiation imaging

Vertex09Jurriaan Schmitz - chip post-processing 15

Wafer post-processing example: CMOS image sensor (see “MAPS”)

Vertex09Jurriaan Schmitz - chip post-processing 16

Wafer post-processing example: Liquid-Crystal-on-Silicon

Cover glassElectrode

Liquid crystalReflector

CMOS

Vertex09Jurriaan Schmitz - chip post-processing 17

Wafer post-processing example: Digital MicroMirror™

Vertex09Jurriaan Schmitz - chip post-processing 18

Vertex09Jurriaan Schmitz - chip post-processing 19

Outline

The concept of wafer post-processing Successes of wafer post-processing Recent results

Micromechanical structures Photodetectors 3D electronics

Perspective for radiation imaging

Vertex09Jurriaan Schmitz - chip post-processing 20

UC Berkeley: SiGe Resonator on top of CMOS

Vertex09Jurriaan Schmitz - chip post-processing 21

Example: silicon photodiodes on top of CMOSCEA-LETI, IEDM 2006

Vertex09Jurriaan Schmitz - chip post-processing 22

Rohm corp.: CIGS image sensor on CMOSIEDM 2008

Vertex09Jurriaan Schmitz - chip post-processing 23

CMOS on top of CMOS! (3D integration)

B. Rajendran et al., IEEE Trans. El. Dev. 54 (4) 707A. W. Topol et al.,

IBM J. Res. & Dev. 50 (4/5) 491

I. Brunets et al., IEEE Trans. El. Dev. 56 (8) 1637

Vertex09Jurriaan Schmitz - chip post-processing 24

CMOS post-processing: game rules

Careful treatment of the underlying CMOS: Temperature ≤ 450 °C Mild (or no) plasmas Maintain the H balance in the MOSFET Limited mechanical stress

The CMOS properties must remain unchanged:only then the standard infrastructure can be used.

Further reading:Jurriaan Schmitz, Nucl. Instr. Meth. A 576 (2007) 142.

Vertex09Jurriaan Schmitz - chip post-processing 25

Outline

The concept of wafer post-processing Successes of wafer post-processing Recent results Perspective for radiation imaging

MPGD: InGrid/GridPix Future

Vertex09Jurriaan Schmitz - chip post-processing 26

Bottleneck issues in radiation imaging

Power mgt. (cooling) Yield of interconnects (E/O)

System mass (rad. lengths)

What’s the answer?

Vertex09Jurriaan Schmitz - chip post-processing 27

Bottleneck issues in electronics

Power mgt. (cooling) Yield of interconnects

System mass

Solution in electronics:Integration and miniaturization

Vertex09Jurriaan Schmitz - chip post-processing 28

Radiation imaging – gaseous detectors

Cathodeplanes

Particle

Anodewires

Traditional MWPC InGrid

Vertex09Jurriaan Schmitz - chip post-processing 29

InGrid: Integrated Grid

Use an ASIC as read-out electronics Perfect alignment holes to pixels No dead areas Geometrical freedom No manual manufacturing

Pixel pad

Supporting pillar

Grid

Cathode

CMOS chip

Vertex09Jurriaan Schmitz - chip post-processing 30

The microsystem

Al membrane(-400-450 V)

SU-8 pillar(50 μm high)

a-Si protection

Medipix2 chip(or Timepix)

Vertex09Jurriaan Schmitz - chip post-processing 31

Process flow – suspended membrane

Deposit spark protection film:a-Si or Silicon-rich nitride

SU-8 photoresist for pillars

Al deposition is critical:unexposed SU-8 (yellow) should not crosslink

Al patterning also critical: lithography at room temperature to protect SU-8

Membrane release at end, after wafer dicing (fragility)

50 µm SU-8 coating and exposure

0.8 µm Al deposition + patterning

SU-8 development

Spark protection

Vertex09Jurriaan Schmitz - chip post-processing 32

The InGrid detector

2-D and 3-D mip-tracking shown Good energy resolution (11.7% FWHM for 55Fe in Ar/CH4)

Micromegas built on a chip, as well as GEM Multiple electrodes shown Beam tests for mip-tracking and transition radiation

Vertex09Jurriaan Schmitz - chip post-processing 33

The next step: other radiation imagers

Semiconductors on a chip Amorphous silicon: shown (e.g. Wyrsch et al.) Polycrystalline silicon: first steps made CIGS: rad-hard!!

Integrate components for optical communication? Scintillator on an APS? MCP on a chip?

SigmaDigitalXray

Charge distribution on strips Charge Cloud

MCP stack

Tube Window with photocathode

Vallerga et al.

Melai et al.

Vertex09Jurriaan Schmitz - chip post-processing 34

Conclusions

What can we build on top of CMOS? Light projectors CMOS imagers More electronics Radiation imaging detectors …

There’s plenty of room at the top!

Vertex09Jurriaan Schmitz - chip post-processing 35

Thanks…

My low-temperature coworkers:

Tom Aarnink, Victor Blanco Carballo, Arjen Boogaard, Ihor Brunets, Jisk Holleman, Alexey Kovalgin, Jiwu Lu, Joost Melai, Cora Salm, Sander Smits, Rob Wolters, Yevgen Bilevych, Marten Bosma, Max Chefdeville, Harry van der Graaf, Martin Fransen, Jan Visschers, Jan Timmermans

Our sponsors:

The Dutch Technology Foundation, FOM

NXP Research, Adixen/Alcatel, ASM International

…and the Medipix consortium