VeronikaSchaffenroth - Max Planck Society · 2016. 3. 21. · SpectrumofHD271791intheOptical. 1.1...

36
Observations of the runaway HD 271791 Nucleosynthesis in a core-collapse supernova Veronika Schaffenroth Institute for Astro- and Particle Physics, University of Innsbruck 18th Workshop on Nuclear Astrophysics Schloss Ringberg 18.03.16 Collaborators: Norbert Przybilla, Keith Butler, Andreas Irrgang, Uli Heber

Transcript of VeronikaSchaffenroth - Max Planck Society · 2016. 3. 21. · SpectrumofHD271791intheOptical. 1.1...

Observations of the runaway HD 271791 Nucleosynthesis in a core-collapse supernova
Veronika Schaffenroth Institute for Astro- and Particle Physics, University of Innsbruck
18th Workshop on Nuclear Astrophysics Schloss Ringberg 18.03.16
Collaborators: Norbert Przybilla, Keith Butler, Andreas Irrgang, Uli Heber
Characteristics of massive runaway stars
massive and young Ø found in the halo of the Galaxy
Characteristics of massive runaway stars
massive and young Ø can only be formed in open clusters or associations found in the spiral arms (disk)
Ø far away from star forming regions ñ ejection event
Dynamical Ejection: Hills Mechanism
Hypervelocity stars – Unbound to the Galaxy Ejected by the super-massive black hole?
blender_slingshot.avi
Media File (video/avi)
Dynamical Ejection: Characteristics
• age same as age of the home cluster • not expected to show signs of binary evolution (high rotational velocities, different abundances)
• expected to be single in most cases
Supernova Explosion in a Binary System
blender_sn.avi
12 C,16 O
• high rotational velocities • rejuvenation via mass transfer • flight time smaller than the age, several Myr for the companion to explode in a supernova
• accretion of some of the material ejected in the core collapse-SN due to the small separation of the pre-SN binary ñ enhancement in α process elements and elements produced in the core collapse-SN
Motivation
studying runaway from supernova scenario
• Infer insights into explosive nucleosynthesis from an independent and so far unexploited indicator
• Derive observational constraints on theoretical supernova models
• first observational evidence for r-process elements in supernova ejecta?
ùñ quantitative spectral analysis • atmospheric parameters
• elemental abundances
HD271791 – the most extreme runaway known
-25
-20
-15
-10
-5
0
5
10
15
20
25
-25 -20 -15 -10 -5 0 5 10 15 20 25
x [
Schaffenroth 2015
• bright (12 mag), normal B star • Teff “ 18700 350 K, log g “ 3.16 0.1, Vrot “ 128 km s´1
M “ 12 0.5Md, R “ 15 1.5Rd, age = 18 2 Myr • but high radial velocity Vrad “ 443 1 km s´1 !
Position of HD272791
Schaffenroth 2015
• birthplace at the outskirts of the galaxy • current position in the halo, „ 10 kpc under the disk • 3D velocity from Vrad, proper motions and distance 22 4 kpc Ñ galactic restframe velocity 750 140 km s´1
• unbound to the galaxy
200
300
400
500
600
700
800
900
1000
v ru
n a
w a
y [k
m /s
<v> top 10% top 1%
Schaffenroth et al., in prep.
Monte Carlo simulation using formula from Tauris & Takens 1998 • post common-envelope system with separation of 12 Rd • primary is a Wolf-Rayet star with 20 Md, turns into a BH • ejection in direction of the Galactic rotation
B star abundances and gradients
Nieva et al. 2012
ATLAS 9 LTE model
eff
e
cross sections
0 0.
5 1
λ[Å]
R el
at iv
e F
lu x
1.1
1
0.9
0.8
0.7
0.6
5130512051105100509050805070506050505040503050205010500049904980497049604950494049304920491049004890488048704860485048404830482048104800479047804770476047504740473047204710470046904680467046604650464046304620461046004590458045704560455045404530452045104500449044804470446044504440443044204410440043904380437043604350434043304320431043004290428042704260
0
-10
F lu x
Spectrum of HD271791 in the Optical
1.1
1
0.9
0.8
0.7
0.6
5130512051105100509050805070506050505040503050205010500049904980497049604950494049304920491049004890488048704860485048404830482048104800479047804770476047504740473047204710470046904680467046604650464046304620461046004590458045704560455045404530452045104500449044804470446044504440443044204410440043904380437043604350434043304320431043004290428042704260
0
-10
F lu x
Spectrum of HD271791 in the Optical
1.1
1
0.9
0.8
0.7
0.6
5130512051105100509050805070506050505040503050205010500049904980497049604950494049304920491049004890488048704860485048404830482048104800479047804770476047504740473047204710470046904680467046604650464046304620461046004590458045704560455045404530452045104500449044804470446044504440443044204410440043904380437043604350434043304320431043004290428042704260
0
-10
F lu x
Spectrum of HD271791 in the Optical
1.1
1
0.9
0.8
0.7
0.6
5130512051105100509050805070506050505040503050205010500049904980497049604950494049304920491049004890488048704860485048404830482048104800479047804770476047504740473047204710470046904680467046604650464046304620461046004590458045704560455045404530452045104500449044804470446044504440443044204410440043904380437043604350434043304320431043004290428042704260
0
-10
F lu x
Spectrum of HD271791 in the Optical
1.1
1
0.9
0.8
0.7
0.6
5130512051105100509050805070506050505040503050205010500049904980497049604950494049304920491049004890488048704860485048404830482048104800479047804770476047504740473047204710470046904680467046604650464046304620461046004590458045704560455045404530452045104500449044804470446044504440443044204410440043904380437043604350434043304320431043004290428042704260
0
-10
F lu x
Spectrum of HD271791 in the Optical
1.1
1
0.9
0.8
0.7
0.6
5130512051105100509050805070506050505040503050205010500049904980497049604950494049304920491049004890488048704860485048404830482048104800479047804770476047504740473047204710470046904680467046604650464046304620461046004590458045704560455045404530452045104500449044804470446044504440443044204410440043904380437043604350434043304320431043004290428042704260
0
-10
F lu x
Spectrum of HD271791 in the Optical
1.1
1
0.9
0.8
0.7
0.6
5130512051105100509050805070506050505040503050205010500049904980497049604950494049304920491049004890488048704860485048404830482048104800479047804770476047504740473047204710470046904680467046604650464046304620461046004590458045704560455045404530452045104500449044804470446044504440443044204410440043904380437043604350434043304320431043004290428042704260
0
-10
F lu x
Spectrum of HD271791 in the Optical
1.1
1
0.9
0.8
0.7
0.6
5130512051105100509050805070506050505040503050205010500049904980497049604950494049304920491049004890488048704860485048404830482048104800479047804770476047504740473047204710470046904680467046604650464046304620461046004590458045704560455045404530452045104500449044804470446044504440443044204410440043904380437043604350434043304320431043004290428042704260
0
-10
F lu x
Spectrum of HD271791 in the Optical
1.1
1
0.9
0.8
0.7
0.6
5130512051105100509050805070506050505040503050205010500049904980497049604950494049304920491049004890488048704860485048404830482048104800479047804770476047504740473047204710470046904680467046604650464046304620461046004590458045704560455045404530452045104500449044804470446044504440443044204410440043904380437043604350434043304320431043004290428042704260
0
-10
F lu x
Abundances of HD271791
-0.4
-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05
0
[X /H
Comparison with theoretical SN/HN calculations
Schaffenroth 2015 Ñ enhancement of the α elements Ñ HD271791 was ejected by a supernova ex- plosion Ñ heavier elements only visible in the UV!
assumptions: • wind accretion in progenitor system
• nucleosynthesis yields by Nomoto et al. 2006
• 10 % accretion efficiency
• partial mixing of accreted material with unpolluted matter approximated by diffusion
Spectrum synthesis in the UV
Cu III
Cu III
Zn III
Zn III
Co III
Co II
Co II
Co II
Co II
Co II
s− 1 cm −2
• our spectrum synthesis in the optical well advanced and tested
• extension to the UV line forest to derive abundances of heavier elements
• implementing of line-lists for all lines with data in the literature
Elements with some available data
not included in the model
included in NLTE
included in LTE
6.4
6.6
6.8
7
7.2
7.4
7.6
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
ep si
lo n_
F e
λ[Å]
FeII FeII/III
FeIII mean
standard deviation
NLTE effects
Schaffenroth 2015
4.6
4.8
5
5.2
5.4
5.6
5.8
6
6.2
6.4
6.6
6.8
1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
e p
s ilo
Abundances from the UV for several comparison stars
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
C N O Al Si Ti V Cr Mn Fe Co Ni Cu Zn
ι Her
s− 1 cm −2
s− 1 cm −2
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
C N O Ne Mg Al Si S Fe Ti Mn Co Ni Zn
[X /H
Conclusions
• most extreme runaway known HD271791 – ejected by a core-collapse supernova in a very tight binary system
• enhancement of the α-elements seen in the optical spectrum
• simulations show the extreme velocities can be explained by the scenario
• extension of spectrum synthesis to the UV to derive abundances of heavier elements
• limiting factor: missing atomic data and model atoms
• many blends due to high rotational velocities
Future Plans
• improvement of the spectrum synthesis in the UV with more model atoms for the iron group
• decreasing of the abundance scatter in individual lines
• differential abundance analysis to derive the tiny contribution of the heavier elements to the stellar lines
• more realistic assumptions of expected abundance pattern and supernova ejecta accretion
Runaway Stars
Analysis method