Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25...

12
Valida&on of Sensor Features in Simula&ons Andrei Nomerotski (BNL) 2013/12/5

Transcript of Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25...

Page 1: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

Valida&on  of  Sensor  Features  in  Simula&ons  

Andrei  Nomerotski  (BNL)  2013/12/5  

Page 2: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

BNL  involvement  in  LSST  simula&ons  

•  Valida&on  of  sensor  effects  in  PhoSim  (silicon.txt)  –  Edge  and  an&-­‐bloom  stop  roll-­‐off  effects  –  Tree  rings  –  Fringes  –  Brick-­‐wall  paNern  from  laser  annealing  –  Intensity  dependence  –  Crosstalk  in  sensors  and  raRs  –  ..  

•  Simula&ons  of  lab  setups  –  Describe  lab  setup  in  PhoSim,  modifica&on  of  op&cs  file  to  model  a  spot  projector  (for  example)  

–  Compare  simula&ons  and  measurements  

•  Use  tuned  simula&ons  to  evaluate  sensor  effects  on  science  

Page 3: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

P.O’Connor  

Laser  Spots  in  CCD  

•  On  the  egde:    –  Non-­‐linearity  up  to  50%  –  Ellip&city  up  to  20%    

Page 4: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

Photometric  Analysis  of  Spot  Data  

4  

P.O’Connor  

Spots  and  flat  field  behave  differently    –  due  to  space  charge  effects    

Page 5: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

P.O’Connor  

Intensity  Dependence  

5  

Page 6: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

Tree  Rings  

6  

•  Due  to  uneven  doping  of  silicon  wafers  

A.Plazas  

DES   LSST  

Page 7: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

Lateral  E  Field  –  Lateral  field  can  be  approximated  by  parabolas  (for  example)  in  both  direc&ons  

–  Proper  electrosta&c  simula&ons  can  be  done  if  needed  

–  PhoSim  has  a  simple  model  which  needs  tuning  

depleted silicon bulk and a field created by a distribution ofpotentials on the cathodes. The source of the parasitic fieldis the variation of the space charge density. The parasiticfield caused by variations in the charge distribution is withgood approximation the same for both a simple diodeand a SDD. Though the boundary conditions of themore complex structure of SDD electrodes are notcompletely equivalent to a diode, it was shown [3] that inthe detector middle plane the difference in the parasiticcomponent of the E-field resulting from the differentboundary conditions is negligible. This enables us to use asimple diode model to simulate the effect. Moreover, in thediode there is no component of the main electric fieldparallel to the surfaces. This makes it easy to visualize theparasitic component.

2. Simulation setup and assumptions

An infinite diode with an anode on the top surface and acathode on the bottom was simulated. We assume that thebulk doping concentration has a periodic structure alongthe x axis and is uniform in the other directions.

Geometry: The simulated structure is a rectangle. Thecoordinate origin is set at the upper left corner, on the topsurface of the structure; x represents horizontal displace-ment and y represents depth into the device. The full depthof the device is 300mm. The length along the x axis is1000mm (half a period).

Doping profiles: The base doping concentration chosenwas 1:5! 1012 donors=cm3 in correspondence with the3 kohm cm resistivity of the SDD wafers. A dopingvariation with a peak-to-peak swing of 0:5!1012 donors=cm3 and period of 2mm was added to theuniform base level. Simulations were run for different

doping profiles along the x-axis, starting from a ‘‘squarewave’’ with sharp transition and gradually smoothing theedge using a Gaussian transition with a standard deviationincreasing up to 453mm. The half amplitude point is alwayspositioned at x ¼ 500mm. Examples of the horizontaldoping profile are shown in Fig. 2 for six differentGaussian transitions. This choice of the doping profileswas motivated by the following: the sharper the dopingvariation gets the larger the E-field will be, so to see themaximum possible effect the ‘‘square wave’’ is a naturalchoice for the doping profile. Sharp variations however aresmoothed out in real situations; in order to accountfor this, different Gaussian transition were simulated.A Gaussian is not a periodic function and the ‘‘tail’’ hasbeen truncated at x ¼ 1mm. The resulting functions areperiodic with period 2mm and symmetric about x ¼ 0and 1mm.

Contacts: Both the anode and cathode contacts areohmic. The region under the anode is implanted withphosphorus dopants and the region under the cathode isboron doped. Doping profiles under the contacts werespecified analytically.

Boundary conditions: The ohmic contacts on both the topand bottom surfaces are treated by ATLAS as simpleDirichlet boundary conditions. Along the noncontact sides

ARTICLE IN PRESS

80

60

40

20

0

-20

-40

-60

-80

Ele

ctric

fiel

d (V

/cm

)

0 5 10 15 20 25 30 35Drift distance (mm)

Fig. 1. Profile of the parasitic drift axis component of the E-field fordifferent values of the transport field: 292, 417, 512, 667V/cm. Theconstant component of the drift field is subtracted.

Dop

ing

conc

entr

atio

n, c

m-3

1500

1600

1700

1800

1900

2000

×109

10 µm

x, microns200 400 600 800

Dop

ing

conc

entr

atio

n, c

m-3

1500

1600

1700

1800

1900

2000 120 µm

20 µm

x, microns200 400 600 800

225 µm

60 µm

x, microns200 400 600 800

453 µm

Fig. 2. Horizontal doping profiles for Gaussian transitions with sigmas102453mm.

I.V. Kotov et al. / Nuclear Instruments and Methods in Physics Research A 568 (2006) 41–4542

I.Kotov  et  al,  2006    

of the device, Neumann boundary conditions are assumed:the normal component of the electric field, the Ex

component in our case, is set to zero along these sides.The left side, x ¼ 0, was chosen to be the symmetry planegoing through the doping profile maximum and the rightside, x ¼ 1000mm, to be the symmetry plane going throughthe minimum.

3. Simulation results

From the geometry of the problem, the following generalbehaviour of the Ex field is expected:

" Ex is zero on both contacts and on the side surfaces(built into simulations);

ARTICLE IN PRESS

x, m

icron

s

200

400

600

800

y, microns

50

100

150

200

250

0

50

100

150

200

250

120 µm

x, m

icron

s

200

400

600

800

y, microns

50

100

150

200

250

Ex,

V/c

m

Ex,

V/c

m

0

50

100

150

200

250

300

350

400

sharp

x, m

icron

s

200

400

600

800

y, microns

50

100

150

200

250

Ex,

V/c

m

0

20

40

60

80

100

120

453 µm

Fig. 3. The Ex component for ‘‘sharp’’ and Gaussian transitions of the doping profile.

I.V. Kotov et al. / Nuclear Instruments and Methods in Physics Research A 568 (2006) 41–45 43

Page 8: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

Displacement  of  Photoelectrons  in  Si  due  to  tree  rings  

•  Lateral  displacement  

Lateral'charge'displacement'in'fully'depleted'CCD'!A.Nomerotski,!!6!August!2013!!!The!drift!field!depends!on!the!drift!distance!linearly,!if!the!applied!voltage!is!equal!to!the!depletion!voltage.!!!!! = !! + !! ∙

!!!

!where! !!!!is! a! constant,! x! is! the! coordinate! along! the! drift! distance! and! d! is! the!thickness!of!the!sensor.!The!lateral!field!due!to!the!variation!of!the!doping!along!the!xBaxis! must! be! zero! at! the! top! and! bottom! surfaces! of! the! sensor! because! of! the!boundary!conditions!and!can!be!approximated!with!a!parabola,!see!the!bottom!right!figure! in! Fig.4! [1],! which! should! be! a! realistic! representation! of! the! effect.! The!parabola!has!maximum!the!half!way!between!the!top!and!bottom!of!the!sensor:!!!! = !! ∙

4!!

!! − 1 !

!The!lateral!deviation!of!a!photoelectron!originated!in!point!x!is!given!by:!Δ! = !"

!

!!

!Where!y!is!orthogonal!to!x!and!!!!!" = !"!!! = !"!!!!; !!!" = !!"!!! = !"!!!!!!Hence!!!" = !" !!!!

!!and!!!

Δ! = !" !!!!=

!

!

4!!!!!

!"! !! − 1 = 2!!!!!!

∙ !! − 1 !!!!!!!

!!!!!= − 2!!!!!!

∙ ! !! − 1 !

!!!

!!

!!References!![1]!I.V.!Kotov,!T.J.!Humanic,!D.!Nouais,!J.!Randel,!A.!Rashevsky,!Electric!fields!in!nonhomogeneously!doped!silicon.!Nucl.Inst.Meth!A!568!(2006)!41–45.

0

5

10

15

20

25

0 20 40 60 80 100

Electron Trajectory in CCD with Parasitic Field

x0=0

x0=15

x0=30

x0=45

x0=60

Depth of Electron (μm)

Late

ral D

ispla

cem

ent o

f Ele

ctro

n (μ

m)

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

Electron Trajectory in CCD with Parasitic Field (E0 = 10)

x0=0

x0=15

x0=30

x0=45

x0=60

Depth of Electron (μm)

Late

ral D

ispla

cem

ent o

f Ele

ctro

n (μ

m)

0

2

4

6

8

10

12

0 20 40 60 80 100

Electron Trajectory in CCD with Parasitic Field (E0 = 25)

x0=0

x0=15

x0=30

x0=45

x0=60

Depth of Electron (μm)

Late

ral D

ispla

cem

ent o

f Ele

ctro

n (μ

m)

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

Electron Trajectory in CCD with Parasitic Field (E0 = 50)

x0=0

x0=15

x0=30

x0=45

x0=60

Depth of Electron (μm)

Late

ral D

ispla

cem

ent o

f Ele

ctro

n (μ

m)

Beamer,  Nomerotski    

Depleted  sensor     Overdepleted  sensor    

Page 9: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

Tree  Rings  –  Next  Steps  •  Complete  analy&cal  calcula&ons,  introduce  Ey(z)  dependence,  introduce  satura&on  of  driR  velocity  at  large  E  

•  Compare  to  PhoSim  tree  rings  •  Tune  PhoSim  tree  ring  parameters  to  measurements  in  LSST  and  DES  sensors  

•  Use  PhoSim  to  evaluate  how  science  is  affected  by  tree  rings  – Astrometric  biases  –  Chroma&c  effects  for  WL  –  Correc&ons  and  residual  systema&cs    –  etc  

Page 10: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

Fringes  •  Interference  paNerns  due  to  reflec&ons  off  the  sensor  boNom,  visible  at  longer  wavelengths  

•  Use  a  random  surface  with  some  flatness  

•  Will  use  BNL  metrology  data  to  validate  

•  Assumes  that  the  backside  is  flat  –  Fringe  data  at  different  wavelengths  should  allow  to  extract  the  backside  flatness  

  10  

J.Peterson,  P.O’Connor  

Page 11: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

Brick-­‐wall  paNern  •  From  laser  annealing  of  back  side,  visible  at  short  wavelength  

•  Described  in  PhoSim  with  11  parameters  

•  Needs  tuning  

11  

J.Peterson,  P.O’Connor  

Page 12: Validaon)of)Sensor)Features)in) Simulaons) · 2013. 12. 5. · Electric field (V/cm) 05 10 15 20 25 30 35 Drift distance (mm) Fig. 1. Profile of the parasitic drift axis component

Summary  •  Fully  depleted  CCD  have  a  non-­‐trivial  electrosta&cs  which  lead  to  astrometric  biases  and  PSF  distor&ons  (+  other  important  sensor  effects)  

•  This  may  affect  science  and  needs  to  be  studied  in  simula&ons  

•  We  are  working  on  valida&on  of  all  main  sensor  effects  in  PhoSim  and  will  propagate  this  to  studies  of  WL  systema&cs