V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

9
 Superdense dark matter clumps from superheavy particles V. Berezinsky (Laboratori Nazionali del Gran Sasso; Center for Astroparticle Physics at LNGS, Italy) V . Dokuchaev, Y u. Eroshenko (INR RAS, Russia) M. Kachelries, M.Aa. Solberg (Institutt for fysikk, NTNU Trondheim, Norway) QUARKS-2010

Transcript of V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

Page 1: V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

8/3/2019 V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

http://slidepdf.com/reader/full/v-berezinsky-et-al-superdense-dark-matter-clumps-from-superheavy-particles 1/9

 

Superdense dark matter clumpsfrom superheavy particles

V. Berezinsky(Laboratori Nazionali del Gran Sasso;Center for Astroparticle Physics at LNGS, Italy)

V. Dokuchaev, Yu. Eroshenko(INR RAS, Russia)

M. Kachelries, M.Aa. Solberg(Institutt for fysikk, NTNU Trondheim, Norway)

QUARKS-2010

Page 2: V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

8/3/2019 V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

http://slidepdf.com/reader/full/v-berezinsky-et-al-superdense-dark-matter-clumps-from-superheavy-particles 2/9

 

Superheavy dark matter particles

Thermal relic Unitarity bounds  (Griest, Kamionkowski 1990), (Hui 2001)

Superheavy particles (Berezinsky, Kachelries and Vilenkin 1997), (Kuzmin and Rubakov 1998)

Gravitational production of superheavy particles at the end of inflation (Chung, Kolb and Riotto 1999), (Kuzmin and Tkachev 1998), (Lyth and Roberts 1998)

Annihilation of superheavy DM particles  , backgrounds dense central region of DM clumps (Blasi, Dick, Kolb 2002)

  formation of superdense clumps (Kolb and Tkachev 1994), (Scott and Sivertsson 2009)

Superheavy supersymmetry (Berezinsky, Kachelries and Solberg, 2008)

∝1/ann ,CDM h2≈0.1⇒⟨annv ⟩≈3×10

−26cm3s−1

ann∝m−2⇒m≤100TeV 

N ann∝/m2

⟨annv ⟩∝m−4

∝E − ,≤3

⟨ann v ⟩≈2×10−42 m /1011GeV −2cm3 s−1M SUSY ≫mZ 

Page 3: V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

8/3/2019 V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

http://slidepdf.com/reader/full/v-berezinsky-et-al-superdense-dark-matter-clumps-from-superheavy-particles 3/9

 

Kinetic decoupling of superheavy DM particles

The mass spectrum of DM clumps has a low-mass cutoff  M min

due to the leakage of particles

from a clump. This mass is strongly model dependent.

Cutof the mass spectrum of DM clumps for standard ( ~100 GeV) neutralinos

Cutof for ultra-cold WIMPs (Scott and Sivertsson 2009), (Gelmini and Gondolo 2008)

temperature T d  of kinetic decoupling

For M SUSY

= 1012 GeV:

The mass of DM inside horizon

Peculiar velocities just after the horizon crossing

Free streaming. For bino

In the case of a higgsino and the free-streaming plays no role 

M min~10−6M ⊙

1/rel ~H t d ⇒

T d ≃{2×1011

GeV 

2GeV M d ≃{6×10

−12g bino

6×1021

g higgsino

M =3.4×1016T /100GeV −3 N eff /100−3 /4

M ≪M d ,M ≫M d 

v  pH ≃H c /3

M fs≃4.6×10−11

g ≃260m

M fs≪m

Page 4: V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

8/3/2019 V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

http://slidepdf.com/reader/full/v-berezinsky-et-al-superdense-dark-matter-clumps-from-superheavy-particles 4/9

 

Non-standard spiky density perturbation spectrum

(Green, Liddle 1997)

7-year WMAP data n p= 0.963 ± 0.014 the variance is too small for the formation of 

clumps at the RD stage.

Clumps can be produced effectively at radiation dominated cosmological stage only from non-

standard spectra

Flat segment in the inflationary potential (Starobinsky 1992), (Ivanov, Naselsky, Novikov 1994)

peak in the perturbation spectrum

 Inflationary models with several scalar fields (Yokoyama 1995), (Garcia-Bellido, Linde, Wands 1996)

Evidence for excess power at small scales ~10h-1 kpcfrom the study of Lyman-α (Demiansk, Doroshkevich 2003) 

H M ≃9.5×10−5 M 

1056

g 1−n

 p/4

⇒ H M 

H ~M Pl 

−3V 

3 /2 /V '   V ' =dV /d  0⇒

Page 5: V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

8/3/2019 V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

http://slidepdf.com/reader/full/v-berezinsky-et-al-superdense-dark-matter-clumps-from-superheavy-particles 5/9

 

Formation of superdense DM clumps at the RD epoch

Spherical model (Kolb, Tkachev 1994):

where y=a(η)/aeq

, η=dt/da, Φ = δρDM 

 /ρDM 

; r=a(η)b(η)ξ 

The formation of clumps from entropyperturbations (Kolb, Tkachev 1994). db/dt=0,Φ ~ 1 - 104 in the case of axionic miniclusters with M ~ (10-13 - 0.1)M

Linear evolution of adiabatic perturbations duringthe RD epoch: where x=k η

Nonlinear evolution: Φ=0 , but the initial velocity db/dt is nonzeroFraction of DM in the form of superdense clumps is ξ ~ 1/2 

y  y 1d 

2b

dy 2

[13

2y ]db

dy 1

2[ 1

b2

−b]=0

≃1403

1eq

=3A

2 [ln  x 

 3E −

1

2 ]

Page 6: V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

8/3/2019 V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

http://slidepdf.com/reader/full/v-berezinsky-et-al-superdense-dark-matter-clumps-from-superheavy-particles 6/9

 

Relaxation in clumps, “gravithermal catastrophe” 

Universal power-law density profile with exponent β=1.7 – 1.9 (Gurevich, Zybin 1988)

Core radius = ? Maximal central density = ?

EW scattering ~1/m2. Gravitational two-body scattering ~m2 may becomes the dominant process for thesuperheavy particles! 

Two-body gravitational relaxation: (Spitzer, Saslaw 1966)

After the core collapsed, the singular profile extends formally down to very small radius R c  

EW elastic scattering of SHDM particles.The core remains transparent for superheavy neutralinos.

Particle annihilation in core(Berezinsky, Gurevich, Zybin 1992)(Berezinsky, Bottino, Mignola 1997)

 

Fermi degeneration

t rel,gr ≃1

4

v 3

G2m

2n ln 0.4N

∝r −2

 x c 

2≡R c /R ≃ ⟨ v ⟩ 1 /2

G1 /2

m~7.4×10

−13

 pF =321 /3 c / m1 /3=m V c 

 x c 

2

≃2

m4

G M 

R  −3 /2

~10

−11

Page 7: V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

8/3/2019 V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

http://slidepdf.com/reader/full/v-berezinsky-et-al-superdense-dark-matter-clumps-from-superheavy-particles 7/9

 

 Annihiation signals

i =N , ,

I i E =12N annF  1m

dN i dx 

Flux I i (E) of particles from DM annihilations summed over all DM clumps in the

Galactic halo:

where dN i  / dx is the differential number of particles of type i produced per annihilation with energy E=xm

Spectra and fragmentation functions dN i 

 / dx 

are from (Berezinsky, Kachelries 2001) and(Aloisio, Berezinsky, Kachelries 2004)

Page 8: V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

8/3/2019 V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

http://slidepdf.com/reader/full/v-berezinsky-et-al-superdense-dark-matter-clumps-from-superheavy-particles 8/9

 

Search for clumps by gravitational waves' detectors

lisa.nasa.gov

Frequency range: 0.03 mHz–0.1 Hz

Primordial black holes (Seto, Cooray 2004) Asteroids (Tricarico 2009)

Compact DM objects of unknown nature:(Adams, Bloom, 2004,“Direct Detection of Dark Matter with Space-based Laser Interferometers”, arXiv:astro-ph/0405266v2)

Superdense clumps should be includedin this list of objects.

Mass interval for LISA 1016 g < M < 1020 g (Seto, Cooray 2004) 1014 g < M < 1020 g (Adams, Bloom 2004)

Standard power-law spectrum withn

 p=0.949,0.963,0.977 and 1

Page 9: V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

8/3/2019 V. Berezinsky et al- Superdense dark matter clumps from superheavy particles

http://slidepdf.com/reader/full/v-berezinsky-et-al-superdense-dark-matter-clumps-from-superheavy-particles 9/9

 

Conclusions

  Superdense clumps can be produced during the radiation dominatedepoch from spikes in the spectrum of adiabatic perturbations.

Being produced very early, superdense clumps do not belong tohierarchical structures for a long time, and therefore they are notdestroyed during the formation of large-scale structures.

Ordinary 100 GeV neutralinos are excluded as the constituents of superdense clumps, because they overproduce the diffuse gamma-rayspectrum.

The limit on the superdense clumps is imposed by primordial blackholes which originated from the same perturbation spectrum.

For very heavy constituent particles and large intrinsic densities of theclumps a gravithermal catastrophe may develop in clumps. As a resultthe initial density profile turns into an isothermal one, and the large initialcore collapses into a tiny, very dense new core.

Superdense clumps can lead to detectable gamma radiation even inthe case of superheavy DM particles.

Superdense clumps can be in principle observed when the clumps arepassing by gravitational wave detectors.

Details can be found in arXiv:1002.3444v2 and arXiv:1002.3445v2