UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports &...

33
UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University of Illinois www.npl.uiuc.edu/~a-nathan/pob a-nathan @uiuc.edu The Physics of Hitting a Home Run

Transcript of UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports &...

Page 1: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 1

Thanks to J. J. Crisco & R. M. GreenwaldMedicine & Science in Sports & Exercise

34(10): 1675-1684; Oct 2002

Alan M. Nathan,University of Illinoiswww.npl.uiuc.edu/~a-nathan/pob

a-nathan @uiuc.edu

The Physics of Hitting a Home Run

Page 2: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 2

1927

Solvay Conference:

Greatest physics team

ever assembled

Baseball and Physics

1927 Yankees:

Greatest baseball team

ever assembled

MVP’s

Page 3: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 4

“Hitting is timing; pitching is

upsetting timing”

Hitting the Baseball:

the most difficult feat in sports

“Hitting is fifty percent above the shoulders”

1955 Topps cards from my personal collection

Page 4: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 5

Graphic courtesy of Bob Adair and NYT

Hitting and Pitching, Thinking and Guessing

Page 5: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 6

Example: Tim Wakefield’s Knuckleball

Page 6: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 7

1. How does a baseball bat work?

2. Why does aluminum outperform wood?

3. How does spin affect flight of baseball?

4. Can a curveball be hit farther than a

fastball?

The Physics of Hitting a Home Run

Page 7: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 8

Brief Description of Ball-Bat Collision• forces large, time short

– >8000 lbs, <1 ms

• ball compresses, stops, expands– KEPEKE– bat bends & compresses

• lots of energy dissipated (“COR”)– distortion of ball – vibrations in bat

• to hit home run….– large hit ball speed– optimum take-off angle– lots of backspin

Courtesy of CE Composites

Page 8: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 9

vf = q vball + (1+q) vbat

Conclusion:

vbat matters much more than vball

• q “Collision Efficiency”

• property of ball & bat independent of reference frame ~independent of “end conditions”—more later weakly dependent on vrel

• Superball-wall: q 1• Ball-Bat near “sweet spot”: q 0.2

vf 0.2 vball + 1.2 vbat

vball vbat

vf

Kinematics of Ball-Bat Collision

Page 9: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 10

Kinematics of Ball-Bat Collision

f ball bat

e-rq =

1+re-r 1+e

v = v v1+r 1+r

r = mball /Mbat,eff : bat recoil factor = 0.25(momentum and angular momentum conservation)

e: “coefficient of restitution” 0.50 (energy dissipation—mainly in ball, some in bat)

vball vbat

vf

q=0.20

Page 10: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 11

Kinematics of Ball-Bat Collision

f ball bat

e-r 1+ev = v v

1+r 1+r

• r = mball /Mbat,eff: bat recoil factor = 0.25(momentum and angular momentum conservation)

• heavier bat better but…

Page 11: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 12

The Ideal Bat Weight or Iknob

60

70

80

90

100

110

120

20 30 40 50 60

n=0constant v

bat

n=0.5constant bat KE

vbat

= 65 mph x (32/Mbat

)n

Mbat

(oz)

vf (mph)

n=0.31 (expt)

Observation: Batters prefer lighter bats

Experiments:knob ~ (1/Iknob)0.3

Page 12: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 13

Accounting for COR:

Dynamic Model for Ball-Bat CollisionAMN, Am. J. Phys, 68, 979 (2000)

• Collision excites bending vibrations in bat

– hurts!

– breaks bats

– dissipates energy • lower COR

• lower vf

Page 13: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 14

The Details: A Dynamic Model2 2 2

2 2 2

y y A F - EI

t x x:nonuniform beam

-2 0

-1 5

-1 0

-5

0

5

10

15

20

0 5 10 15 20 25 30 35

20

y

z

y

• Step 1: Solve eigenvalue problem for free vibrations

• Step 2: Nonlinear lossy spring for ball-bat interaction F(t)

• Step 3: Expand in normal modes and solve

yA x

yEI

x n

2n2

n2

2

2

22n n

n n n n2n

d q F(t) y ( )y( ) q ( )y ( ) q

dt A

zx,t t x

Page 14: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 15

Modal Analysis of a Baseball Batwww.kettering.edu/~drussell/bats.html

0

0.05

0.1

0.15

0 500 1000 1500 2000 2500

FFT(R)

frequency (Hz)

179

582

1181

1830

2400

frequency

-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20

R

t (ms)

time

0 5 10 15 20 25 30 35

f1 = 179 Hz

f2 = 582 Hz

f3 = 1181 Hz

f4 = 1830 Hz

Page 15: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 16

Some Interesting Insights:Bat Recoil, Vibrations, COR, and “Sweet Spot”

Evib

vf

e

Node of 1nd mode

+

~ 1 ms only lowest 4 modes excited

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0

20

40

60

80

100

120

0 5 10 15

e

vf (mph)

distance from tip (inches)

nodes4 3 2 1

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

0 1 2 3 4 5

v (m/s)

t (ms)

Page 16: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 17

Experimental Data: Dependence of COR on Impact Location

ball incident on bat at rest

Conclusion: essential physics under control

0.25

0.30

0.35

0.40

0.45

0.50

0.55

23 24 25 26 27 28 29 30 31

e

distance from knob (inches)

flexible bat

rigid bat

Louisville Slugger R161 Wood Batv

i=100 mph

Page 17: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 18

• handle moves only after ~0.6 ms delay

• collision nearly over by then

• nothing on knob end matters• size, shape• boundary conditions• hands

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

0 1 2 3 4 5

v (m/s)

t (ms)

Independence of End Conditions

Page 18: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 19

0.000 5.000 10.000 15.000 20.000 25.000 30.000 35.000

pitcher

catcher

Vibrations and Broken Bats

outside inside

node

Page 19: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 20

Aluminum has thin shell – Less mass in barrel

–easier to swing and control –but less effective at transferring energy –for many bats cancels

– Hoop modes –trampoline effect –larger COR

Why Does Aluminum Outperform Wood?

Page 20: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 21

•Two springs mutually compress each other KE PE KE

• PE shared between “ball spring” and “bat spring”

• PE in ball mostly dissipated (~80%!)

• PE in bat mostly restored

• Net effect: less overall energy dissipated...and therefore higher ball-bat COR

…more “bounce”

• Also seen in golf, tennis, …

The “Trampoline” Effect:A Simple Physical Picture

Page 21: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 22

The Trampoline Effect: A Closer Look

“hoop” modes: cos(2) • k (t/R)3: hoop mode largest in barrel

• f2 (1-3 kHz) < 1/ 1kHz

energy mostly restored (unlike bending modes)

“ping”

Thanks to Dan Russell

Page 22: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 23

0.40

0.45

0.50

0.55

0.60

0.65

0.70

500 1000 1500 2000

COR-modelCOR-expt

COR

fhoop

(Hz)

Data and Model

to optimize….• kbat small• fhoop > 1

essential physics understood

Page 23: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 24

Effect of Spin on Baseball Trajectory

Drag: Fd = ½

CDAv2-v direction

“Magnus” or “Lift”: FL = ½ CLAv2

(ω v) direction

v

ω

mg

Fd

FL (Magnus)

CD~ 0.2-0.5CL ~ R/v

(in direction leading edge is turning)

Page 24: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 25

New Experiment at Illinois

• Fire baseball horizontally from pitching

machine

• Use motion capture to track ball over ~5m

of flight and determine x0,y0,vx,vy,,ay

• Use ay to determine Magnus force as

function of v,

Page 25: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 26

Motion Capture ExperimentJoe Hopkins, Lance Chong, Hank Kaczmarski, AMN

Two-wheel pitching machine

Baseball with reflecting dot

Motion Capture System

Page 26: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 27

Experiment: Sample MoCap Datay

z

topspin ay > g

-3000

-2000

-1000

0

1000

2000

-20

0

20

40

60

80

100

120

140

0.00 0.02 0.04 0.06 0.08 0.10 0.12

z (mm)y (mm)

time (sec)

93.6 mph/3040 rpm/1.83g

Z

y

y = ½ ayt2

work in progress

Page 27: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 28

Some Typical Results

0

0.5

1

1.5

2

0 25 50 75 100 125 150Speed in mph

Drag/Weight

Lift/Weight@1800 rpm

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

x (ft)

2000 rpm backspin

no spin

200

250

300

350

400

450

10 15 20 25 30 35 40 45 50

2000 rpm backspin

no spin

Lift …--increases range--reduces optimum angle

Page 28: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 29

Oblique Collisions:Leaving the No-Spin Zone

Friction … • sliding/rolling vs. gripping• transverse velocity reduced, spin increased

vT′ ~ 5/7 vT ~ vT

′/R

Familiar Results• Balls hit to left/right break toward foul line

• Topspin gives tricky bounces in infield

• Pop fouls behind the plate curve back toward field

• Backspin keeps fly ball in air longer

f

Page 29: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 30

0

50

100

150

200

250

-100 0 100 200 300 400

1.5

0

0.25

0.5 0.75

1.02.0

0.75

Undercutting the ball backspinBall100 downward

Bat 100 upward

D = center-to-center offset

trajectories

Page 30: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 31

larger for curveball

-1000

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1A

2000 rpm topspin

2000 rpm backspin

D (in)

(rpm)

Fastball: spin reverses

Curveball: spin doesn’t reverse

Page 31: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 32

• Bat-Ball Collision Dynamics– A fastball will be hit faster

– A curveball will be hit with more backspin

• Aerodynamics– A ball hit faster will travel farther

– Backspin increases distance

• Which effect wins?

• Curveball, by a hair!

Can Curveball Travel Farther than Fastball?

Page 32: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 33

Work in Progress

• Collision experiments & calculations to elucidate trampoline effect

• New measurements of lift and drag

• Experiments on oblique collisions– Rod Cross & AMN: rolling almost works at

low speed– AMN: studies in progress at high speed

Page 33: UW Colloquium 10/31/05 1 Thanks to J. J. Crisco & R. M. Greenwald Medicine & Science in Sports & Exercise 34(10): 1675-1684; Oct 2002 Alan M. Nathan,University.

UW Colloquium 10/31/05 34

Final Summary

• Physics of baseball is a fun application of basic (and not-so-basic) physics

• Check out my web site if you want to know more– www.npl.uiuc.edu/~a-nathan/pob– [email protected]

• Go Red Sox!