UV Dose Monitoring That Does Not Require a UVTMonitor · a bUVA Q D S S I UVA ln log 10 0 + ...

8
1 UV Dose Monitoring That Does Not Require a UVT Monitor Harold Wright 1 , Mark Heath 1 , Traci Brooks 1 , Linda Hills 2 , and Jeff Adams 3 1. Carollo Engineers, Inc., 2. The CADMUS Group, 3. US EPA [email protected] IUVA Americas Conference, February 26-28, 2018, Redondo Beach, CA mmwd1013i1.pptx/2 UVDGM Specifies Two Approaches for Monitoring Calculated Dose approach Requires an online UVT monitor UV Intensity setpoint approach Per DVGW and ONORM rules Does not require a UVT monitor e d c b a B Q S S A RED × × × × = 1 10 0 254

Transcript of UV Dose Monitoring That Does Not Require a UVTMonitor · a bUVA Q D S S I UVA ln log 10 0 + ...

1

UV Dose Monitoring That Does Not Require

a UVT Monitor

Harold Wright1, Mark Heath1, Traci Brooks1,

Linda Hills2, and Jeff Adams3

1. Carollo Engineers, Inc., 2. The CADMUS Group, 3. US EPA

[email protected]

IUVA Americas Conference, February 26-28, 2018, Redondo Beach, CA

mm

wd1013i1

.pptx

/2

UVDGM Specifies Two Approaches for Monitoring

• Calculated Dose approach

– Requires an online UVT monitor

• UV Intensity setpoint approach

– Per DVGW and ONORM rules

– Does not require a UVT monitor

edc

ba BQS

SARED ×

×

××= 110

0254

2

mm

wd1013i1

.pptx

/3

UV Intensity Setpoint Approach – Pros and Cons

Pros Cons

Simple – great for small

systems

Does not report UV dose

Inexpensive validation Specific to one UV dose target,

e.g. 40 mJ/cm2

Does not require an online UVT

monitor

Requires an optimized UV sensor

location

mm

wd1013i1

.pptx

/4

log I vs combined variable S/Q/DL follows single relation at a given UVT

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.001 0.002 0.003 0.004 0.005

logI

S/Q/DL

70 80 90 95 98 2 cm WL

UV sensor Flow Microbe UV Sensitivity

3

mm

wd1013i1

.pptx

/5

Conservative logI vs S/Q/DL relation can be used for Monitoring

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.001 0.002 0.003 0.004 0.005

logI

S/Q/DL

70 80 90 95 98 2 cm WL

mm

wd1013i1

.pptx

/6

Efficiency of Approach Depends of UV Sensor-to-Lamp Water Layer Distance

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.001 0.002 0.003 0.004 0.005

logI

S/Q/DL

70 80 90 95 98 2 cm WL

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

logI

S/Q/DL

70 80 90 95 98 3 cm WL

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

logI

S/Q/DL

70 80 90 95 98 5 cm WL

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.0002 0.0004 0.0006 0.0008 0.001

logI

S/Q/DL

70 80 90 95 98 6 cm WL

4

mm

wd1013i1

.pptx

/7

Optimal UV Sensor Location

• Select location such that conservative UVT is an intermediate UVT

– E.g. Monitoring curve defined at 90% UVT

– 70 and 80% UVT give a higher log inactivation

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

logI

S/Q/DL

70 80 90 95 98 5 cm WL

mm

wd1013i1

.pptx

/8

Fit Conservative Relation to Define Algorithm that Does Not Require UVT

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

logI

S/Q/DL

70 80 90 95 98 5 cm WL

���� = � �

× �

���� = � �

× �+ � ×

× �

5

mm

wd1013i1

.pptx

/9

Can Develop Equations Specific to Pathogen Inactivation Credit

• Equation incorporates DL of target pathogen and validation factor

0

2

4

6

8

10

12

14

16

0.00 0.20 0.40 0.60 0.80 1.00

Cry

pto

Va

lidate

d D

ose

(mJ/c

m2)

S/Q

�,������ = � × �� + � × �

��

mm

wd1013i1

.pptx

/10

Step 1. During Functional Testing, Define UV Sensor Reading Dependence on Water Layer

• Requires adjustable UV sensor port

• Measure UV sensor readings vs. UVTand lamp power setting at three or more water layers

6

mm

wd1013i1

.pptx

/11

Step 2. Conduct Biodosimetry and Develop Equation

( )UVAdc

L

UVAba

DQ

SS

UVAI

ln

010log

×+

×

×××=

mm

wd1013i1

.pptx

/12

Step 3. Use Equation to Predict logI vs. S/Q/DL for at Least 4 UVTs and Identify Optimal UV Sensor Location

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

Lo

g i M

eas

ure

d

S/Q/DL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Lo

g i M

eas

ure

d

S/Q/DL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Lo

g i M

eas

ure

d

S/Q/DL

2 cm

6 cm

7.5 cm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.00 0.05 0.10 0.15 0.20

Lo

g i M

eas

ure

d

S/Q/DL

10 cm

7

mm

wd1013i1

.pptx

/13

Step 4. Define Final Algorithm and Validated Range

• Final Algorithm

– ���� = � ×�

�×��+ � ×

���

– Or:

– �,������ = � × �� + � ×

���

• Validated Range

– Minimum and maximum flow

– Maximum logI

mm

wd1013i1

.pptx

/14

Benefits of Combined Variable that Does Not Use UVT

• No UVT Monitor

• 4-log adenovirus credit using MS2 phage

• Equation can incorporate DL of target pathogen and validation factor

• Simplifies validated range

8

UV Dose Monitoring That Does Not Require

a UVT Monitor

Harold Wright1, Mark Heath1, Traci Brooks1,

Linda Hills2, and Jeff Adams3

1. Carollo Engineers, Inc., 2. The CADMUS Group, 3. US EPA

[email protected]

IUVA Americas Conference, February 26-28, 2018, Redondo Beach, CA