UTFSM 2014 Part I - Seismic Design - March 19

download UTFSM 2014 Part I - Seismic Design - March 19

of 69

description

Charla Profesor Canadiense, sobre Normas sísmicas

Transcript of UTFSM 2014 Part I - Seismic Design - March 19

  • 1Robert TremblayPolytechnique Montreal, QC Canada

    Universidad Tecnica Federico Santa Maria Valparaiso, March 2014

    Seismic Design and Global Stability Requirements for Steel Building

    Structures in Canada and the U.S.

    Part I

    Seismic Design

    R. Tremblay, Polytechnique Montreal, Canada 2

  • 2 Introduction

    Seismic Loading and Analysis(ASCE 7-10 vs NBCC & NCh codes)

    Seismic Design of Steel Structures(AISC 341-10 vs CSA S16 & NCh codes)

    Plan

    R. Tremblay, Polytechnique Montreal, Canada 3

    Introduction

    R. Tremblay, Polytechnique Montreal, Canada 4

  • 3h

    h

    W

    T = 0.38 s5% damping

    Elastic

    0.0 10.0 20.0 30.0 40.0Time (s)

    -0.5

    0.0

    0.5

    ag (g)

    -1.0

    0.0

    1.0

    / h (%)

    Horizontal 90 deg.

    0.0126 h-1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    V / W

    1.28 W

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / h (%)

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    V / W

    High ground motion levels considered for design can impose large force demands on structures:

    R. Tremblay, Polytechnique Montreal, Canada 5

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    S a (g

    ) M 7.0-7.510-20 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.5

    1.0

    1.5

    Sa

    (g)

    M 7.0-7.530-50 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.4

    0.8

    1.2

    1.6

    2.0

    Sa

    (g) M 6.5-7.0

    10-20 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.5

    1.0

    S a (g

    )

    M 6.5-7.030-50 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.5

    1.0

    S a (g

    )

    M 6.5-7.070-100 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.5

    1.0

    S a (g

    ) M 6.0-6.530-50 km

    Earthquakes in California Site Class B 5% damping

    Ground motions may be caused by different earthquake scenarios and have difference characteristics

    R. Tremblay, Polytechnique Montreal, Canada 6

  • 4Steel is a ductile material and this characteristic can be exploited by allowing structures to deform in the nonlinear range under rare, large seismic events

    FF

    Fracture,instability,etc.

    Ductileresponse

    y

    u

    R. Tremblay, Polytechnique Montreal, Canada 7

    0.0 10.0 20.0 30.0 40.0Time (s)

    -0.5

    0.0

    0.5

    ag (g)

    -1.0

    0.0

    1.0

    / h (%)

    Horizontal 90 deg.

    0.0126 h-1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    V / W

    1.28 W

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / h (%)

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    V / W

    -1.0

    0.0

    1.0

    / h (%)

    -0.017 h

    -1.0

    -0.5

    0.0

    0.5

    1.0

    V / W

    0.33 W

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / h (%)

    -1.0

    -0.5

    0.0

    0.5

    1.0

    V /

    W

    h

    h

    h

    W

    T = 0.38 s5% damping

    Vy = 0.25 W

    Elastic

    R. Tremblay, Polytechnique Montreal, Canada 8

  • 5-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06Plastic Rotation (rad.)

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    M /

    Mpr

    M. Englehardt Ecole Polytechnique of Montreal, 1996

    Ecole Polytechnique of Montreal, 1996

    R. Tremblay, Polytechnique Montreal, Canada 9

    -8 -4 0 4 8

    / y-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P / Py

    HSS 102x76x6.4 - KL/r = 112

    Tensionyielding (typ.)

    Inelastic bucklingwith plastic hinge (typ.)

    PPPlastic

    Hinge

    +

    -

    +

    R. Tremblay, Polytechnique Montreal, Canada 10

  • 6h

    h

    W

    T = 0.38 s5% damping

    Vy = 0.25 W

    0.0 10.0 20.0 30.0 40.0Time (s)

    -0.5

    0.0

    0.5

    ag (g)

    -1.0

    0.0

    1.0

    / h (%)

    Horizontal 90 deg.

    0.018 h-0.4

    -0.2

    0.0

    0.2

    0.4

    V / W

    -0.36 W -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0/ h (%)

    -0.4

    -0.2

    0.0

    0.2

    0.4

    V / W

    -1.0

    0.0

    1.0

    / h (%)

    -0.017 h

    -0.4

    -0.2

    0.0

    0.2

    0.4

    V / W

    0.33 W

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / h (%)

    -0.4

    -0.2

    0.0

    0.2

    0.4

    V / W

    h

    Vy = 0.25 W

    R. Tremblay, Polytechnique Montreal, Canada 11

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.4

    0.8

    1.2

    1.6

    2.0

    S a (g

    )

    Los Angeles AreaSite Class B

    M6.0 - M7.5Dist. = 10-100 km

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.4

    0.8

    1.2

    1.6

    S a (g

    ), C

    s

    Los Angeles AreaSite Class B

    Sa (Elastic)Cs (OCBF - R = 6.0)

    x 1/R

    Resistance to seismic ground motions through inelastic deformations can represent an effective strategy :

    Design forces can be reduced; Structure response, including forces, can be better

    controlled.This approach has been adopted in codes. Design must however be performed to achieve the intended ductile response.

    R. Tremblay, Polytechnique Montreal, Canada 12

  • 7R. Tremblay, Polytechnique Montreal, Canada 13

    R. Tremblay, Polytechnique Montreal, Canada 14

  • 8Grav.

    Grav.

    C

    C' T

    u

    u y

    Grav.

    E

    > E

    > E

    Grav.

    Grav.

    Grav.

    Column designed for gravity plus expected brace tensilestrength

    Gusset plates designed incompression for the expectedbrace compressive strength

    2. Design other elements :

    1. Select Braces:

    Design for gravity + ECheck KL/r, b/t, etc. for ductile response

    Gusset plate designed in tensionfor the expected brace tensilestrength

    Two-Step Capacity Design Procedure (CBF example):

    R. Tremblay, Polytechnique Montreal, Canada 15

    AISC 360-10

    ASCE 7-10AISC 341-10

    United StatesR. Tremblay, Polytechnique Montreal, Canada 16

  • 9NBCC 2010

    CSA S16-09

    Canada

    R. Tremblay, Polytechnique Montreal, Canada 17

    Seismic Force Resisting Systems

    Plastic Hinge (typ.)

    Shearyielding

    Plastic Hinge (typ.)

    Tensionyielding

    Plastic HingeTension

    yielding

    Tensionyielding

    Compressionyielding e

    Plastic Hinge (typ.)

    Plastic Hinge

    End-plateBending

    Shearyielding

    R. Tremblay, Polytechnique Montreal, Canada 18

  • 10

    R. Tremblay, Polytechnique Montreal, Canada 19

    R. Tremblay, Polytechnique Montreal, Canada 20

  • 11

    R. Tremblay, Polytechnique Montreal, Canada 21

    NCh2369 (2003)

    R. Tremblay, Polytechnique Montreal, Canada 22

  • 12

    Structural damage & residual deformations are expected when applying this design strategy

    Kobe, 1995 Kobe, 1995

    C.-M. Uang, UCSDR. Tremblay, Polytechnique Montreal, Canada 23

    Variability & Uncertainty

    in Demand & Response

    0 4 8 12 16Number of Storeys

    0.0

    1.0

    2.0

    3.0

    4.0

    / h

    s (%

    )

    84th percentile50th percentilePredictedIndividual Record

    0.0 1.0 2.0 3.0 4.0Period (s)

    0.0

    0.5

    1.0

    1.5

    S a (g

    )

    Historical Records

    Ground MotionsDesign Spectrum

    R. Tremblay, Polytechnique Montreal, Canada 24

  • 13

    Bruneau, M., Sabelli, R., and Uang C.-M. (2003) Ductile Design of Steel Structures, 2nded., Wiley

    AISC. (2013) Seismic Design Manual, 2nd ed., AISC

    Filiatrault, A., Tremblay, R., Christopoulos, C., Foltz, B., and Pettinga, D. (2013)Elements of Earthquake Engineering and Structural Dynamics, 3rd ed.,Presses Internationales Polytechnique (PIP)

    R. Tremblay, Polytechnique Montreal, Canada 25

    Seismic Loading and Analysis(ASCE 7-10 vs NBCC & NCh codes)

    R. Tremblay, Polytechnique Montreal, Canada 26

  • 14

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Period, T (s)

    0.0

    0.4

    0.8

    1.2

    1.6

    2.0

    S a (g

    )

    0.53 g

    1.22 g

    0.23 g

    T = 1.0 s

    T = 0.2 s

    Absolute AccelerationResponse Spectrum

    (5% damping)

    T = 2.0 s

    0.0 10.0 20.0 30.0 40.0Time (s)

    -0.4

    -0.2

    0.0

    0.2

    0.4

    ag (g)

    -0.4-0.20.00.20.4

    a (g)

    -1.2-1.0-0.8-0.6-0.4-0.20.00.20.40.60.81.01.2

    a (g)

    0.53

    1.22

    0.57

    -0.4

    -0.2

    0.0

    0.2

    0.4

    a (g)

    - 0.23

    M6.7 1994 NorthridgeCastaic - Old Ridge Route St. 90o

    R. Tremblay, Polytechnique Montreal, Canada 27

    Required Seismic Data

    (from maps or GS websites)

    MCER Spectral Valuesfor Site Class B:

    SS (0.2s)

    S1 (1.0s)

    Long-period transition period:

    TL

    R. Tremblay, Polytechnique Montreal, Canada 28

  • 15

    http://earthquake.usgs.gov/hazards/designmaps/usdesign.php

    R. Tremblay, Polytechnique Montreal, Canada 29

    http://earthquake.usgs.gov/designmaps/us/application.php

    R. Tremblay, Polytechnique Montreal, Canada 30

  • 16

    http://earthquake.usgs.gov/designmaps/us/application.php

    R. Tremblay, Polytechnique Montreal, Canada 31

    http://earthquake.usgs.gov/designmaps/us/application.php

    R. Tremblay, Polytechnique Montreal, Canada 32

  • 17

    http://earthquake.usgs.gov/hazards/designmaps/usdesign.php

    R. Tremblay, Polytechnique Montreal, Canada 33

    http://www.earthquakescanada.nrcan.gc.ca/hazard-alea/zoning-zonage/NBCC2010maps-eng.php

    R. Tremblay, Polytechnique Montreal, Canada 34

  • 18

    http://www.earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/index_2010-eng.php

    R. Tremblay, Polytechnique Montreal, Canada 35

    R. Tremblay, Polytechnique Montreal, Canada 36

  • 19

    MCER SS & S1 Spectral Valuesfor Site Class B

    R. Tremblay, Polytechnique Montreal, Canada 37

    R. Tremblay, Polytechnique Montreal, Canada 38

  • 20

    Importance Factor, IeDepends on the Occupancy Category:

    I. Buildings that represent low hazardto human life in the event of failure

    II. All buildings except those listed inOccupancy Categories I, III & IV

    III. Buildings that represent substantial hazardto human life in the event of failure

    IV. Essential facilities

    R. Tremblay, Polytechnique Montreal, Canada 39

    R. Tremblay, Polytechnique Montreal, Canada 40

  • 21

    R. Tremblay, Polytechnique Montreal, Canada 41

    R. Tremblay, Polytechnique Montreal, Canada 42

  • 22

    R. Tremblay, Polytechnique Montreal, Canada 43

    R. Tremblay, Polytechnique Montreal, Canada 44

  • 23

    R. Tremblay, Polytechnique Montreal, Canada 45

    T from: - T = Ta ; or- Dynamic analysis; except that T < CuTa for strength design

    R. Tremblay, Polytechnique Montreal, Canada 46

  • 24

    R. Tremblay, Polytechnique Montreal, Canada 47

    FF

    VMx

    i

    xxhx hxh i

    R. Tremblay, Polytechnique Montreal, Canada 48

  • 25

    R. Tremblay, Polytechnique Montreal, Canada 49

    R. Tremblay, Polytechnique Montreal, Canada 50

  • 26

    R. Tremblay, Polytechnique Montreal, Canada 51

    R. Tremblay, Polytechnique Montreal, Canada 52

  • 27

    = redundancy factorEarthquake Effects:

    Load combinations including E:

    When combining the two above:

    Amplified Earthquake Loads

    R. Tremblay, Polytechnique Montreal, Canada 53

    P- effects can be neglected if < 0.1 Earthquake effects x 1/(1-) Nonlinear static or dynamic analysis

    R. Tremblay, Polytechnique Montreal, Canada 54

  • 28

    R. Tremblay, Polytechnique Montreal, Canada 55

    R. Tremblay, Polytechnique Montreal, Canada 56

  • 29

    R. Tremblay, Polytechnique Montreal, Canada 57

    2011 Decreto

    2011 Decreto

    R. Tremblay, Polytechnique Montreal, Canada 58

  • 30

    R. Tremblay, Polytechnique Montreal, Canada 59

    Fk

    Zk

    h

    2011 Decreto

    R. Tremblay, Polytechnique Montreal, Canada 60

  • 31

    R. Tremblay, Polytechnique Montreal, Canada 61

    RASCE/SEI 7-10

    3-1/468

    3-1/24-1/2

    87

    R. Tremblay, Polytechnique Montreal, Canada 62

  • 32

    R. Tremblay, Polytechnique Montreal, Canada 63

    Seismic Design of Steel Structuresin accordance with AISC 341-10

    R. Tremblay, Polytechnique Montreal, Canada 64

  • 33

    Inelastic response of framesPlastic

    Hinge (typ.)Shearyielding

    Plastic Hinge (typ.)

    Tensionyielding

    Plastic HingeTension

    yielding

    Tensionyielding

    Compressionyielding e

    Plastic Hinge (typ.)

    Plastic Hinge

    End-plateBending

    Shearyielding

    R. Tremblay, Polytechnique Montreal, Canada 65

    16 seismic forceresisting systemsdetailed for ductileseismic response

    +

    SFRS not specificallydetailed for seismic resistance

    R. Tremblay, Polytechnique Montreal, Canada 66

  • 34

    VeR

    V =

    Perimetermembers

    RoofDiaphragm

    Braceconnections

    Bracingmembers

    Anchor rods

    Foundations

    V V

    Capacity DesignPoutrelle(typ.) Poutre de toit

    (typ.)

    Poteau(typ.)

    Feuille de tablier mtall ique

    typ.)

    Contreventement (typ.)

    R. Tremblay, Polytechnique Montreal, Canada 67

    Control ofLocal Buckling

    R. Tremblay, Polytechnique Montreal, Canada 68

  • 35

    Expected (probable)material strength

    Liu, J. et al. (2007). AISC Eng.

    R. Tremblay, Polytechnique Montreal, Canada 69

    Concentrically Braced Frames (SCBFs)

    Energy dissipated in bracing members through tensile yielding and flexural hinging

    Connections and other members expected to remain essentially elastic

    Tensionyielding (typ.)

    Inelastic bucklingwith plastic hinge (typ.)

    R. Tremblay, Polytechnique Montreal, Canada 70

  • 36

    Kobe 1995

    R. Tremblay, Polytechnique Montreal, Canada 71

    R. Tremblay, Polytechnique Montreal, Canada 72

  • 37

    Uriz and Mahin (2004) Univ. of California, Berkeley

    Fracture in1st cycle at1 2% hs1

    2

    R. Tremblay, Polytechnique Montreal, Canada 73

    Northridge 1994Photos from Peter Maranian, Brandow and Associates (P. Uriz Thesis, 2005)

    R. Tremblay, Polytechnique Montreal, Canada 74

  • 38

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P /

    AgF

    y

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    HSS 254 x 254 x 12b/t = 18, KL/r = 42

    R. Tremblay, Polytechnique Montreal, Canada 75

    R. Tremblay, Polytechnique Montreal, Canada 76

  • 39

    R. Tremblay, Polytechnique Montreal, Canada 77

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P /

    Py

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    RHS-4KL/r = 40b0/t = 17

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    RHS-2KL/r = 40b0/t = 13

    RHS-19KL/r = 60b0/t = 13

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P /

    Py

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    CHS-1KL/r = 42b0/t = 30

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 / hs (%)

    -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

    / LH (%)-1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 / hs (%)

    CHS-2KL/r = 62b0/t = 31

    W-6KL/r = 67b0/t = 5.9

    R. Tremblay, Polytechnique Montreal, Canada 78

  • 40

    W4

    W6

    W4 W660004000

    2000

    0

    2000

    4000

    6000

    3 2 1 0 1 2 3

    Interstorey Drift Angle (%)P

    (kN)

    R. Tremblay, Polytechnique Montreal, Canada 79

    0.0 0.5 1.0 1.5 2.0 2.5

    Brace Slenderness, = (Fy / Fe)0.50

    5

    10

    15

    20

    25

    Duc

    tility

    at F

    ract

    ure,

    f

    f = 2.4 + 8.3

    y

    -6 -4 -2 0 2 4 6

    -10 -8 -6 -4 -2 0 2 4 6 8 10

    .

    KL/r = 93HSS 127x76x4.8

    KL/r = 142HSS 76x76x4.8

    f f

    yy

    -6 -4 -2 0 2 4 6

    -1.2

    -0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    P /

    A gF y

    KL/r = 42HSS 254x254x12

    f

    R. Tremblay, Polytechnique Montreal, Canada 80

  • 41

    Design Bracing Configuration Along any braced line, between 30% & 70% of lateral

    load is resisted by tension braces Tension-only braced frames not permitted K-bracing not permitted

    R. Tremblay, Polytechnique Montreal, Canada 81

    R. Tremblay, Polytechnique Montreal, Canada 82

  • 42

    Design Bracing Members Braces must resist gravity + lateral loads Pn in tension and compression as per AISC 360-10 KL/r < 200 Section must meet seismic hd limits For built-up sections, individual components must

    meet KL/r limits and stitch subjected to shear under buckling must meet minimum shear strength

    R. Tremblay, Polytechnique Montreal, Canada 83

    L

    L

    H

    N

    KLout 0.9 LHKLin 0.5 LN

    KLout 0.5 LHKLin 0.5 LN

    R. Tremblay, Polytechnique Montreal, Canada 84

  • 43

    Bracing ConfigurationTension-only braced frames permitted

    Bracing MembersSection must meets b/t limits that vary with KL/r

    R. Tremblay, Polytechnique Montreal, Canada 85

    Cexp

    Cexp

    Design Expected Brace Strengths

    P/P

    y

    Texp

    R. Tremblay, Polytechnique Montreal, Canada 86

  • 44

    R. Tremblay, Polytechnique Montreal, Canada 87

    0.0 0.5 1.0 1.5 2.0 2.5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Cu

    / AgF

    y

    Cu (S16-01, n = 1.34)Cu (AISC 1999)

    0 50 100 150 200KL/r

    0.0 0.5 1.0 1.5 2.0 2.50.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C' u

    / A

    gFy

    (Duc

    tility

    = 1

    .0)

    Cu (S16-01, n = 1.34)

    0 50 100 150 200KL/r

    0.0 0.5 1.0 1.5 2.0 2.50.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C' u

    / A

    gFy

    (Duc

    tily

    = 3.

    0)

    Cu (S16-01, n = 1.34)C'u (mean)

    0.0 0.5 1.0 1.5 2.0 2.50.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C' u

    / A

    gFy

    (Duc

    tility

    = 5

    .0)

    Cu (S16-01, n = 1.34)C'u (mean)

    R. Tremblay, Polytechnique Montreal, Canada 88

    Texp = A RyFy

    Cexp = A (1.12 Fcr) where Fcre = Fcr with RyFy< A RyFy

    Cexp = 0.3 Cexp

    Cexp

    Cexp

    Texp

  • 45

    Texp = A RyFyCexp = A (1.12 Fcr) ,Fcre = Fcr with RyFy

    < A RyFyCexp = 0.3 Cexp

    R. Tremblay, Polytechnique Montreal, Canada 89

    Schimdt and Bratlett (2002)

    R. Tremblay, Polytechnique Montreal, Canada 90

  • 46

    R. Tremblay, Polytechnique Montreal, Canada 91

    Design Brace ConnectionMust resist brace Texp & 1.1 Cexp

    Must allow for ductile rotational behavior or resist 1.1 x brace expected flexural strength

    R. Tremblay, Polytechnique Montreal, Canada 92

  • 47

    Net Section Fracture(HSS Braces)

    Kobe 1995

    Archambault et al. (1995)Tremblay and Bolduc (2002)

    cole Polytechnique,Montreal

    R. Tremblay, Polytechnique Montreal, Canada 93

    Kobe1995

    R. Tremblay, Polytechnique Montreal, Canada 94

  • 48

    Yang and Mahin (2004) Univ. of California, Berkeley

    R. Tremblay, Polytechnique Montreal, Canada 95

    Kanwinde and Fell (2005) Univ. of California, Berkeley

    R. Tremblay, Polytechnique Montreal, Canada 96

  • 49

    R. Tremblay, Polytechnique Montreal, Canada 97

    R. Tremblay, Polytechnique Montreal, Canada 98

  • 50

    Sabelli (2003) Sabelli (2005)

    Sabelli (2003)

    R. Tremblay, Polytechnique Montreal, Canada 99

    Prototype Test Specimen

    Attachment toload frame:

    LW

    LW

    LC-C

    LTS

    2 t 2 t g g

    Gussetplate

    Gussetplate

    35O

    Coverplate

    Coverplate

    5182

    (min

    ) @

    793

    7 (m

    ax)

    102

    290

    35O

    Elevation

    Specimen

    End Restraint

    Side View

    EndHinge

    R. Tremblay, Polytechnique Montreal, Canada 100

  • 51

    R. Tremblay, Polytechnique Montreal, Canada 101

    R. Tremblay, Polytechnique Montreal, Canada 102

    Design Columns and BeamsMust resist gravity loads plus two brace force scenarios:

    Upon first buckling & yielding (Texp & Cexp) In post-buckling range (Texp & Cexp)

    Beams in V and inverted-V bracing must be continuous between columns

    Column sections must meet hdBeam sections must meet md

  • 52

    R. Tremblay, Polytechnique Montreal, Canada 103

    At Buckling Post-Buckling

    T T

    T T

    T T CC

    CC

    CCexp,1 exp,1

    exp,2 exp,2

    exp,3 exp,3 exp,3exp,3

    exp,2exp,2

    exp,1exp,1

    F3 F3F3

    F2 F2F2

    F1 F1F1

    W W WW W WW W W

    Brace force scenarios for columns:

    Northridge 1994Photos from Finley 1999(P. Uriz Thesis, 2005)

    R. Tremblay, Polytechnique Montreal, Canada 104

  • 53

    Taiwan 1999

    R. Tremblay, Polytechnique Montreal, Canada 105

    R. Tremblay, Polytechnique Montreal, Canada 106

  • 54

    MRF

    (typ

    .)

    BF (typ.)

    5 @ 9000 = 45 000

    [mm]PLAN

    300(slab edge)

    5 @

    900

    0 =

    45 0

    00

    Gravity loads: Roof: Dead = 3.2 kPa Live = 1.0 kPa Floor: Dead = 3.5 kPa Partitions = 1.0 kPa Live = 3.8 kPa Exterior walls = 1.5 kPa

    Seismic Load Data (NCh433): Zone 2 Soil Type C A= 0.30 g In-plane torsion omitted

    Load Combinations: 1.2D + 1.6L 1.2D + 1.0L + 1.4E 0.9D + 1.4E

    Seismic weight: P = 7720 kN (Level 9) 12635 kN (Levels 2-8) 12840 kN (Level 1)

    Steel: BRB cores: Fyc = 260-290 MPa Other members: Fy = 345 MPa

    Note: Redundancy factor, ,and seismic load effectswith overstrength factor, 0,are not considered.

    SCBF

    5500

    EBF BRBF

    4 @

    400

    0=

    16 0

    00

    [mm]ELEVATIONS

    R. Tremblay, Polytechnique Montreal, Canada 107

    R. Tremblay, Polytechnique Montreal, Canada 108

  • 55

    Static method of analysis

    R. Tremblay, Polytechnique Montreal, Canada 109

    SAP2000Analysis

    R. Tremblay, Polytechnique Montreal, Canada 110

  • 56

    Brace Design

    Brace Expected Strengths

    R. Tremblay, Polytechnique Montreal, Canada 111

    At Buckling

    Column Design

    1103

    4890

    4092 47492492

    7916 791625914437

    + 1.2 x 644 (D)+ 1.0 x 372 (L)= 5893

    -0.9 x 644 (D)= 1913

    1103

    4092

    2001 4890

    29072907

    70077007

    599

    169 169169

    599599 599

    1692001

    R. Tremblay, Polytechnique Montreal, Canada 112

  • 57

    Post-Buckling

    Column Design

    1103

    4890

    1227 5136662

    6085 60867774437

    + 1.2 x 644 (D)+ 1.0 x 372 (L)= 6280

    -0.9 x 644 (D)= 82

    331

    1227

    600 4890

    29072907

    70077007

    856

    812 812812

    856856 856

    812600

    R. Tremblay, Polytechnique Montreal, Canada 113

    Column Design

    R. Tremblay, Polytechnique Montreal, Canada 114

  • 58

    At Buckling Post-Buckling

    Beam Design

    1103 331

    4092 1227

    2001 600

    2001 600

    1103 331

    1498 1210

    939 556

    1498 1210

    939 556

    1077 842

    2907 2907

    7007 7007

    4890 4890

    4890 4890

    2907 2907

    -1498 -1210

    -939 -556

    -2800 -2565

    M = 243 M = 243

    M = 759 M = 3896

    M = 2785 M = 3939

    1498 1210

    939 556

    1077 842

    1.2 w + 1.0 w = 8.71

    1.2 w + 1.0 w = 24.0

    1.2 w + 1.0 w = 24.0

    1.2 w + 1.0 w = 8.71

    1.2 w + 1.0 w = 24.0

    1.2 w + 1.0 w = 24.0

    D

    D

    D

    u u

    u u

    u u

    D

    D

    D

    L

    L

    L

    L

    L

    L

    [kN,m]

    R. Tremblay, Polytechnique Montreal, Canada 115

    Beam Design

    R. Tremblay, Polytechnique Montreal, Canada 116

    Next Steps:

    Verify drifts and P-delta effectsPerform 3D analysis for in-plane torsionDesign connections

  • 59

    9000

    O41.6 W610 Beam

    Bolted EndPlate Connection

    750 +

    /-

    4500 +

    /-602

    1

    Hinge

    4000

    Once member sizes are known, more realistic, shorter, brace effective lengths can be used to assess brace resistances. Brace sizes may be reduced, which would diminish the force demand on beams and columns and, possibly, member sizes.

    Period T* will increase if member sizes are reduced, which may lead to lower seismic loads and allow further reduction in member sizes.

    R. Tremblay, Polytechnique Montreal, Canada 117

    SCBF

    5500

    2 @ 4000= 8000

    For this example:

    T* = 0.55 s -> 0.65 sC = 0.119 -> 0.093 (22% reduction)

    R. Tremblay, Polytechnique Montreal, Canada 118

  • 60

    Assignment no. 1

    Redo the design of the braced frameconsidering that KL for braces are 5600 mm at Level 1

    and 4500 mm at levels 2&3.

    You may use/refer to the SAP2000 model & the spreadsheet that were used in the preliminary design

    R. Tremblay, Polytechnique Montreal, Canada 119

    Moment Resisting FramesEnergy dissipated by plastic hinging in beams and limited shear yielding in column panel zones. Plastic hinging in columns permitted at the base and in single-storey structures.

    Connections and other members expected to remain essentially elastic

    R. Tremblay, Polytechnique Montreal, Canada 120

  • 61

    Section must meet hdMust resist expected shear demand upon hingingMust be laterally braced

    Design Beams

    L'

    L

    L' = L - 2 x - d c

    wpb

    1.1 R My pb

    1.1 R My pb

    V = wL' / 2 + 2.2 R M / L'h y pb

    Vh Vh

    R. Tremblay, Polytechnique Montreal, Canada 121

    Section must meet hdMust satisfy weak beam-strong column criteriaexcept for:

    Columns with Puc < 0.3 AcFy in single-storey buildings or at the top storey of multi-storey buildings;Columns with Puc < 0.3 AcFy when their total shear contribution < 20% of total storey shear resistance and 33% of storey shear resistance along their MF line; orColumns that have shear capacity to demand ratio 50% gretaer than in the storey above.

    Design Columns

    R. Tremblay, Polytechnique Montreal, Canada 122

  • 62

    L'

    L

    L' = L - 2 x - d c x + d /2c x + d /2c

    ww w

    1.1 R My pb

    1.1 R My pb

    1.1 R My pb

    1.1 R My pb

    V = wL' / 2 + 2.2 R M / L'h y pb

    Vh Vh

    Vh

    Vh

    M'rc, i+1

    M'rc, iCf, i

    Cf, i+1

    Weak beam-strong column criteria:

    M*: projected at membercenter lines

    R. Tremblay, Polytechnique Montreal, Canada 123

    R. Tremblay, Polytechnique Montreal, Canada 124

    Member forcesupon beam hinging:

  • 63

    R. Tremblay, Polytechnique Montreal, Canada 125

    x + d /2c x + d /2c

    1.1 R My pb

    1.1 R My pb Vh

    Vh

    V

    V

    Must meet: t > (dz + wz)/90Shear strength, Rn:

    Design Column panel zone

    R. Tremblay, Polytechnique Montreal, Canada 126

  • 64

    Design Beam-to-column connections

    Must accommodate 4% storey drift angleMeasured flexural resistance at column face (Mcf) at 4% storey drift angle > 80% MpbPerformance considered as demonstrated if pre-qualified connections are used; otherwise must be demonstrated through physical cyclic testing:

    R. Tremblay, Polytechnique Montreal, Canada 127

    http://www.aisc.org

    Design requirements

    Welding requirements

    Bolting requirements

    Requirements for 6pre-qualified connections

    R. Tremblay, Polytechnique Montreal, Canada 128

  • 65

    Welded Unreinforced FlangeWelded Web

    Bolted End Plate

    Kaiser Bolted Bracket

    Bolted Flange PlateReduced Beam Section

    Conxtech Conxl

    R. Tremblay, Polytechnique Montreal, Canada 129

    R. Tremblay, Polytechnique Montreal, Canada 130

  • 66

    MRF

    Example

    R. Tremblay, Polytechnique Montreal, Canada 131

    R. Tremblay, Polytechnique Montreal, Canada 132

  • 67

    R. Tremblay, Polytechnique Montreal, Canada 133

    From analysis:

    b) Moments from response spectrum analysis

    c) Maximum probable bending moments and shear forces at plastic hinge locations

    d) Beam induced forces imposed at column faces

    e) Beam induced forces at column centerlines

    R. Tremblay, Polytechnique Montreal, Canada 134

    RBS:

    > 682 kN-m => OK!

    > 442 kN => OK!

  • 68

    At Level 1:

    M*pb = 656 + 738 = 1394 kN-m

    R. Tremblay, Polytechnique Montreal, Canada 135

    R. Tremblay, Polytechnique Montreal, Canada 136

  • 69

    R. Tremblay, Polytechnique Montreal, Canada 137

    371 kN & 354 kNshears in columns (see above)

    1992 kN force from Mcf = 1319 kN-m :1992 = 1319/(678-16.3)

    17 kN force induced by floor diaphragm (from equilibrium of the two column shears)

    R. Tremblay, Polytechnique Montreal, Canada 138