UT Basic Principles Presentation

download UT Basic Principles Presentation

of 42

Transcript of UT Basic Principles Presentation

  • 7/30/2019 UT Basic Principles Presentation

    1/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Basic Principles ofUltrasonic Testing

    Theory and Practice

  • 7/30/2019 UT Basic Principles Presentation

    2/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Examples of oscillation

    ball ona spring pendulum rotatingearth

  • 7/30/2019 UT Basic Principles Presentation

    3/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    The ball starts to oscillate as soon as it is pushed

    Pulse

  • 7/30/2019 UT Basic Principles Presentation

    4/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Oscillation

  • 7/30/2019 UT Basic Principles Presentation

    5/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Movement of the ball over time

  • 7/30/2019 UT Basic Principles Presentation

    6/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Time

    One fulloscillation T

    Frequency

    From the duration of one oscillation

    T the frequency f (number of

    oscillations per second) is

    calculated:

    Tf1

  • 7/30/2019 UT Basic Principles Presentation

    7/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    180 36090 270

    Phase

    Time

    a

    0

    The actual displacement a istermed as:

    sinAa

  • 7/30/2019 UT Basic Principles Presentation

    8/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Spectrumofsound

    Frequency range Hz Description Example

    0 - 20 Infrasound Earth quake

    20 - 20.000 Audible sound Speech, music

    > 20.000 Ultrasound Bat, Quartz crystal

  • 7/30/2019 UT Basic Principles Presentation

    9/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    gas liquid solid

    Atomic structures

    low density

    weak bonding forces

    medium density

    medium bondingforces

    high density

    strong bonding forces

    crystallographicstructure

  • 7/30/2019 UT Basic Principles Presentation

    10/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Understanding wave propagation:

    Spring = elastic bonding forceBall = atom

  • 7/30/2019 UT Basic Principles Presentation

    11/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    T

    distance travelled

  • 7/30/2019 UT Basic Principles Presentation

    12/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    T

    Distance travelled

    From this we derive:

    or Wave equation

    During one oscillation T the wave

    front propagates by the distance :

    Tc

    fc

  • 7/30/2019 UT Basic Principles Presentation

    13/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Direction of oscillation

    Direction of propagationLongitudinal wave

    Sound propagation

  • 7/30/2019 UT Basic Principles Presentation

    14/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Direction of propagationTransverse wave

    Direction of oscillation

    Sound propagation

  • 7/30/2019 UT Basic Principles Presentation

    15/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Wave propagation

    Air

    Water

    Steel, long

    Steel, trans

    330 m/s

    1480 m/s

    3250 m/s

    5920 m/s

    Longitudinal waves propagate in all kind of materials.Transverse waves only propagate in solid bodies.

    Due to the different type of oscillation, transverse wavestravel at lower speeds.

    Sound velocity mainly depends on the density and E-

    modulus of the material.

  • 7/30/2019 UT Basic Principles Presentation

    16/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Reflection and Transmission

    As soon as a sound wave comes to a change in materialcharacteristics ,e.g. the surface of a workpiece, or an internal inclusion,

    wave propagation will change too:

    f

  • 7/30/2019 UT Basic Principles Presentation

    17/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Behaviour at an interface

    Medium 1 Medium 2

    Interface

    Incoming wave Transmitted wave

    Reflected wave

    B i P i i l f Ult i T ti

  • 7/30/2019 UT Basic Principles Presentation

    18/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Reflection + Transmission: Perspex - Steel

    Incoming wave Transmitted wave

    Reflected wave

    Perspex Steel

    1,87

    1,00,87

    B i P i i l f Ult i T ti

  • 7/30/2019 UT Basic Principles Presentation

    19/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Reflection + Transmission: Steel - Perspex

    0,13

    1,0

    -0,87

    Perspex Steel

    Incoming wave Transmitted wave

    Reflected wave

    B i P i i l f Ult i T ti

  • 7/30/2019 UT Basic Principles Presentation

    20/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Amplitude of sound transmissions:

    Strong reflection

    Double transmission

    No reflection

    Single transmission

    Strong reflection

    with inverted phase No transmission

    Water - Steel Copper - Steel Steel - Air

    B i P i i l f Ult i T ti

  • 7/30/2019 UT Basic Principles Presentation

    21/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Piezoelectric Effect

    Piezoelectrical

    Crystal (Quartz)

    Battery

    +

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    22/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    +

    The crystal gets thicker, due to a distortion of the crystal lattice

    Piezoelectric Effect

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    23/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    +

    The effect inverses with polarity change

    Piezoelectric Effect

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    24/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    An alternating voltage generates crystal oscillations at the frequency f

    U(f)

    Sound wavewith

    frequency f

    Piezoelectric Effect

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    25/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    A short voltage pulse generates an oscillation at the crystals resonant

    frequency f0

    Short pulse( < 1 s )

    Piezoelectric Effect

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    26/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Reception of ultrasonic waves

    A sound wave hitting a piezoelectric crystal, induces crystalvibration which then causes electrical voltages at the crystal

    surfaces.

    Electrical

    energy

    Piezoelectrical

    crystal Ultrasonic wave

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    27/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Ultrasonic Probes

    socketcrystal

    Damping

    Delay / protecting face

    Electrical matching

    Cable

    Straight beam probe Angle beam probeTR-probe

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    28/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    100 ns

    RF signal (short)

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    29/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    RF signal (medium)

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    30/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    N

    Near field Far field

    Focus Angle of divergenceCrystalAccoustical axis

    D0

    6

    Sound field

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    31/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Ultrasonic Instrument

    0 2 4 8 106

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    32/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    0 2 4 8 106

    +- Uh

    Ultrasonic Instrument

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    33/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    0 2 4 8 106

    + -

    Uh

    Ultrasonic Instrument

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    34/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    0 2 4 8 106

    +

    +

    -

    -

    U

    U

    h

    v

    Ultrasonic Instrument

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    35/42

    Basic Principles of Ultrasonic Testing

    Krautkramer NDT Ultrasonic Systems

    Block diagram: Ultrasonic Instrument

    amplifier

    work piece

    probe

    horizontal

    sweep

    clock

    pulser

    IP

    BE

    screen

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    36/42

    as c c p es o U t aso c est g

    Krautkramer NDT Ultrasonic Systems

    Sound reflection at a flaw

    Probe

    FlawSound travel path

    Work piece

    s

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    37/42

    p g

    Krautkramer NDT Ultrasonic Systems

    Plate testing

    delaminationplate

    0 2 4 6 8 10

    IP

    F

    BE

    IP = Initial pulse

    F = Flaw

    BE = Backwall echo

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    38/42

    p g

    Krautkramer NDT Ultrasonic Systems

    0 2 4 6 8 10

    ss

    Wall thickness measurement

    Corrosion

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    39/42

    p g

    Krautkramer NDT Ultrasonic Systems

    Through transmission testing

    0 2 4 6 8 10

    Through transmission signal

    1

    2

    1

    2

    T

    T

    R

    R

    Flaw

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    40/42

    p g

    Krautkramer NDT Ultrasonic Systems

    Weld inspection

    0 20 40 60 80 100

    s

    aa'

    d

    x

    a = s sin

    a' = a - x

    d' = s cos

    d = 2T - t'

    s

    Lack of fusionWork piece with welding

    F = probe angle

    s = sound path

    a = surface distance

    a = reduced surface distance

    d = virtual depth

    d = actual depthT = material thickness

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    41/42

    p g

    Krautkramer NDT Ultrasonic Systems

    Straight beam inspection techniques:

    Direct contact,

    single element probe

    Direct contact,

    dual element probe

    Fixed delay

    Immersion testingThrough transmission

    Basic Principles of Ultrasonic Testing

  • 7/30/2019 UT Basic Principles Presentation

    42/42

    Krautkramer NDT Ultrasonic Systems

    surface =

    sound entry

    backwall flaw

    1 2water delay

    0 2 4 6 8 10 0 2 4 6 8 10

    IE IEIP IP

    BE BEF

    1 2

    Immersion testing