USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp...

25
USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with A. Tsuchiya, T. Matsuo, B. Chen, H. Kihara (Osaka U.) in recent years with H. Kihara (KIAS), R. Yoshioka (OCU) I). Introduction ten years of developments in reduced matrix models review not as a reflection but as an opportunity for a better perspective

Transcript of USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp...

Page 1: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

USp Matrix Model Revisited

080304@KEK

originally with A. Tokura (’97)

later with A. Tsuchiya, T. Matsuo, B. Chen, H. Kihara (Osaka U.)

in recent years with H. Kihara (KIAS), R. Yoshioka (OCU)

I). Introduction

• ten years of developments in reduced matrix models

• review not as a reflection but as an opportunity for a better perspective

– Typeset by FoilTEX – 1

Page 2: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Contents

I). Introduction

II). Criteria and construction [I-Tok]

III). Semi-uniqueness and loop variables [I-Tok, I-Tsuch]

IV). S-D equation [I-Tsuch]

V). Spacetime fluctuations represented by nonabelian Berry phase [I-Mats, CIK]

VI). Attempts in recent years [IY, IKY]

– Typeset by FoilTEX – 2

Page 3: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

II). Criteria and construction

MBFSS

by ’84

IIA IIB

←→T9

−→Ω projection

open added

type I ←→ hetero SO(32)S l W9

hetero E8×E8

16 + 16 supercharges

closed, orientable

8 + 8 supercharges

closed + open, nonorientable

large k

reduced

model

⇓ ⇓IIB matrix model

IKKT

USp matrix model

IT

– Typeset by FoilTEX – 3

Page 4: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Action of IIB matrix model and USp matrix model

Let me tell you the definitions of the models first.

SIIB(vM , Ψ) =1g2

tr(

14[vM , vN ][vM , vN ]− 1

2ΨΓM [vM , Ψ]

)

Ψ : Maj-Weyl , 0 ≤ M, N ≤ 9objects with : U(2k) matrices

We also write as vm, m = 0, · · · , 3.

ΦI = 1√2(v3+I + iv6+I), I = 1, 2, 3

Ψ = (λ, 0, ψ1, 0, ψ2, 0, ψ3, 0, 0, λ, 0, ψ1, 0, ψ2, 0, ψ3)t

using 4d superfield

∴ SIIB =1

4g2tr

(∫d2θWαWα + h.c. + 4

∫d2θd2θΦ†Ie

2V ΦI

)+

1g2

(∫d2θW0 + h.c.

)

W0 =√

2tr(Φ1[Φ2, Φ3]])Requirements for the model descending from perturbative type I superstrings

i) closed (projected)

ii) nonorientable

iii) 8 + 8 susy

– Typeset by FoilTEX – 4

Page 5: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

• To find the matrix counterpart of the Ω projection, recall for both USp and SO.

U(2k) adj USp adj (= sym)

USp asym

U(2k) adj SO adj (= asym)

SO sym

F =(

0 I

−I 0

)

F =(

0 I

I 0

)analog of Ω

The projector ρ∓• = 12(• ∓ F−1 •t F )

In fact

XtF + FX = 0 for X ∈ usp(2k) Lie alg. ∴ X =(

M N

N∗ −M∗

)

Y tF−FY = 0 for Y ∈ antisym ∴ Y ≡ (TF )ji =

(A B

C∗ At

), Bt = −B, Ct = −C

We found out

planar diagram analysis

⇒ Chan-Paton factor of open loop all lead to usp

consistency with wv field theory

• Need to add open string degrees of freedom,

keeping 8 + 8 susy ⇒ fundamental rep. (Q•, Q•, ψQ•, ψ•Q), #(fund) = nf

– Typeset by FoilTEX – 5

Page 6: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Definition of the model

V = ρ−V , Φ1 = ρ−Φ1, ΦI = ρ+ΦI, I = 2, 3

adj adj asym

SUSp =1

4g2tr

(∫d2θWαWα + 4

∫d2θd2θΦ†Ie

2V ΦIe−2V

)

+1g2

nf∑

f=1

(∫d2θd2θQ∗

(f)e2V Q(f) + Q(f)e

−2V Q∗(f)

)+

1g2

(∫d2θW (θ) + h.c.

)

W (θ) =√

2tr(Φ1[Φ2, Φ3]) +∑nf

f=1(m(f)Q(f)Q(f) +√

2Q(f)Φ1Q(f))↑

again using 4d superfield notation

also can write

SUSp = S0 + ∆S S0 : with Q(f), Q(f) set to zero

S0 = SIIB(ρb±vm, ρf±ΨA) specific projection

Parameters g2, (2k), m(f), n(f) = 16(by 6d gauge anomaly cancel.)

k →∞, scaling : g2(2k)# = const. # is difficult to determine.

– Typeset by FoilTEX – 6

Page 7: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Why transparency

• Why matrices are strings

• Why F ∼ Ω

• USp not SO

• Why fundamentals needed

• nf =?

• m(f) =?

– Typeset by FoilTEX – 7

Page 8: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

• III). Semi-uniqueness and loop variables

• [susy, projector] = 0 in the USp case

• SIIB ; possesses 16 + 16 susy

• SUSp ; need to check ∃ 8 + 8 susy

; Is ρb∓ and ρf∓ unique?

– Typeset by FoilTEX – 8

Page 9: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Projector and susyhow to have both consistently:

• susy transf.

δ(1)vM = iεΓMΨ

δ(1)Ψ = i2[vM , vN ]ΓMNε

δ(2)vM = 0

δ(2)Ψ = ξ

16 + 16 IIB case

• We have examined the conditions:[ρb∓, δ(1)(2)]vM = 0

[ρb∓, δ(1)(2)]vM = 0(∗)

To be more explicit, let

ρ(M)b∓ = Θ(M ∈M−)ρ− + Θ(M ∈M+)ρ+

ρ(A)f∓ = Θ(A ∈ A−)ρ− + Θ(A ∈ A+)ρ+

M− ∪M+ = 0, 1, 2, · · · , 9, M− ∩M+ = ∅, etc

(∗) yield eqs. w.r.t. ε, ξ, M−, M+, A−, A+

demand 8 + 8 susy

– Typeset by FoilTEX – 9

Page 10: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

• Solutions:

our cases 6 adj + 4asym

ρb∓ = diag(−,−,−,−,−, +, +,−, +, +)

ρf∓ = ρ−I(4) ⊗

I(2)

0

I(2)

0

+ ρ+I(4) ⊗

0

I(2)

0

I(2)

M, hetero

ρb∓ = diag(+, +, +, +,−, +, +,−, +, +)

ρf∓ = ρ−I(4) ⊗

I(2)

0

0

I(2)

+ ρ+I(4) ⊗

0

I(2)

I(2)

0

S. Rey, D. Lowe, ...

– Typeset by FoilTEX – 10

Page 11: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Gauge anomalies cancellation

still somewhat mysterious

• take matrix T dual ala W. Taylor albeit being against our spirit

⇒ (zero volume limit) of 6-d. wv. gauge theory

• chirality Γ6 = Γ0Γ1Γ2Γ3Γ4Γ7

λ

0ψ1

0

, +1,

ψ2

0ψ3

0

,−1, fund,−1

nonabelian anomaly ∝ tradjF4 − trasymF 4 − nftrF 4 = (16− nf)trF 4

∴ nf = 16

• should be interpreted as a force balance.

The cases nf 6= 16 and IIB would imply an existence of residual interactions

⇒ gauge sym. breaking ??

– Typeset by FoilTEX – 11

Page 12: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Closed and open loops

• Recall we have added the open string deg. of freedom,

⇒ fundamental rep. (Q, Q, ψQ, ψQ), #(fund) = nf

• To make flavor symmetry (≈ gauge sym. of strings) manifest,

Q(f) =

Q(f)

F−1Q(f−nf)

, ψQ(f)=

ψQ(f)

F−1ψQ(f−nf )

• basic operators (observables): cf. one-matrix model trelM

Φ[pM• , η; n1, n2] ≡ tr

←−Πn1

n=n0exp(−ipM

n vM − iηnΨ)

= Φ[∓pM• , η; n0, n1]

=

i.e. nonorientable

· Λ ·Π(f) ≡ (ξQ(f) + F−1ξ∗Q∗(f)) + (θψQ(f)

+ F−1θψ∗Q(f))

Ψf ′f [pM• , η•; n0, n1; Λ′, Λ] ≡ Λ′ ·Π(f ′)FU [· · · ]Λ ·Π(f)

= ∓Ψff ′[∓pM• ,∓η•; n0, n1; Λ′, Λ]

= -f

f ’f

f ’

– Typeset by FoilTEX – 12

Page 13: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

original(worldsheet)

C-P factor Lie algebra

− : so(2nf) ⇔ usp(2k) ⇐ our choice

+ : usp(2nf) ⇔ so(2k)

– Typeset by FoilTEX – 13

Page 14: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

IV). S-D equation

Schwinger-Dyson eq.

as before

Φ[(i)] ; i-th closed loop

Ψf ′f [(i)] ; i-th open loop f

f ’

Consider

0 =∫

dµ∂

∂Xrtr(U([1])T rU [(1)])Φ[(2)] · · ·Φ[(N)]Ψ[(1)] · · ·Φ[(L)]e−S

0 =∫

dµ∂

∂XrΛ(1)′·Π

f (1)′FU [(1)]T rU [(1)]Λ(1)·Πf (1)Φ[(1)] · · ·Φ[(N)]Ψ[(2)] · · ·Φ[(L)]e−S

Xr = vrM or Ψr

0 =∫

dµ∂

∂Z(f)iU [(1)]Λ(1) ·Πf (1)Φ[(1)] · · ·Φ[(N)]Ψ[(2)] · · ·Φ[(L)]e−S

Z(f)i = Q(f)i or ψQ(f)i

– Typeset by FoilTEX – 14

Page 15: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

• We have shown that eqs. are closed w.r.t. the loops

eq. of motion acting on the loop

→ deformation of the loop

complete set of nonorientable interactions among loops consistent with two kinds of

elementary local moves.

0 =∫

dµ∂

∂Xrtr(U [p(1)

• , η(1)• ; n(1)

2 , n(1)1 + 1]T rU [p(1)

• , η(1)• ; n(1)

1 , n(1)0 ])

Φ[(2)] · · ·Φ[(N)]Ψ[(1)] · · ·Φ[(L)]e−S

T r: generator of usp(2k), Xr: ArM or Ψr

α

0 = +

+12

(+

)

+12

(+

)

+12

(+

)

– Typeset by FoilTEX – 15

Page 16: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

∑2k2±kr=1 (T r) j

i (T r) lk = 1

2(δl

i δjk ∓ F−1

ik F lj)∑2k2±k

r=1 (T r) ji (T r) l

k •= 12(• ∓ F−1•tF ) = ρ∓

I) ⇒

0 = (1) kinetic term1g2〈δXΦ[(1) : Xr]Φ[(2)] · · ·Φ[(N)]Ψ[(1)] · · · 〉

+(2) splitting and twisting term #(loops) increases by 1

+(3) joining with a closed string #(loops) decreases by 1

+(4) joining with an open string #(loops) decreases by 1

– Typeset by FoilTEX – 16

Page 17: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

V). Spacetime fluctuations represented by nonabelian Berry phase

• variables

vM = u(M)

x(1)M

. . .

x(k)M

∓x(1)M

. . .

∓x(k)M

u(M)−1

≡ u(M)XMu(M)−1 ↑ spacetime pts.

→Ψ

→ψf

→Qf

integrate → s to give

dynamics to the spacetime pts.

For simplicity, set u(M) = 1, Qf = 0

note: spacetime pts are dynamical variables

– Typeset by FoilTEX – 17

Page 18: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

t x

quantum mechanics parameter d.v.

QFT parameter parameter

reduced matrix model d.v. d.v.

• Rather than lnZeff[x(i)M ], we measure

Σ〈〈one-particle projector〉〉Γ for a given path Γ in x(k)M

• 〈〈1P-projector〉〉 = nonabelian Berry phase

Sfermion = SMM + Sgf + SYukawa

– Typeset by FoilTEX – 18

Page 19: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

=∑αl

l

λlξαll ξ

αll ← fermionic eigenmodes

degeneracy l-th eigen fn.

1-P-P Plαα′ ≡ ξα

l |Ω〉〈Ω|ξαl , ξα

l =∑

A bAψαlA

b, b ∼ ψ, ψ, ψQ, ψQ∗

One way to introduce 〈〈Pαα′l 〉〉 in reduced matrix model is through infinite temperature

(or short time) limit of the corresponding matrix quantum mechanics (v0 → i ddt)

〈〈Pαα′l 〉〉Γ = lim

β→0tr

fermion

[(−)Fe−i

R β0 dβ′H(β′)Pαα′

l

]

Toss this expression to that of the first quantized Q. mechanics

= P exp[−i

∮ΓAl(xM)]αα′

Aαα′l (xM) = −i

∑A ψα†

lAdψα′lA nonabelian ← ∃degeneracy in spinor space

We will eventually consider

〈〈∑

l∈I+

∑α

Pααl 〉〉Γ

I+ : subset over all + eigenvalues ??

– Typeset by FoilTEX – 19

Page 20: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Decomposition of Sfermi

XM = diag(x(1)M , · · · , x

(k)M , ρ(x(1)

M ), · · · , ρ(x(k)M ))

ρ : xµ → −xµ, µ = 0, 1, 2, 3, 4, 7xn → xn, n = 5, 6, 8, 9

• found written in terms of the three types

LI(Λ, Φ; xM , yM) = 2(Λ + Φ)ΓM(xM − yM)(Λ + Φ)

LII(Λ, Φ; xM , yM) = 2(Λ + Φ)ΓM(xM − ρ(yM))(Λ + Φ)

LIII(Λ;xµ) = ΛΓµxµΛ

Ψ =

• • × • •• • • × •• • • • ×× • • • •• × • • •• • × • •

• to LI

• to LII

× to LIII

Sfermi =12

a<b

(LI(xaM , xb

M) + LI(−xaM ,−xb

M) + LII(xaM , xb

M) + LII(−xaM ,−xb

M))

+12

∑a

(LIII(xaµ − xa+k

µ ) + LIII(−xaµ + xa+k

µ ))

+∑

a,∓,f

LIII(xaµ ∓m(f)δµ,4)

– Typeset by FoilTEX – 20

Page 21: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Computation of NAB

LIII ⇒ H =1g2

∑µ=1,2,3,4,7

xµγµ

eigen fn. ψα = 1NP+eα, α = 1, 4

P± = 12(14 ± xν

|x|γν), yν = xν

|x|

iA =(e1

e4

)M(e1 e4), M =

1N

P †+d1N

P+

yν: parameterizes S4. Further by a stereographic projection

yi = 2zi

1+z2, i = 1, 2, 4, 7, y3 = 1−z2

1+z2

S4

R4

zi(all read) parameterize R4

A =12

11 + z2

(zidzj − zjdzi)σij, σij =i

2E [γi, γj]Et

ASD instanton (BPST k = 1)

For us, better to view it as a point-like SU(2) monopole (Yang monopole) on R5.

Π3(SU(2)) = Z

– Typeset by FoilTEX – 21

Page 22: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

•LI,II ⇒ H = 1g2

∑i=1,··· ,4 Γixi similar to LIII

↑16 dim.

yi S8

zi R8

A =12

11 + z2

(zidzj − zjdzi)Σij

point-like SU(8) monopole on R9 Π7(SU(8)) = Z k = 1This eigen bundle

• mathematically generalizable to Rm+1,m = 4m = 8

Πm−1(SU(2m2 −1))

– Typeset by FoilTEX – 22

Page 23: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Spacetime picture emerging from our computation

back to

〈〈∑

l∈I+

∑α

Pααl 〉〉Γ =

l∈I+

trlP exp[−i

∮ΓAl(∗)]

↑arguments bellow

LI,II ⇒ SU(8) monopole point-like at entire space shared by IIB matrix model

LIII ⇒ SU(2) Yang monopole xn×4 dimensionally extended object string soliton

unique to USp matrix model

the arguments of Al

LI,II ⇒ xaM − xb

M xaM − ρ(xb

M)

LIII ⇒2xµ

xaµ ±m(f)δµ,4

⇒ ∃singular plates

These colliding singularities may act as dominant factors in the complete (bosonic)

functional integral.

It is tempting to conclude that the four dimensional structure is formed by a collection

of Yang monopoles.

– Typeset by FoilTEX – 23

Page 24: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

Discussion• have shown

matrices

8 + 8 susy⇒

asymmetry of the four directions

from the rest in the fluctuation

spectrum• a collection of Yang monopoles may be the seed of our spacetime structure

recent

• Considering both positive and negative eigenvalues in spinor space will lead to Yang

monoploes and anti-Yang monoploes and their octonionic generalizations.

• 〈〈∑l

∑α Pαα′

l 〉〉Γ depends on the loop Γ in xM space and would like to regard this as

a definition of matrix boundary state!

the analogy of 〈B; Γ|0〉 in 1st quantized strings.

replacing P(1)αα′ → 1 =

∑i P(i)

αα′ will lead to a complete analysis of the determinant.

• NAB and nonabelian monopoles have appeared in some recent works of SUGRA;

· G. W. Gibbons and T. K. Townsend

“Self-gravitating Yang Monopoles in all Dimensions”; hep-th/0604024

· A. Belhaj, P. Diaz and A. Segui

“On the Superstring Realization of the Yang Monopole”; hep-th/0703255

· C. Pedder, J. Sonner and D. Tong

“The Berry Phase of D0-Branes”; arXiv:0801.1813

– Typeset by FoilTEX – 24

Page 25: USp Matrix Model Revisitedresearch.kek.jp/group/riron/workshop/theory2008/slides/itoyama.pdf · USp Matrix Model Revisited 080304@KEK originally with A. Tokura (’97) later with

VI). Attempts in recent years

• Assessing further the condition [susy, projectors] = 0 in the case of possessing 4 or

8 supercharges upon Z3 orbifolding + matrix orientifolding. We have enumerated all

possibilities:# = 50

H.I. and R. Yoshioka

“Matrix orientifolding and models with four or eight supercharges”

Phys. Rev. D72 (2005) 126005; hep-th/0509146

(cf. Aoki, Iso and Suyama)

• Of course, a more systematic and hopefully exact integration of bosonic and fermionic

matrices are called for. We have developed a residue calculus and a diagrammatic

method for MNS integration [Moore, Nekrasov, Shatashvili, (cf. Hirano and Kato)] for the case

of dimensionally reduced d=4, N = 1 SYM with G arbitrary classical groups.

H.I., H. Kihara and R. Yoshioka

“Partition functions of reduced matrix models with classical gauge groups”

Nucl. Phys. B762 (2007) 285-300; hep-th/0609063

• We have converted USp matrix model into a QBRS-exact form. MNS integration yet

to be carried out completely.∃ cutoff dependence ↔ scaling ??

– Typeset by FoilTEX – 25