USP CHOP Annie De Groot Presentation June 2013

66
Andres H. Gu,érrez, Leonard Moise, Frances Terry, Kristen Dasilva, Chris BaileyKellogg, William Mar,n, Anne S. De Groot Immunoinforma2c analysis of Chinese Hamster Ovary (CHO) protein contaminants in therapeu2c protein formula2ons Measurement of Residual Host Cell Protein and DNA in Biotechnology Products June 3, 2013

description

Presented at USP CHOP

Transcript of USP CHOP Annie De Groot Presentation June 2013

Page 1: USP CHOP Annie De Groot Presentation June 2013

Andres  H.  Gu,érrez,  Leonard  Moise,  Frances  Terry,  Kristen  Dasilva,    

Chris  Bailey-­‐Kellogg,  William  Mar,n,  Anne  S.  De  Groot  

Immunoinforma2c  analysis  of    Chinese  Hamster  Ovary  (CHO)    

protein  contaminants  in    therapeu2c  protein  formula2ons  

Measurement  of  Residual  Host  Cell  Protein  and  DNA  in  Biotechnology  Products  June  3,  2013  

 

Page 2: USP CHOP Annie De Groot Presentation June 2013

How  did  we  get  to  HCP/CHO/CHOPPI?  

2002  Invita,on  to    

“Predic,ng  Biologic    Protein  Immunogenicity”    

Conference  at  FDA  

2011  CHO    

Genome    Published  

 

2006-­‐2007  Immunogenicity  scale  

Tregitopes,  Collabora,on    With  Gene  Koren  and  others  

CHO  genome    immunogenicity  

 analysis  

Plenary  at  ECI  CCE  conference  HCP  /  CHO  Cells  Host  Cell  Proteins  

Parallels  with  Graves’  model  

2004  Benchmarking  Vaccine  tools    

for  Biologics:  Clustered    

T  cell  epitopes  EpiBars  

CHOPPI  On  line  .  .  .    

Page 3: USP CHOP Annie De Groot Presentation June 2013

Why are we interested in the Impact of species-specific sequences on immunogenicity?

HLA  DR  mice   tolerated  2191-­‐O,  whose   core  epitope  was  fully  conserved  in  human  and  murine  FVIII.  E16  mice  were  responsive  to  this  pep,de  because  they  lack  endogenous  murine   FVIII.   Epitopes   immunogenic   in   HLA   DR   mice  contain  non-­‐conserva,ve  sequence  mismatches.  

Autoimmune  Graves  Disease  

Graves Disease Example

Page 4: USP CHOP Annie De Groot Presentation June 2013

HLA  DR  mice   tolerated  2191-­‐O,  whose   core  epitope  was  fully  conserved  in  human  and  murine  FVIII.  E16  mice  were  responsive  to  this  pep,de  because  they  lack  endogenous  murine   FVIII.   Epitopes   immunogenic   in   HLA   DR   mice  contain  non-­‐conserva,ve  sequence  mismatches.  

“Autoimmune  Graves  Disease”  begins  with  a  response  to  a  single  epitope  that  is  mismatched  and  presented  in  the  context  of  murine  MHC  

hTSHR variant 1_NM_000369 and murine TSH-R mTSHR variant 1_NM_011648 alignment

mTSHR_variant_1_NM_011648 PPSTQTLKLIETHLKTIPSLAFSSLPNISRIYLSIDATLQRLEPHSFYNL hTSHR_variant_1_NM_000369 PPSTQTLKLIETHLRTIPSHAFSNLPNISRIYVSIDVTLQQLESHSFYNL

peptide 5-6 (78-94) (variant)

Graves Disease Example

Page 5: USP CHOP Annie De Groot Presentation June 2013

•  Epitope fully conserved in human and murine FVIII:

•  Tolerated in FVIII-expressing HLA DR mice (have autologous FVIII)

•  Immunogenic in FVIII KO mice (do not have any FVIII)

•  Epitopes containing human/murine FVIII sequence mismatches:

•  immunogenic in FVIII-expressing HLA DR mice (foreign)

•  immunogenic in FVIII KO mice (still foreign)

HLA  DR  mice   tolerated  2191-­‐O,  whose   core  epitope  was  fully  conserved  in  human  and  murine  FVIII.  E16  mice  were  responsive  to  this  pep,de  because  they  lack  endogenous  murine   FVIII.   Epitopes   immunogenic   in   HLA   DR   mice  contain  non-­‐conserva,ve  sequence  mismatches.  

FVIII KO

Not KO

FVIII Example (murine)

Page 6: USP CHOP Annie De Groot Presentation June 2013

Murine'response'to'TSH/R Mouse'Sequence'same'as'Hu Mouse'Sequence'Different

T'cell'Epitope'Present Tolerance Immunogenicity

T'Cell'Epitope'Absent No'Response'''' Absent'epitope,'no'response

Human'response'to'HCP Human'Sequence'Same'as'CHO Human'Sequence'Different

T'cell'Epitope'Present Tolerance Immunogenicity

T'cell'Epitope'Absent No'Response'''' Absent'epitope,'no'response

Mice  immunized  with  human  TSH-­‐R    

Humans  exposed  to  CHO  or  other  HCP  

Important Parallels – HCP effects

Page 7: USP CHOP Annie De Groot Presentation June 2013

Genomics

Transcriptomics Informatics

A new technology for HCP evaluation

Page 8: USP CHOP Annie De Groot Presentation June 2013

Pathogen  

Immune      Response?  

Self/  Microbiome  

8  

Ac,ve  area  of  research    -­‐  EpiVax/URI  

Page 9: USP CHOP Annie De Groot Presentation June 2013

HCP  Contamina,on  cancels  trial  

Immune  response  to  HCP  (CHO)  led  to  recent  cancella,on  of  phase  III  clinical  trials:  “Higher  than  expected  rate  of  An,-­‐CHO  an,body  development”  (what  is  expected????).    

IB1001  –  hemophilia  (Inspira3on  Biopharmaceu3cals)  

Page 10: USP CHOP Annie De Groot Presentation June 2013

•  Danger  signals  of  all  sorts    •  Aggregates  –  how  do  they  work?    

–  (probably  don’t  work  if  no  T  cell  epitopes)    –  Immune  complexes  –  Complement  

•  T  cell  epitope  content  •  (absence  of)  Treg  epitope  content  •  Pre-­‐exis3ng  T  cell  response  (Tolerance  or  heterologous  immunity)  

What  drives  immunogenicity?  

Page 11: USP CHOP Annie De Groot Presentation June 2013

Factors (↑roof Immunogenicity) Immune effect

Glycosylation (↑) Increase presentation? Increase foreign-ness of protein, need T cell epitopes

PEGylation (↓) Slow antigen processing, “mask” T cell epitopes and B cell epitopes

Host Cell-derived Protein (↑) CPG DNA (if bacterial); CHO T cell epitopes Oxidized Form of the Product (↑) Increase foreign-ness, modify presentation Excipients (↑) Increase Danger signal, T cell epitopes Leachates (↑) Increase Danger signal, T cell epitopes Characteristics of Patients (↑or↓) Missing Protein is foreign, T cell epitopes

Frequency, Duration and Route of Administration (↑or↓)

Administration like a vaccine, DAMPs, T cell epitopes

Aggregates (↑) Aggregation increases T cell epitope presentation

In almost every case Mechanism of Action – T cell Response

In  almost  every  case  –  T  cell  epitope  drives  Immune  response  

Page 12: USP CHOP Annie De Groot Presentation June 2013

An,gen  

Epitope                      

Drug  or  Vaccine  

How  it  works  

Page 13: USP CHOP Annie De Groot Presentation June 2013

 In  the  right  context  self  proteins  can  be  immunogenic.  Take  Epo†,  for  example.    

T  cell  epitope  content  is  unequally  distributed  throughout  the  human  (and  CHO)  proteome.*    Immune  response  depends  on  protein  prevalence,  func,on  &  previous  exposure.**  

†  Marc  H.V.  van  Regenmortel,  Ph.D.,  Ka,a  Boven,  M.D.,  Fred  Bader,  Ph.D.  Immunogenicity  of  Biopharmaceu,cals:  An  Example  from  Erythropoie,n:  Protein  structure,  contaminants,  formula,on,  container,  and  closure  all  can  affect  the  immunogenicity  of  the  product.    BioPharm  Interna,onal  2005.  hmp://www.biopharminterna,onal.com/biopharm/ar,cle/ar,cleDetail.jsp?id=174494&sk=&date=&pageID=5    *A.S.  De  Groot,  J.  Rayner,  W.  Mar,n.  Modeling  the  immunogenicity  of  therapeu,c  proteins  using  T  cell  epitope  mapping.  In:  Immunogenicity  of  Therapeu,c  Biological  Products.  Developments  in  Biologicals.  Fred  Brown,  Anthony  Mire  Suis,  editors.  Basel,  Karger,  2003.  Vol  112:71-­‐80.    **Clute,  S.  C.,  L.  B.  Watkin,  M.  Cornberg,  Y.  N.  Naumov,  J.  L.  Sullivan,  K.  Luzuriaga,  R.  M.  Welsh,  and  L.  K.  Selin.  2005.  Cross-­‐reac,ve  influenza  virus-­‐specific  CD8+  T  cells  contribute  to  lymphoprolifera,on  in  Epstein-­‐Barr  virus-­‐associated  infec,ous  mononucleosis.  The  Journal  of  clinical  inves,ga,on  115:3602-­‐3612.  

CHO  are  mammalian  proteins  –    How  can  “self”  proteins  be  immunogenic?  

Page 14: USP CHOP Annie De Groot Presentation June 2013

T  Cell  Epitope  Content    -­‐  Predicted  Poten,al  for  Immunogenicity  of  Selected  Proteins    

-­‐80  -­‐60  -­‐40  -­‐20  0  

20  40  60  80  

100  

                               

Human  FSH  

beta  

Human  IgA  CD

   

Human  IgG  CD

   

Human

             

Albu

min              

Human              

Amylase            

De-­‐im

mun

ized  

INF-­‐be

ta                          

Human  

Transferrin

                 

*  Hu

man  

Gonado

trop

in      

Rand

om  

Expe

cta,

on  

Influ

enza  

Hemagglu,

nin  

*  Hu

man  

GHRH  

*  Hu

man  

Gonado

trop

in  

w/signal  

Tetanu

s  Toxin  

Human  

Erythrop

oie2

n  Brazil  Nut  

An,g

en  

*  Hu

man  

GHRH

 w/signal  

**  Hum

an  IN

F-­‐  

beta    

Less    Immunogenic  Proteins  (based  on  clinical  experience)    Have  Fewer  T  cell  Epitopes  De  Groot,  As,  Goldberg  M,  Moise  L,  Mar,n  W.  Evolu2onary  deimmuniza2on:  An  ancillary  mechanism  for  self-­‐tolerance.  Cell  Immunol.  

2007  Apr  17;    Pages  148-­‐153.  hmp://dx.doi.org/10.1016/j.cellimm.2007.02.006    

 

Are  self  proteins  immunogenic?  

Page 15: USP CHOP Annie De Groot Presentation June 2013

EpiVax  Immunogenicity  Hypothesis:  Immune  Response  =  Sum  of  Epitopes  

15  

T  cell  response  depends  on:    

T  cell  epitope  content  +  HLA  of  subject    

Protein  Immunogenicity  can  be  Ranked        

epitope  

Protein  Therapeu,c  

1    +    1    +    1        =    Response  

epitope  epitope  

• De  Groot  A.S.  and  L.  Moise.  Predic,on  of  immunogenicity  for  therapeu,c  proteins:  State  of  the  art.    Current  Opinions  in  Drug  Development  and  Discovery.  May  2007.  10(3):332-­‐40.  

In  biologics,  immunogenicity  is  related  to    T  cell  epitope  content  

Page 16: USP CHOP Annie De Groot Presentation June 2013

EpiVax  -­‐  Immunogenicity  Scale    

Low        Neutral        High  

Albumin   Tetanus  Toxin  Protein  X  or  mAb  Y  

Proteins  ranked  by  T-­‐  Epitope  content  per  Amino  Acid    

•   De  Groot  A.S.,  Drug  Discovery  Today  -­‐  2006;  •   De  Groot  A.S.,  Mire-­‐Sluis,  A.  Ed..  Dev.  Biol.  Basel,  Karger,  2005.  vol  122.  pp  137-­‐160.    

An,gen  A   An,gen  B  

Aggregate  immunogenicity  drives    Immune  response  

Page 17: USP CHOP Annie De Groot Presentation June 2013

EpiMatrix   predicted   excess/shorwall   in  aggregate   immunogenicity   rela,ve   to   a  random  pep,de  standard.  

-­‐   80           -­‐  -­‐   70           -­‐  -­‐   60           -­‐  -­‐   50           -­‐  -­‐   40           -­‐  -­‐   30           -­‐  -­‐   20           -­‐  -­‐   10           -­‐  -­‐   00           -­‐  -­‐   -­‐  10           -­‐  -­‐   -­‐  20           -­‐  -­‐   -­‐  30           -­‐  -­‐   -­‐  40           -­‐  -­‐   -­‐  50           -­‐  -­‐   -­‐  60           -­‐  -­‐   -­‐  70           -­‐  -­‐   -­‐  80           -­‐  

Thrombopoie2n  

Human  EPO  

Tetanus  Toxin  Influenza  -­‐  HA  

Albumin  

IgG  FC  Region  

EBV  -­‐  BKRF3  

Follitropin   -­‐  Beta  

A  protein   score  >  20   indicates  a   significant  immunogenic  poten,al.    Proteins   that   have   previously   been  demonstrated   to   be   immunogenic   have  higher   poten,al   immunogenicity   on   the  scale.      Those  that  have  rarely  been  demonstrated  to   be   immunogenicity   have   lower   T   cell  epitope  content.      

Immunogenicity  scale  

Page 18: USP CHOP Annie De Groot Presentation June 2013

Some Vaccine Antigens – High Scores (work done for NMRC, Dept. of Defense)

Page 19: USP CHOP Annie De Groot Presentation June 2013

-  80 -

-  70 -

-  60 -

-  50 -

-  40 -

-  30 -

-  20 -

-  10 -

-  00 -

-  -10 -

-  -20 -

-  -30 -

-  -40 -

-  -50 -

-  -60 -

-  -70 -

-  -80 -

Human EPO Immunogenic Antibodies*

Tetanus Toxin

Influenza-HA

Albumin

IgG FC Region

EBV-BKRF3

Fibrinogen-Alpha Non-immunogenic Antibodies†

Follitropin-Beta

Hirudin(-­‐90.41)    

See  my  Blog  “Thinking  out  Loud”  for  a  discussion  of  Leech  proteins  and  Tick  Saliva  proteins-­‐Tick  saliva  proteins  also  have  low  immunogenicity  poten,al.    

Hirudin  –  Very  Low  Poten,al  Immunogenicity  -­‐  Why?  Other Antigens – Extremely Low Scores (Hirudin, Tick Saliva, Some Parasites)

Page 20: USP CHOP Annie De Groot Presentation June 2013

•  Handled on a case-by-case basis •  Consider Source •  Maximum dose (mg biologics/kg body weight) •  Route of administration •  Frequency of dosing •  Pre-clinical and clinical data •  Detection process in evolution

The FDA Prefers Leech-like Proteins And HCPs - Regulatory Perspective

Page 21: USP CHOP Annie De Groot Presentation June 2013

HCP Analytical Technologies

•  Detection – Protein staining –  Immunoblotting

•  Identification –  2D-PAGE/MS –  2D-LC/MS

•  Quantitation – ELISA using anti-HCP antibodies – May need to develop internal processes – Some kits are available

•  Risk assessment – Cytokine release assays

New  Approach  –  Immunogenicity  Screening  in  silico  

Analytical Tests for HCP

Page 22: USP CHOP Annie De Groot Presentation June 2013

•  MHC  binding  is  a  prerequisite  for  immunogenicity  •  Epitopes  are  linear  and  directly  derived  from  an,gen  sequence  •  Binding  is  determined  by  amino  acid  side  chains  •  Matrix-­‐based  predictor  

MHC  II   Mature  

APC

Immunogenicity  predic,on  

Page 23: USP CHOP Annie De Groot Presentation June 2013

EpiMatrix  

•  EpiVax  uses  EpiMatrix  to  predict  epitopes  –  matrix  based  predic,on  algorithm  

•  Can  predict  either  class  I  or  class  II  MHC  binding  –  MHC  binding  is  a  prerequisite  for  immunogenicity  

MHC  II  Pocket  

Pep,de    Epitope  Mature  

APC

MHC  II  

T  cell  epitopes  are  linear  and  directly  derived  from  an,gen  sequence    Binding   is  determined  by  amino  acid  side  chains  (R  groups)  and  ‘encoded’  in  single  lemer  code  

23  6/3/13 Confidential

Page 24: USP CHOP Annie De Groot Presentation June 2013

Easy  easy  to  deliver  as  pep,des  Clusters  of  MHC  binding  drive  T  cells  

DRB1*0101    

DRB1*0301    

DRB1*0401    

DRB1*0701    

DRB1*0801    

DRB1*1101    

DRB1*1301    

DRB1*1501    

•  T  cell  epitopes  are  not  randomly  distributed  but  instead  tend  to  cluster  in  specific  regions.    –  These  clusters  can  be  very  powerful,  enabling  significant  immune  responses  to  low  scoring  

proteins.  

•  Clus,Mer  recognizes  T-­‐cell  epitope  clusters  as  polypep,des  predicted  to  bind  to  an  unusually  large  number  of  HLA  alleles.  

     

6/3/13 Confidential

Page 25: USP CHOP Annie De Groot Presentation June 2013

What  Makes  Proteins  Really  immunogenic?  Sequences  that  Contain  EpiBars  

Confiden,al  

Roberts  CGP,  Meister  GE,  Jesdale  BM,  Lieberman  J,  Berzofsky  JA,  A.S.  De  Groot,  Predic,on  of  HIV  pep,de  epitopes  by  a  novel  algorithm,  AIDS  Research  and  Human  Retroviruses,  1996,  Vol.  12,  No.  7,  pp.  593-­‐610.  

Clus,Mer  -­‐  Locates  highly  immunogenic  regions  

EpiBar  :  A  common  feature  of  highly  

immunogenic  clusters  

EpiBar  

Page 26: USP CHOP Annie De Groot Presentation June 2013

EpiVax  Immunogenicity  Scale  

Confiden,al  

- 80 -

- 70 -

- 60 -

- 50 -

- 40 -

- 30 -

- 20 -

- 10 -

- 00 -

- -10 -

- -20 -

- -30 -

- -40 -

- -50 -

- -60 -

- -70 -

- -80 -

Thrombopoietin

Human EPO

Immunogenic Antibodies*

Tetanus Toxin

Influenza-HA

Albumin

IgG FC Region

EBV-BKRF3

Fibrinogen-AlphaNon-immunogenic Antibodies†

Follitropin-Beta

PROTEIN_001 (35.13)

Protein Immunogenicity Scale

Proteins Scoring above +20 areconsidered to be potentiallyimmunogenic.

On the left of the scale weinclude some well-knownproteins for comparison

- 80 - - 70 - - 60 - - 50 - - 40 - - 30 - - 20 - - 10 - - 00 - - - 10 - - - 20 - - - 30 - - - 40 - - - 50 - - - 60 - - - 70 - - - 80 -

Thrombopoietin

Human EPO

Immunogenic Antibodies*

Tetanus Toxin Influenza - HA

Albumin

IgG FC Region

EBV - BKRF3

Non - immunogenic Antibodies†

Follitropin - Beta

Page 27: USP CHOP Annie De Groot Presentation June 2013

EpiMatrix  mAb  Immunogenicity  Scale     - 80 -

- 70 -

- 60 -

- 50 -

- 40 -

- 30 -

- 20 -

- 10 -

- 00 -

- -10 -

- -20 -

- -30 -

- -40 -

- -50 -

- -60 -

- -70 -

- -80 -

IgG FC Region

Nuvion (0%)

Avastin (0%)

AB01 (EPX Adjusted Score: -46.98)

AB02 (EPX Adjusted Score: -44.48)AB03 (EPX Adjusted Score: -44.81)AB04 (EPX Adjusted Score: -45.81)AB05 (EPX Adjusted Score: -45.88)

AB06 (EPX Adjusted Score: -47.85)

AB07 (EPX Adjusted Score: -46.99)

AB08 (EPX Adjusted Score: -46.30)

AB09 (EPX Adjusted Score: -47.40)

AB10 (EPX Adjusted Score: -45.88)

AB11 (EPX Adjusted Score: -47.40)

Synagis (1%)

Simulect (1.4%)Humira (12%)

Bivatuzumab (6.7%)

Remicade (26%) Rituxan (27%)Campath (45%)

Humicade (7%)

Reopro (5.8%)Tysabri (7%)

LeukArrest (0%)

Herceptin (0.1%)

Compare  with:  

27  6/3/13 Confidential

Due  to  the  presence  of  Tregitopes,  an,bodies  tend  to  fall  lower  on  the  immunogenicity  scale.  

We  have  developed  a   refined  method  using   regression  analysis   to  predict   the   immunogenicity   of   an,body   sequences   based   on  observed  clinical  responses  (next  slide).  

We   have   found   that   a   balance   in   favor   of   Tregitope   (regulatory)  content   over   neo-­‐epitope   (effector)   content   is   correlated   with  reduced  clinical  immunogenicity.  

Neo

Epi

tope

Con

tent  

Tregitope Content  High   Low  

Low  

Avastin (0%)  Herceptin (0%)

Mylotarg (3%)  Simulect (1%)  Synagis (1%)  

Hig

h  

Campath (45%)  Remicade (26%)  Rituxan (27%)

Page 28: USP CHOP Annie De Groot Presentation June 2013

CHO  genome  

Immune      Response?  

Self/  Microbiome  

28  

Logical Next Step measure CHO/Self Conservation

Page 29: USP CHOP Annie De Groot Presentation June 2013

Databases  available  

Puta,vely    Secreted  

(signal  pep3de)    

Mouse  secreted  

165  proteins  

Transcriptome  32,801  con,gs  

Validated  HCP  contaminants  25  proteins  

CHO  genome  24,383    

predicted  genes    

Page 30: USP CHOP Annie De Groot Presentation June 2013

Key Datasets Genome and transcriptome

Page 31: USP CHOP Annie De Groot Presentation June 2013

•  Protein databases (UniProtKB/Swiss-Prot, Locate) •  BLAST •  SignalP •  EpiMatrix •  BlastiMer - JanusMatrix

Tools used for this analysis

Page 32: USP CHOP Annie De Groot Presentation June 2013

•  Identify secreted CHO proteins •  Collect published HCP from CHO •  Evaluate potential immunogenicity •  Evaluate sequence homology •  Identify clustered regions – compare to CHO; •  Are human/CHO different at the cluster? Count

as possible immunogenicity trigger.

Approach

Page 33: USP CHOP Annie De Groot Presentation June 2013

Immunogenicity    Scores  distribu,on  

Page 34: USP CHOP Annie De Groot Presentation June 2013

Immunogenicity    Scale  Validated  HCP  CHO  contaminants  

Page 35: USP CHOP Annie De Groot Presentation June 2013

Other  potential  contaminants  SL cytokine (84)

Lysosomal protective protein (35)

Page 36: USP CHOP Annie De Groot Presentation June 2013

But  are  human-­‐like  proteins  immunogenic?  

CHO

     

okay?  

peptides  

Page 37: USP CHOP Annie De Groot Presentation June 2013

Putatively    Secreted  

(signal  peptide)    

Mouse  secreted  

165  proteins  

Transcriptome  32,801  contigs  

Validated  HCP  contaminants  25  proteins  

CHO  genome  24,383    

predicted  genes    

Human  proteome  20,238  proteins  

Approach  to  conserva,on    with  Human    

Page 38: USP CHOP Annie De Groot Presentation June 2013

•  Identify secreted CHO proteins •  Evaluate potential immunogenicity •  Evaluate sequence homology •  Identify clustered regions – compare to CHO; •  Are human/CHO different at the cluster? Count

as possible immunogenicity trigger.

Approach

Page 39: USP CHOP Annie De Groot Presentation June 2013

T  cell  Receptor  Face  (epitope)  

MHC-­‐binding  Face    (agretope)  

T  cell  epitopes  are  two-­‐faced  

Page 40: USP CHOP Annie De Groot Presentation June 2013

Identifies cross-reactive peptides: •  Identical T cell-facing residues •  Same HLA allele but . . •  OK if different MHC-facing residues

The  God  of  Two  Faces:  JanusMatrix  

Page 41: USP CHOP Annie De Groot Presentation June 2013

TCR  face  vs.  MHC  binding  face    

MHC/HLA

TCR

The most conservative approach: •  Identical T cell-facing residues •  Same HLA allele and minimally different

MHC-facing residues

Page 42: USP CHOP Annie De Groot Presentation June 2013

EpiMatrix  adjusted  immunogenicity  score    

Page 43: USP CHOP Annie De Groot Presentation June 2013

Determina,on  of  conserva,on  with  self:  JanusMatrix  results    

Page 44: USP CHOP Annie De Groot Presentation June 2013

Cross-­‐reactivity  visualization  

Predicted  9-­‐mer  epitope  from  a  source  protein  

Human  protein  where  cross-­‐reactive  epitopes  are  present  

9-­‐mer  from  human  prevalent  proteome,    100%  TCR  face  identical  to  source  epitope  

Source protein

HCV_G1_NS2_794

Page 45: USP CHOP Annie De Groot Presentation June 2013

CEFT  Pep,des  (immunogenic)    

Page 46: USP CHOP Annie De Groot Presentation June 2013

Flu  and  Tet  tox  epitopes  

SNF2 histone linker PHD RING

helicase

ETAA16 protein

Ankyrin repeat domain 18A

Flu HA308-318

Ubiquitin specific

protease 1

Poly ADP ribose polymerase

family, member 9

Poly ADP ribose polymerase

family, member 9

Tetanus Toxin830-844

Olfactory receptor, family 5, subfamily D,

member 14

Page 47: USP CHOP Annie De Groot Presentation June 2013

hTregitope-­‐IGGC-­‐167    hTregitope-­‐IGGC-­‐289  

HTREG_IGGC-289

HTREG_IGGC-167

Page 48: USP CHOP Annie De Groot Presentation June 2013

CHO: lysosomal protective protein

Lysosomal

protective

Lysosomal

protective

Page 49: USP CHOP Annie De Groot Presentation June 2013

SL cytokine

CHO: SL cytokine  

SL cytokine

Page 50: USP CHOP Annie De Groot Presentation June 2013

•  Identify secreted CHO proteins •  Evaluate potential immunogenicity •  Evaluate sequence homology •  Identify clustered regions – compare to CHO; •  Are human/CHO different at the cluster? Count

as possible immunogenicity trigger.

New Approach for CHO

Page 51: USP CHOP Annie De Groot Presentation June 2013

Immune  Response  =  Sum  of  Epitopes  Sum  includes  +  (T  effectors)  and  –  (Tregs)  scores  

Protein  Therapeu,c  

Host  Cell  Protein  Contaminant  

HCP  Epitope  

New Approach

Page 52: USP CHOP Annie De Groot Presentation June 2013

For  an  individual,  T  cell  response  depends  on:    T  cell  epitope  content  x  HLA  –  Treg  Epitope  content  x  HLA  

 

Vaccine or Foreign Protein = (TeffPT1+  TeffPT2  .  .  .  )  =      Response  CHO = Σ (  TeffPT    +    TeffPT  +  TeffHCP  –  TregPT)  =      Treg  Adjusted  Response  

Immune  response  depends  on    Foreign-­‐ness    Potential  Tregs    Adjuvant  (Danger  signal)  

Proposed adjustment to score

Page 53: USP CHOP Annie De Groot Presentation June 2013

Available  now:  CHOPPI  CHO  Protein  Predicted  Immunogenicity  

CHOPPI  hmp://bit.ly/11fZqfJ  

Page 54: USP CHOP Annie De Groot Presentation June 2013

•  Formula,on  (VLP;  aggregates)  •  “Danger  Signal”  •  Route:  Subcutaneous  delivery?  •  Dose  (high/low,  persistent,  intermiment)  •  T  cell  epitope  content  •  Differing  T  cell  epitope  content  =  HCP  

55  

In  Closing  Factors  affec,ng  Immunogenicity  

Page 55: USP CHOP Annie De Groot Presentation June 2013

•  While CHO are the most commonly used cell lines for mammalian cell protein expression, Company-specific cell lines may vary. Furthermore, we can’t anticipate

•  Genetic engineering •  Batch-to-batch variation •  Expression (based on above) •  Which protein will ‘hitchhike’

CHO Cell lines may differ

Page 56: USP CHOP Annie De Groot Presentation June 2013

Genomics

“Expressome” Informatics

In  the  future  –  Obtain  proteins  through    MS/MS  HPLC  –  and  Sequence,  ID  epitopes    

Page 57: USP CHOP Annie De Groot Presentation June 2013

Thank  you!  And  .  .  .  CHOPPI:  hmp://bit.ly/11fZqfJ  or  contact  me.    

Translational Immunology Research and Accelerated [Vaccine] Development Institute for Immunology and Informatics University of Rhode Island

Dartmouth College

EpiVax, Inc. SL cytokine

Page 58: USP CHOP Annie De Groot Presentation June 2013

Institute for Immunology and Informatics (iCubed)

D.  Spero  icubed  overview  2011  

www.immunome.org  URI  Alumni  Board  2012  

Page 59: USP CHOP Annie De Groot Presentation June 2013

New  Concept:    

Tregitopes  induce    

tolerance  to      

protein      

Therapeu,cs    

(Friday  April  20th    Session)  

     

Epitope may induce different types of Response

Page 60: USP CHOP Annie De Groot Presentation June 2013

CHO Adjustment for Immunogenicity ?

+    +    

Conserved epitope Neo-Epitope

Neo-Epitope

Page 61: USP CHOP Annie De Groot Presentation June 2013

Immune  Response  =  Sum  of  Epitopes  Sum  includes  +  (T  effectors)  and  –  (Tregs)  scores  

ISPRI approach to analyzing mAbs . . .

T  cell  response  depends  on:    

T  cell  epitope  content  x  HLA  –  Treg  Epitope  content  x  HLA      

Protein  Immunogenicity  can  be  Ranked        

Treg  epitope  

Protein  Therapeu,c  

1    +    1    -­‐  Treg    =      Response  

epitope  epitope  

Page 62: USP CHOP Annie De Groot Presentation June 2013

T  reg  S,mulus  

IL  10,  TNF  alpha     Additional Treg Epitope

Modify Effector T cell response: Reduce T effector Stimulus

Current Hypothesis: More Tregitopes Lower Immunogenicity

De Groot A.S. and D. Scott. Immunogenicity of Protein Therapeutics. Trends in Immunology. Invited Review. Trends Immunol. 2007 Nov;28(11):482-90.

63 1/29/11   63  Confiden,al  and  Copyrighted  EpiVax  

Page 63: USP CHOP Annie De Groot Presentation June 2013

64  

EpiVax: Immunogenicity scale is

Page 64: USP CHOP Annie De Groot Presentation June 2013

Correlation of antibody immunogenicity with Tregitope adjusted EPX Scores

65  

Page 65: USP CHOP Annie De Groot Presentation June 2013

Correlation of EpiMatrix Scores and Immunogenicity in Human studies

40%  

37%  

 21.97    

FPX  1    

0%  

9.3%  

-­‐111.25  

FPX  5  

NA  0.5%  12%  Neutralizing  An,bodies  

5.6%  7.8%  53%  Binding  An,bodies  

-­‐1.76  1.62  34.37  EpiMatrix  score  

FPX  4  FPX  3  FPX  2  Protein  

Na:    not  analyzed  Nega,ve  score  indicates  presence  of  

Treg  epitope  

Page 66: USP CHOP Annie De Groot Presentation June 2013

-  80 -

-  70 -

-  60 -

-  50 -

-  40 -

-  30 -

-  20 -

-  10 -

-  00 -

-  -10 -

-  -20 -

-  -30 -

-  -40 -

-  -50 -

-  -60 -

-  -70 -

-  -80 -

Thrombopoietin

Human EPO

Immunogenic Antibodies*

Tetanus Toxin

Influenza-HA

Albumin

IgG FC Region

EBV-BKRF3

Fibrinogen-Alpha Non-immunogenic Antibodies†

Follitropin-Beta

Ab K (-38.23)

Ab E (-16.03)

Ab N (-53.88)

Ab P (-70.14)

Ab B (-00.32)

Ab A (13.82)

Ab D (-08.87)

Ab F (-22.13)

Ab I (-25.77)

Ab O (-54.26)

Ab L (-48.49)

Ab C (-02.03)

Ab M (-52.25)

Ab H (-24.99)

Ab J (-28.94)

Ab G (-24.33)

*Tregitope  adjusted  

Application – Germline Abs*